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Summary. A p-representation of the complete graph Kn,n is a collection of sets 
{S1, S2, . .. ,S2n} such that lSi n Sj I ~ p if and only if i :::; n < j. Let 'l'Jp(Kn,n) 
be the smallest cardinality of USi. Using the Frankl-Rodl theorem about almost 
perfect matchings in uncrowded hypergraphs we prove the following conjecture of 
Chung and West. For fixed p while n -+ 00 we have 1?p(Kn,n) = (1 + 0(1))n2/p. 
Several problems remain open. 

1. The p-intersection number of K(n, n) 

One of the important topics of graph theory is to represent graphs, or an interesting 
class of graphs, using other simple structures. One approach is to represent the 
vertices by sets so that vertices are adjacent if and only if the corresponding sets 
intersect (line graphs). More generally, the p-intersection number of a graph is the 
minimum t such that each vertex can be assigned a subset of {I, ... ,t} in such a 
way that vertices are adjacent if and only if the corresponding sets have at least 
p common elements. Such a system is called a p-representation (or p-intersection 
representation) of the graph Q, and the minimum t is denoted by'I'Jp(Q). 

For any graph of v vertices Erdos, Goodman, and P6sa [8] showed that 'l'J 1 :::; 

Lv2/4j, and here equality holds for K lv/ 2J ,rv/21' Myung S. Chung and D. B. West 
[5] conjectured that the complete bipartite graph also maximizes 'l'Jp. Their lower 
bound for p > 1 is 

(1.1) 
In this note we determine 'l'Jp for these and a few more graphs. The complete 

k-partite graph, K~~) .. ,n, has kn vertices, k disjoint independent sets of sizes nand 
all the (~)n2 edges between different classes. K(n x k) denotes a graph with vertex 

set V1 U ... U V k , Vi = {vf, ... ,v~J and vt is joined to vj if and only if i -=I j and 
£ -=I m. So K(n x 2) is obtained from Kn,n by deleting a one factor. 

Theorem 1.1. For fixed p and k, the p-intersection number of the complete k­
partite graph K~~: .. ,n is (1 + 0(1)) n 2/p. 

Note that the asymptotic is independent from the fixed value of k. In Section 4 
we will give a partial proof for Theorem 1.1 using classical design theory and obtain 
a better error term. An Hadamard matrix of order n is a square matrix M with ±1 
entries such that M Mt = nIno It is conjectured that it exists for all n == O(mod 
4). The smallest undecided case is larger than 184. An S>..(v, l, t) block design is a 
l-uniform (multi)hypergraph on v vertices such that each t-subset is contained in 
exactly>. hyperedges (blocks). Block designs with>' = 1 are called Steiner systems. 
All notions we use about designs can be found, e.g., in Hall's book [12]. Wilson [19] 
proved that for any l there exists a bound vo(l) such that for all v ~ Vo there exists 
a Steiner system S(v,l,2) if (~)/m and (v -1)/(l-l) are integers. 
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Theorem 1.2. (a) If there exists an Hadamard matrix of size 4p, and a Steiner 
system Sen, 2p, 2), then 'l3p (lC(n x 2» = (n2 - n)/p. 

(b) If p = qd where q is a prime power, d a positive integer, k ::::; q, and there 
exists a Steiner system Sen, qd+ I , 2), then 'l3p (lC(n x k» = (n 2 - n)/p. 

Corollary 1.1. For all p in Theorem 1.2, and n > no(p) 

This covers all cases p ::::; 46. A construction from the finite projective space is 
given in Section 3. In Section 5 we list a few open problems. 

2. A random construction 

A hypergraph 'H. with edge set £('H.) and vertex set V('H.) is called r-uniform (or 
an r-graph) if lEI = r holds for every edge E E £('H.). The degree, degrt(x), of the 
vertex x E V is the number of edges containing it. The degree of a pair, degrt (x, y), 
is the number of edges containing both vertices x and y. The dual, 'H.*, of 'H. is 
the hypergraph obtained by reversing the roles of vertices and edges keeping the 
incidencies, i.e., V(H*) = £(H). A matching M C £('H.) is a set of mutually disjoint 
edges, v('H.) denotes the largest cardinality of a matching in 'H.. 

We are going to use a theorem of Frankl and ROdl [9]. The following slightly 
stronger form is due to Pippenger and Spencer [17]: For all integer r ~ 2 and real 
c > 0 there exists a 8 > 0 so that: If the r-uniform hypergraph 'H. on z vertices has 
the following two properties (i) (1 - 6)d < degrt (x) < (1 + 8)d holds for all vertices, 
(ii) degrt(x,y) < 8d for all distinct x and y, then there is a matching in 'H. almost 
as large as possible, more precisely 

v('H.) ~ (1 - c)(z/r). (2.1) 

Far reaching generalizations of (2.1) has been recently proved by Kahn [15]. 
Suppose 9 is a graph and :F = {H, .. . Ft } is a family of subsets of the vertex set 

V(g), repetition allowed. Such a system :F is called a p-edge clique cover if every 
edge of 9 is contained in at least p members of:F and the non-edge pairs are covered 
by at most p - 1 F/s. A p-edge clique cover is the dual of a p-representation (and 
vice versa), so the smallest t for which there is a p-edge clique cover is 'l3 p (g). This 
was the way Kim, McKee, McMorris and Roberts [16] first defined and investigated 
'l3p (g). 

Proof (of Theorem 1.1). To construct a p-edge clique cover of the complete k­
partite graph with n-element classes VI, ... , Vk consider the following multigraph 
M. Every edge contained in a class Vi has multiplicity p - 1, and all edges joining 
distinct classes (crossing edges) have multiplicity p. The total number of edges is 

Let r = 1£(IC~~)",p)1 = k(i) + G)p2. Define the r-uniform hypergraph 'H. with vertex 
set £(M) as follows. The hyperedges of'H. are those r-subsets of £(M) which form 
a complete k-partite sub graph with p vertices in each Vi. The number of such 
subgraphs is 
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1£(7-1) I = (;) k (p _ l)k(~)pmp2. 

Let e E £(M) be an edge contained in a class Vi. The number of K~~) .. ,p's, i.e., the 
number of hyperedges of 7-l containing e is exactly 

(2.3) 

For any crossing edge f E £(M) connecting two distinct classes we have 

deg?-l(f) = (;:::: n 2 (;) k-2(p_l)km p (;)p2_ 1 . (2.4) 

The ratio of the right hand sides of (2.3) and (2.4) is n/(n - 1), so the hypergraph 
7-l is nearly regular, it satisfies the first condition in the Frankl-ROell theorem for 
any {; > 0 if n is sufficiently large. For two distinct edges, el, e2 E £(M), obviously 
deg1-l(el,e2) = O(nkp- 3 ), so condition (ii) is fulfilled, too. Apply (2.1) to 7-l. We 
get a system F = {FI , . .. , Fv} of kp-element subsets of uVi such that every pair 
e contained in a class Vi is covered at most p - 1 times, every pair f joining two 
distinct classes is covered at most p times. Moreover, l/ = (1 - o(I))n2/p, by (2.2). 
It follows that almost all edges of K~~) .. ,n are covered exactly p times, so the system 
F can be extended to a p-edge clique cover by adding sufficiently many (but only 
o(n2 )) edges. 

3. Exact results from the finite projective space 

Proposition 3.1. For all p::::: 1, iJp(K(n x 2)) ::::: (n2 - n)/p. 

Proof. Let VI and V2 be the two parts of the vertex set of the graph, IVII = 1V21 = 
n, let {Ai UBi: 1 ::::: i ::::: t} be a p-edge clique cover, their average size on one side 
is f := L:i(IAil + IBiD/(2t). Using the inequalities (3.1a) L:i (I~il) ::::: (p - 1)(~), 
and (3.1b) L:i (I~il) ::::: (p - 1) (~), and the fact that (3.1c) all the n 2 - n crossing 
edges are covered at least p times we have 

p(n2 - n) ::::: L IAiliBil ::::: L ( C~il) + C~il) ) + ft ::::: (p - 1)(n2 - n) + ft. 
, , 

This gives ft ::::: (n2 - n). On the other hand, (3.1a-b) give 2t(;) ::::: 2(p - 1)(~), 
hence f::::: p and t ::::: (n 2 - n)/p follows. 

Replacing (3.1c) by pn2 ::::: L:i IAiliBil the above proof gives 

(3.1) 

which is better than (1.1) for n < (p - 1)2. 
Consider a K(n x k) with classes vI, ... , V k , Vi = {vi, ... , v~}. We call the 

p-edge clique cover F = {FI , ... , Ft } perfect if the sets {Fi n Vi : 1 ::::: i ::::: n} form 
an Sp_l(n,p,2) design for all f. It follows, that lFil = kp for all Fi , every edge of 
K(n x k) is contained in exactly p sets, every pair from Vi is covered p - 1 times, 
every pair of the form {v;, v;;'} is uncovered, and t = (n2 - n)/p. 
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Proposition 3.2. If p = qd, where q is a prime power, d a positive integer and 
k ::; q, then there exists a perfect p-edge clique cover of K(qd+ 1 x k). Hence, in this 
case, 'l3p(K(qd+1 x k» = qd+2 - q. 

Proposition 3.3. If p = qd + qd-I + ... + 1, where q is a prime power, d a positive 
integer and k ::; q + 1, then 'l3p(K(~~l d+l) = q2(qd + qd-I + ... + 1). 

q , ... ,q 

Proof. The lower bounds for '!9p are implied by Proposition 3.1 and (3.2), respec­
tively. The upper bounds are given by the following construction. Let X be the 
point set of a (d + 2)-dimensional projective space of order q, PG(d + 2,q), let 
Z C X be a subspace of dimension d, and let yl, ... , yq+1 be the hyperplanes 
containing Z, Vi = yi \ Z. The sets Vi partition X \ Z into qd+l-element classes. 
Choose a point c E V q+1 and label the vertices of Vi = {v; : 1 ::; i ::; qd+l} in such 
a way that {v; : 1 ::; f ::; q} U {c} form a line for all i. 

The hyperplanes not containing Z and avoiding c induce a perfect p-edge clique 
cover of K(pd+1 x k) with classes V!, ... , Vk (k ::; q). Indeed, PG(d+ 2, q) contains 
qd+2 + qd+1 + ... + q + 1 hyperplanes and they cover each pair of points exactly p 
times. The point c is contained by exactly qd+1 + ... + q + 1 of the hyperplanes, 
Z is contained in q + 1 of them, and Z U {c} is contained in a unique one. So the 
above defined cover consists of qd+2 - q sets. These sets still cover each pair of the 
form {vf, vj}, i i= j exactly p times. However, the pairs of the form {v;, v;;'} are 
uncovered, because any subspace containing these two points must contain the line 
through them, so it must contain the element c. 

Similarly, considering all the hyperplanes not containing Z, we get a p-edge 
clique cover of K~~) .. ,n with classes VI, ... , Vk where n = qd+1 and k ::; q + 1. 

The dual (perfect) p-representation of K(qd+ 1 x k) can be obtained by consider­
ing a line, L, in the affine space of dimension d+ 2, and assigning all sets of the form 
y \ {vi} to the vertices of the f'th color class, where Vi E L, and Y is a hyperplane 
with Y nL = {vi}. Similarly, the dual p-representation of K~~) .. ,n on the underlying 
set X \ L can be obtained by assigning the sets Y \ {vi} to the f'th color class. 
There might be more optimal constructions using higher dimensional spaces. 

4. Constructions from Steiner systems 

Proposition 4.1. If there exists an Hadamard matrix of size 4p, then there exists 
a perfect p-edge clique cover of K(2p x 2), so its 'l3 p = 4p - 2. 

Proof. We are going to give a perfect p-intersection representation with underlying 
set {I, ... , 4p - 2}. Its dual is a perfect p-edge clique cover. Let M be an Hadamard 
matrix of order 4p. We may suppose that the last row contains only + 1 'so The ± 1 's 
in any other row define a partition of {I, ... , 4p} into two 2p-element sets p/ UPi-. 

We may also suppose that the last two entries are M i ,4p-1 = 1, M i ,4p = -1 for 
1 ::; i ::; 2p. Finally, assign the set p/ \ {4p - I} to the vertex v;, Pi- \ {4p} to v;. 

Note that both in Proposition 3.2 and here we have got the perfect p-edge clique 
cover from a resolvable S>.(sp,p, 2) design, where s is an integer, A = (p-l)/(s-I). 

Proof (of Theorem 1. 2(b)). First, we consider a perfect p-edge clique cover, F, in 
the case n = qd+1 given by Proposition 3.2. Consider k identical copies of a Steiner 
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system sen, qd+l, 2) over the n-element sets Vi. Replace each block and its corre­
sponding pairs by a copy of F. Then we obtain a system is a perfect p-edge clique 
cover. 

The proof of the case (a) is similar, we put together a perfect p-edge clique cover 
using a building block of size 2p supplied Proposition 4.1 and a Steiner system 
S(n,2p,2). Taking the sets {vt,v;, ... ,vf} p times, we get that '!9p(K~~).,n) S 
'!9p(K(n x k)) + pn. As '!9p(K~~) .. ,n) is a monotone function of n we got Corollary 
1.3. 

Conjecture 4.1. If (n 2 - n)/p is an integer and n > no(p,k), then there exists 
a perfect p-edge clique cover of K(n x k), hence its p-intersection number '!9p = 
(n 2 - n)/p. 

The case p = 1 corresponds to the fact that there are transversal designs T(n, k) 
(Le., mutually orthogonal Latin squares of sizes n) for n > no(k) (Chowla, Erdos, 
Straus [4], also see Wilson [20]). 

Chung and West [5] proved the case k = p = 2. They showed '!92(K(n x 2)) = 
(n 2 -n)/2 by constructing a perfect 2-edge cover (they call it a perfect 2-generator) 
for the cases n == 1,2,5,7,10, or 11 (mod 12). This and (1.1) imply that 

(4.1) 

holds for these cases. Their conjecture about the so-called orthogonal double covers 
(a conjecture equivalent to the existence of a perfect 2-edge cover of K(n x 2)) 
which conjecture had appeared in [6], too, is true for all n > 8. This was proved by 
Ganter and Gronau [11] and independently by Bennett and Wu [1]. So no(2, 2) = 8 
and (4.1) holds for all n > 8. 

There are two more values proved in [5], namely the special cases q = 2 and 
q = 3 of the following conjecture. K(q2 + q + 1 x 2) has a perfect q-edge cover 
whenever a projective plane of order q exists. This would imply that equality holds 
in (1.1) for (p, n) = (q + 1, q2 + q + 1). 

5. Further problems, conjectures 

The first nontrivial lower bound for '!9p(Kn,n) was proved by Jacobson [13]. He and 
Kezdy and West [14] also investigated '!92(Y) for other classes of graphs, like paths 
and trees. 

How large '!9p(K(n x k)) and '!9p(K~~) .. ,n) if n is fixed and k -> oo? 
Estimate '!9p for complete bipartite graph with parts of sizes a and b when 

a -> 00, p is fixed and alb goes to a finite limit. 
Another interesting graph where one can expect exact results is a cartesian 

product, its vertex set is II x ... X Ii, and (il,"" id is joined to (i~, ... , i~) if and 
only if in i= i~ for all 1 S Q S C. 

For a matching, M, of size n it easily follows that '!9p(M) = min{t: (!) :2: n}. 
One can ask the typical value of '!9p(y), i.e., the expected value of '!9p for the 

random graph of n vertices. The case of p = 1 was proposed in [10], and the best 
bounds are due to Bollobas, Erdos, Spencer, and West [3]: For almost all graphs 
its edge set can be covered by O(n2Ioglogn/logn) cliques. The conjecture is, that 
here the term log log n can be deleted. A counting argument gives the lower bound 
E('!9 I (Y)) :2: (2 - o(1))n2 /(210g2 n)2. Obviously, 
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so the order of magnitude of E(fJp) is at most that of E(fJ 1 ). Until there is such a 
large gap between the lower and upper bounds of E(fJ1 ), one cannot expect better 
bounds for E(fJp). 

The notion of fJp was generalized from the study of the p-competition graphs. 
Another generalization, also having several unsolved questions, is the clique cov­
erings by p rounds. Let g be a simple graph and let tpp(Q) be the minimum of 
"2:..:1<i< ni such that there are families AI, ... ,Ap, IAil = ni, such that each edge 

- -p 
e E £(Q) is covered by each family (i.e., there exists an A E Ai with e C A), but this 
does not hold for the non-edges. It is known [10], that for all graphs on n vertices 
tp2 ::; 3n5 / 3 and for almost all graphs tp2 > 0.ln4/ 3 j(logn)4/3. For further problems 
and questions, see [10). 

Bollobas [2) generalized the Erdos-Goodman-P6sa result as follows. The edge set 
of every graph on n vertices can be decomposed into t(k - 1, n) parts using only lCk's 
and edges, where t( k - 1, n) is the maximum number of edges in a (k - 1 )-colored 
graph on n vertices, e.g., t(2, n) = L n 2 j 4 J. There are many beautiful results and 
problems of this type, the interested reader can see the excellent survey by Pyber 
[18). Most of the problems can be posed to multigraphs, obtaining new, interesting, 
non-trivial problems. 

Let 1'J;(Q) the minimum t such that each vertex can be assigned a subset of 
{I, ... , t} in such a way that the intersection of any two of these sets is at most 
p, and vertices of g are adjacent if and only if the corresponding sets have exactly 
p common elements. Note that in all of the results in this paper were proved an 
upper bound for fJ;. If gn is a graph on n vertices with with 2n - 3 edges such that 
two vertices are connected to all others, then one can show that limn --+ oo 1'J;(gn) -
fJp(Qn) = (X) for any fixed p. What is max(fJ;(Q) - 1'Jp(Q» and max(fJ;j1'Jp) for 
different classes of graphs? Is it true that 1'J;(Q) ::; (1 + o(I»n2 j(4p) for every 
n-vertex graph? 
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