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AMERICAN MATHEMATICAL SOCIETY 
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ON THE BEST CONSTANT 
FOR THE BESICOVITCH COVERING THEOREM 

ZOLTAN FUREDI AND PETER A. LOEB 

(Communicated by James West) 

ABSTRACT. This note shows that in terms of known proofs of the Besicovitch 
Covering Theorem, the best constant for that theorem is the maximum number 
of points that can be packed into a closed ball of radius 2 when the distance 
between pairs of points is at least 1 and one of the points is at the center of the 
ball. Exponential upper and lower bounds are also established. 

1. INTRODUCTION 

Besicovitch's Covering Theorem [4] is more powerful than the familiar result 
of Vitali because it works for every Borel measure. As the following statement 
of the theorem indicates, the result itself is independent of measure-theoretic 
considerations. The usual setting is a finite-dimensional normed vector space 
X = (X, 11-11); here, B(a, r) denotes a closed ball with center a and radius 
r > 0. Fix an arbitrary set A C X and associate a ball B(a, r(a)) to each 
a E A so that supaEA r(a) < oo. The theorem states that there exists a constant, 

= JJ (X), depending only on the normed space, such that for some m <J, 
one can find m disjoint subsets Ai C A with the property that for each set Ai, 
the associated balls are pairwise disjoint and the union Ul<i<m UaEAi B(a, r(a)) 
still covers A. 

Besicovitch proved this result for disks in the plane in 1945 [4], and Morse 
extended it to more general spaces and shapes in 1947 [18]. (For a simple 
proof of Morse's result, see [6].) The principal use of such covering theorems 
in analysis is to show that "undesirable sets" are null sets with respect to some 
a-finite Borel measure ,u. 

Here is an example: Let S be a set contained in the support of #u with 
jz(S) > 0, and let v be a finite Borel measure such that v(S) = 0. To prove 
the Lebesgue Differentiation Theorem as in [6], one must show that for ,u- 
almost every a E S there is a 3 > 0 such that if 0 < r < 3, then #u(B(a, r)) > 
v(B(a, r)). Let A be the set of points where this is not true; fix e > 0 and a 
compact set K in X\S such that v(X\K) < e/ fl. Each a in A is the center 
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1064 ZOLTAN FUREDI AND P. A. LOEB 

of a ball B(a, r) c X \ K such that #u(B(a, r)) < v(B(a, r)) . From the m 
subsets Ai of A given by the Besicovitch Covering Theorem, we choose one, 
Ak, which maximizes the sum EaEAk #u(B(a, r(a))). Now the outer measure 

At*(A) < 1- E (B(a, r(a))) 
aEAk 

< ? Z v(B(a, r(a))) < *(8/f) = 8. 
aEAk 

The domination of # (A) by a constant times the total measure of a disjoint 
set of balls is typical in arguments using covering theorems. Similar calculations 
are applied in working with maximal functions. The above argument can be 
modified by selecting a finite subset of Ak which works for the constant 2fl. 
Setting the corresponding balls aside, one can repeat the procedure until all of 
A except a set of p-measure 0 has been covered by a countable disjoint set of 
balls. Another possibility is to use all of the balls in the original subcovering of 
A. Here, one exploits the fact that the sum of the characteristic functions of 
these balls is bounded by JJ . 

All known proofs of the Besicovitch Covering Theorem use geometric argu- 
ments to establish an upper bound for the cardinality of certain configurations 
of balls defined in terms of a parameter z > 1 . In the next section, we give a 
definition for this configuration called, as in [15], a -satellite configuration of 
balls. We use a (X, z) to denote the maximum number of balls that can form 
a z-satellite configuration, and let a (X) denote a (X, 1) . 

Once a geometric bound is established, proofs of Besicovitch's theorem pro- 
ceed with nongeometric arguments, such as in [15], to show that for T > 1, 

(1) (X)<a(X,) 

For completeness, we will sketch a proof of Equation (1) in Section 5.1. An easy 
proof of Besicovitch's theorem is formed by the combination of this argument 
with the proof of Theorem 2.1. The use of ordered satellite configurations as 
defined in Section 5.2 yields a further simplification. 

The principal result of this article, Theorem 2.1, shows that a (X) equals 
the packing number 0(X) described in the abstract. It also shows that for z 
sufficiently close to 1, a (X, z) = a (X) . Together with Equation (1), this 
gives the following result. 

Corollary of Theorem 2.1. fl (Y) < i (X) . 

Our proof that i (X) = a (X) is an extension (and simplification) of the 
first part of results established independently by Reifenberg in [20] and Bateman 
and Erdos in [3]. They prove that for E2, the plane with Euclidean norm, 

(2) O(E 2) = a(E2, 1) and O(E 2) = 19. 

We will show that the equality i (X) = a (X) is valid for every finite dimen- 
sion and every norm. 

Along with our principal result, we have included in this article an exponential 
lower and upper bound for fl and a. Some of the most important spaces, such 
as Euclidian space Ed and the maximum norm space i, are discussed in some 
detail. 
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2. SATELLITE CONFIGURATIONS AND PACKING OF SPHERES 

Fix a constant z > 1. A set of balls {B(ci, r1): : < i < n} is said to be in 
T-satellite configuration with center B(co, ro) if the following conditions hold 
for i > 1: 

(i) B(co, ro) n B(ci, ri) #z o, 
(ii) ro< T * ri, 

(iii) T * jlci - coll > max(ri, ro), and 
(iv) if 1 < i < j < n, then either llci - cjll > ri > rj/T or llci - cIll > rj > 

rilt . 

Let a (X, T) denote the least upper bound for the number of balls in any 
T-satellite configuration in X, and set a (Y) = a (Y, 1) . Clearly, a (Y, T) 

is an increasing function of z. Present proofs of the Besicovitch Covering 
Theorem in the literature show that for 1 < T< 2, a (X, z) is a finite (natural) 
number which plays the role of an upper bound for the number of families of 
disjoint balls given by that theorem. 

Let t = i (X) be the maximum number of points in a set P that can be 
packed into the closed ball B(0, 2) with the distance between pairs of distinct 
points at least 1 and with one of the points fixed at the origin. Such a set P 
is called a centered point packing into a ball of radius 2. Let P be such a 
packing with cardinality JP1 = i. By centering a ball of radius 1/2 about each 
of the points of P, one easily verifies the well-known fact that i is at most the 
volume of B(0, 5/2) divided by the volume of B(0, 1/2), whence, in terms 
of the dimension d of X, 

(3) < 5 

On the other hand, centering a ball of radius 1 about each point of P forms a 
1-satellite configuration, so 

(4) 6 (X) < a (X) 

It is easy to show with a simple compactness argument that it is still true for 
a small s = (s(X) > 0 that at most i points can be packed into the closed 
ball B(0, 2) when the distance between pairs of distinct points is at least 1 - ( 
and one of the points is fixed at the origin (e.g., see [15]). We will establish the 
following result in Section 7. 

2.1 Theorem. Fix a set of balls B(c1, ri), 0 < i < n, satisfying conditions 
(i)-(iv). If 1 < T < 1 + " , then n + 1 < i, i.e., aV(X, T) < ?(N). Thus, by 4, 
Equation (4), 

()= a (X) = a (Y, z).v 

3. ESTIMATES FOR SPHERE PACKING IN HIGHER DIMENSIONS 

3.1 Proposition. The order of magnitude of O(Ed) is exponential in d: 

(5) ( \5 + o(1)) (2.065... + o(1))d < O(Ed) < (2.691... + O(1))d. 

Proof. For these calculations, we let M(d, (0) and N(d, Ip) denote, respec- 
tively, the maximum number of points on the surface and inside the ball B(0, 1) 
in Euclidian space Ed, when on the surface, all of the mutual angular distances 
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are greater than or equal to qa, and inside the ball, the Euclidean distances 
are at least 2sin(fo/2). Obviously, M(d, ao) < N(d, ap). Lower bounds for 
M(d, ao) were given by Shannon [21] in 1959: 

1 ~~d 
(6) (sin +0(1)) <M(d, ,o). 

The best known upper bound for N(d, ao) was obtained by Kabatjanskili and 
Levenstein [13]: For all fixed p < 620 

(7) 1 
lg N(d ) < 1 +sin 

o log 1 +sin? _ 1 -sino log 1 -sino + o(). 
d 2 sin q 2 sin - 2 sin q 2 sin q 

The bounds in Equation (5) follow from Equations (6) and (7) using the value 
sin(fo/2) = 1/4. o 

Consider a centered point packing P into the ball B(O, 2) in the Euclidean 
space Ed. Define pi, i = 1, 2, by sin(loi/2) = 1/4 and sin(p2/2) = 1/3 (O < 
pi < 900 ). Split P into 3 parts: the center, the points contained in B(O, 1.5) \ 
{0}, and the rest. One can easily see that there are, respectively, at most 1, 
M(d, g2), and M(d, p1) points in these parts. Here M(d, ep2) < (2.004. * + 
o(1))d which is less than the left-hand side of Equation (5), hence i = (1 + 
o(l))M(d, ~O1). In the same way, it is easy to see that in general the functions 
N and M have the same order of magnitude, N(d, ao) < M(d, 9)(9-3). 

In the case of the Euclidean metric, our main Theorem 2.1 was independently 
proved by Sullivan in his thesis (also see his forthcoming paper [22]), along with 
the estimates in (5). Using the Mathematica program he was able to narrow the 
gap in small dimensions showing that 67 < O(E3) < 87, 226 < O(E4) < 331, 
681 <i?(E5) < 1159. 

4. A LOWER BOUND FOR THE BESICOVITCH CONSTANT 

No proof of the Besicovitch theorem can provide a constant better than the 
maximum K = K(.IV) for the number of balls that can form a configuration in 
X where each ball of the configuration intersects every other ball but does not 
contain the center of the other ball. We will call such a system an intersecting 
satellite configuration. For the plane, the value of K(E2) is at least 8, as is 
shown by the following construction due to Malnid and Mohar [29] and inde- 
pendently to E. Scheinerman (see in [12]): The centers of the eight circles are 
formed by the vertices of a regular pentagon and the three vertices of a small 
equilateral triangle with the same center such that no three vertices are collinear. 
It is conjectured that K(E2) = 8. Krantz and Parsons [27] showed K(E2) < 20; 
by [3] and [20] one knows that K(E2) < 19. In [28] Kezdy and Kubicki showed 
11 is an upper bound. In general, let S be a set of points such that all the mu- 
tual distances are strictly greater than 1 and at most 2. Centering a unit ball 
at each point of S we get an intersecting satellite configuration. If we consider 
a packing S into the unit ball of Ed with tp = 600, then Equations (6) and 
(7) give 

(2 / v' + O( 1))d -(I 1.154 ** + (1l))d < |51 < ( .3208.. + o( l))d. 

The following lower bound for K(Ed) is obtained in the same way as for Equa- 
tion (5): 
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4.1 Proposition. 1. 25d < K(Ed) < (1.887. .. + o(l))d. 

Proof. To see the lower bound, consider the ball B(O, V5/2) and let S be a 
set on the surface such that any angular distance between two points is more 
than 9 3 and less than 7t - V3 where sin p3 = 4/5. One can construct such a 
set S by taking the points PI, ... , Pm one by one from the surface. One can 
continue this process until the area of the two caps with angular radii 5O3 is less 
than 1r/m of the surface area of the ball. The surface area of these two caps 
is less than the surface area of a ball of radius sin (03 (0//2) . The rest of the 
calculation is left to the reader. 

To prove the upper bound, suppose (in somewhat greater generality) that 
B(ci , r1) is a set of balls such that ri, rj < 1ci - cc1 II < ri + rj for all 1 < i < 
i < m . Suppose that min ri = r, = 1 . Split this satellite configuration into 
d2 subconfigurations employing the radii of the balls in the following way. Let 
Ck = {ci (1 + (I/d))(k 1)/2 < r, < (1 + (1/d))k/2} for k = 1, 2,..., d2 - 1, 
and let Cd2 = {ci :ri > (1 + (1/d))d2}. Let Ri = min{r1 : E C1l}. In the 
case k < d2 all distances between the points of C1 are at least Ri and at 
most (2 (d + 1)/d)Ri. By Jung's Theorem (see, e.g., in [25]), any set in Ed 

of diameter D is contained in a ball of radius D /2d/(d + 1). Thus Ck is 
contained in a ball of radius v/2R1. The upper bound in Equation (7) with 
cos V = 3/4 gives I Ck I < (1.887...)d . In the case k = d2 the distance I cI - ci I- 
(c1 E Ck ) is at least exp(d/2). It is easy to see (the details are the same as in 
the proof of Theorem 2.1 in Section 7), that in this case the angles cic cj are at 
least 60? - o(1) . One can apply the upper bound in Equation (7) again (with 

= 600-o(l) ) to get ICd2I < (1.3208. * + o(l))d. O 

4.2 Conjecture. We think that the above construction is (essentially) best possi- 
ble; i.e., K(Ed) M(d, V3). This value of thefunction M is at most (1.480.**+ 
o(l))d, as shown by Equation (7). 

For the d-dimensional maximum norm space, id, we have 

(8) K(id) - 2d. 

Indeed, any set of cubes, d, has the Helly property; i.e., if the members of S 

pairwise intersect then all of them have a common point. Suppose this common 
point is the origin 0. If two cubes Q and Q' from @' have centers in the same 
orthant, say 0 < q and 0 < q' with I1qI1 < IIq'II, then the center of one of the 
cubes is contained in the other, q E Q'. 

A clever construction of Ajtai [1] shows (e2 ) > 5, though K = 4. The 
upper bound in Equation (3) is tight for this norm, as one can see by working 
with the points {-2, -1, 0, 1, 2}d. That is, 

(9) o(ed ) = 5d. 

In general, we have an immediate lower bound Q(d2) for K using [23]. 
Recently, J. Bourgain verified the author's conjecture that the true order of 
magnitude of K (and thus the order of ft and a ) is exponential in d for 
any norm. His proof is based on the following result of Milman [17]. For 
each c > 0 there exists a VI(c) > 0 such that every finite-dimensional normed 
space (X, II - II) of dimension d admits two subspaces Z c Y c X with the 
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properties that dim (Z) > v(c)d and the projection nf of Y n B (where B is 
the unit ball of X) into Z is (1 + c)-equivalent to an ellipsoid in Z. That 
is, there exists an ellipsoid L c ir(Y n B) c (1 + c)L c Z. Milman's theorem 
permits the reduction of various problems about general convex bodies to the 
Euclidean case. A complete exposition of this theory with background may be 
found in Pisier's recent book [19]. 

4.3 Theorem (Bourgain). For any number s < X there exists an e(s) > 0, such 
that in any normed space of dimension d there is an at least (1 + e(S))d ele- 
ment point-set K on the unit sphere with the property that the distances between 
distinct points are at least s. 
Proof. Fix an arbitrary c > 0 and a d-dimensional space (X, 1 II). Let 
Z c Y c X be the subspaces provided by Milman's theorem. The set ir(Y nfB) 
is (1 + c)-equivalent to the Euclidean unit ball in Z, so there are exponentially 
many points forming a set Ko on the surface of that ball such that the distance 
between any two points is at least v'_ - 2c. (The last statement follows from 
Equation (6).) For every z E K0, choose a point y E Y on the surface of B 
such that 7r(y) = z. These points y form the desired set K in the unit sphere 
of X. 0 

To obtain a lower bound for K, we set s = 1.1 . Taking balls with centers in 
K and radii equal to 1.01 , we get a family all containing the origin. It follows 
that K > 1.001d. 

In a related problem, K. Bezdek [5] conjectures that for any convex body 
K c Rd, the number of pairwise tangent homothetic copies of K is not more 
than 2d. In a theorem of Hadwiger (about the number of translated copies of 
K tangent to K) this number is at most 3d. One can ask the following more 
general question; other, related problems can be found in [10]: 

4.4 Problem. Is it true that for any centrally symmetric body K of dimension 
d, d > do, the number ofpairwise intersecting homothetic copies of K which do 
not contain each other's centers is at most 2d; i.e., is K < 2d? (Since K(E2) > 8, 
we must have do > 3.) 

5. REDUCING BESICOVITCH'S THEOREM TO A SATELLITE PROBLEM 

5.1 A short proof of Equation (1). The proof in [15] that Equation (1) holds 
(and the proof of the more general result in [6]) starts with a set A and a 
covering W formed by balls centered at each point of A with a finite upper 
bound for the radii. One then finds by a transfinite induction a well-ordered 
subcovering Wo = {Co, C1, C2, ... } of W by selecting at each stage, a , a 
ball Ca with center not yet covered by Uy<aCy and radius bigger than any 
competing radius divided by z. (I.e., ra > (1/z) sup{r(C): C E &9, center (C) 
not yet covered }.) Note that any pair of balls from &'o satisfies condition (iv) 
(even without equality). The last step is to show that Wo can be decomposed 
into at most {(X, z) disjoint subfamilies. 

The well-ordering is used to extract a maximum disjoint subfamily WI from 
&'o by induction as follows. At each stage, the first ball that does not intersect 
any of the balls already in WI is removed from &'o and added to WI ; the process 
stops when every ball that remains in Wo intersects some ball in WI . Once WI 
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is found, the process is repeated to extract a maximum disjoint subfamily W2 

from Ho \ WI (unless only the empty set remains). Once Fm has been found, 
if a ball Bo remains in WO and for 1 < i < m, Bi is the first ball in W 
to intersect Bo, then it is easy to see that the balls {Bo, B1, ... , Bm } are in 
z-satellite configuration with center Bo. It follows that m + 1 < (X, z). 

Using additional assumptions, it is shown in [16] that a subcovering can be 
extracted from W with the property that no center is in the interior of any 
other ball of the subcovering and each point a E A is contained in a ball with 
radius at least as great as the radius of the ball originally centered at a. The 
setting in [16] is a locally compact metric space. For related results, see [27]. 

5.2 Ordered satellite configurations. Take the balls Bo, BI, ... , Bm obtained 
in Section 5.1, and reorder them using the reverse of the well-ordering of W'O. 
Denote the new sequence by {BO, B,..., Bm} . It is easy to see that BO = Bo, 
and for 0< i <j < m 

(10) c' -ci II > ri > r /T. 

We call a system of balls BO, B1, ... , Bm satisfying Equation (10) with BO n 
BI $ 0 an ordered satellite configuration (with constant z). Apparently, this 
condition is stronger than the condition of being a satellite configuration, so the 
maximum size cord(X, T) < a(N, z). However, for sufficiently small z > 1, 
equality still holds here. Indeed as the following example shows, both quantities 
are equal to 0(X)). Let P be a maximal centered point packing into the 
ball B(0, 2), with IPI = i1. Fix a ball of radius T1/3 about 0 and a ball of 
radius 1 /T1/3 about each of the other points of P. This is an ordered satellite 
configuration of size i. 

The case z = 1 is somewhat different. For example, by a theorem of Gritz- 
mann [11], the packing resulting in g (id) = 5d (see Equation (9)) is unique. 
However, with these centers one cannot obtain an ordered satellite configuration 
with z = 1. 

5.3 Chromatic number of line graphs. The second part of the above proof of 
Equation (1) can be summarized in the following well-known coloring lemma 
(applied to the family Wg ). For an arbitrary family of sets, 5Y, define the graph 
L(5Y), the so-called line graph or intersection graph of 5Y, with vertex set 5Y 
by joining two members S1 and S2 if they are not disjoint, i.e., SI n S2 5# 
0. A coloring of the line graph corresponds to a decomposition of 5Y into 
subfamilies consisting of mutually disjoint sets. The following lemma (see, e.g., 
[7]) gives an upper bound for the chromatic number of L(R) . 

5.4 Lemma. Suppose that for any finite subsystem 5Yo of 5Y there is an or- 
dering To = {Si, S2, ... , St} such that Si intersects at most X of the sets 
preceding it; i.e., I{Sj n Si 5 0o ] < i}I < X . Then for the chromatic number 
of L(5Y) we have 

chr(L(5Y)) < X + 1. 
Proof. This lemma is a composition of two facts. First, the deBruijn-Erdos 
lemma, that chr (s) < k (where k is a positive integer) if chr (s') < k for 
every finite subgraph of S. Second, the chromatic number of A' is at most 
X + 1 if every subgraph has a vertex of degree at most X. (In our case, St is 
connected to at most X sets.) 0 
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6. THE SPHERE OF INFLUENCE GRAPH 

The results given by Equation (2) were rediscovered several times, frequently 
in a weaker form. Here we collect some of these related results. Our bounds in 
higher dimensions can be generalized for these problems. 

Let S be a finite set of at least two points in the normed space XA. For each 
point C E S let r(c) be the closest distance to any other point in the set, and 
let B(c) and A(c) be the closed and open balls of radius r(c) centered at c, 
respectively. 

6.1 Definition. The sphere of influence graph of S, written as SIG(S), is 
the intersection graph L({A(c): c E S}), i.e., its vertex set is S with x and 
y in S adjacent if and only if their open balls have nonempty intersection, 
r(x) + r(y) > lix - yl . The closed sphere of influence graph of S, written as 
CSIG(S), is the graph with vertex set S with x and y in S adjacent if and 
only if their closed balls have nonempty intersection. 

The definition of SIG's is due to Toussaint [24]; these graphs have been 
widely investigated recently. For the Euclidean plane, Equation (2) implies that 
each SIG on n vertices has at most 18n edges. In [2], the somewhat weaker 
upper bound 29n was proved together with an algorithmic description of the 
running time O(n log n). Independently, in Edelsbrunner, Rote, and Welzl's 
article [8], 30n was proved in the following more general form. Let rm(c) 
denote the distance from c to its m-nearest neighbors; that is, the closed ball 
B(c, rm (c)) contains at least m more points from S, while its interior contains 
less than m . The graph CSI Gm (S) is defined as the intersection graph of these 
balls. In [8] it was proved that this graph always contains a vertex of degree 
at most 31m - 1, which, using Equation (2), can be improved to 19m - 1. 
Hence, the number of edges is at most (19m - 1)n, and its chromatic number 
is at most 19m. For higher dimensions, see Guibas, Pach, and Sharir [26]. In 
general, it is conjectured that for the Euclidean plane a SIG cannot have more 
than 9n edges. 

6.2 Proposition. All of the above results follow from Theorem 2.1, since the ball 
having the smallest radius and its neighbors form a satellite configuration. 

Still another problem has been investigated by Fejes T6th and Heppes [9]. 
They prove, that in any planar packing of unit disks no circle can have more 
than 18 neighbors and second neighbors. They conjecture that with one step 
more (i.e., counting first, second, and third neighbors), the answer is 36. For 
more problems see, e.g., the papers and books of L. Fees T6th. 

7. PROOF OF THEOREM 

Proof of Theorem 2.1. We may assume that c0 = 0 and ro = 1. Given 0 < 
i < n, if 11cill < 2, we set bi = ci, and if 11cill > 2, we replace ci with 
the point bi = (2/ 1lcill)ci. We will show that l1b1 - bjJJ > 1 - a for all i, 
j < n with i 5# j. Consider first the case that 11cill < 2 and J1cjJJ < 2. By 
conditions (ii), (iii), and (iv), lbi - bj II > 1 /T, which is what is desired, since 
0 < 1 - 1/T < T - 1 < J. Now consider the case that 11cill < 2 and J1cjJJ > 2. 
Since B(cj, rj) n B(O, 1) #0, B(bj, 1) c B(cj, rj). If 11ci - cjJJ > rj, then 
l1b1 - bj11 > 1 . On the other hand, if T > 1 and I1ci - cj11 < rj, then I1ci - cj11 > 
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ri > rj/T. By condition (iii), 2T > IiciII T > ri, so 2T2 > rj . Since T< 5/4, 

rj - rj/T < 2T2(1 - 1/T) < 2T2(T- 1) < 3, 

and so 

Ijbi - bjII = iici - bjII > 11ci - clII - iicj - bjII > rj - a - (rj - 1)= 1-a. 

Finally, given i and j with i # j and IIciII > IIcI I > 2, we set s = Iic Ii and 
we set x = (s/ icicII)cj . Since 

Ilci - cjIi < ilci - X11 + lix - cjii = ilcili - IICjii + lix - Ciii 

we have the "Bow and Arrow Inequality" 

lix - caii > (iicjii + iici - ciii) - iicil ii 
By condition (i), IIciII < ri + 1, so 

lix - cAli > s - 1 + I1ci - CAii - ri. 

If T > 1 and ci - cjii - ri < 0, then by conditions (iv) and (iii), 

ri - 11ci - cjII < ri - rj < rr(T - 1) < Ts(r- 1). 

In any case, since s > 2 and 2T(T - 1) < 3, 

bi - bjii = 
2 

x- c2|| > 2- - - 2T(T - 1) > 1 - 3. 0 

8. CONCLUSION 

We have shown that in every finite-dimensional normed space, 

1.001d < K < ,6 < a = 6 < 5d 

Here, K is the maximum number of balls in X pairwise meeting each other but 
not containing each other's center, ff stands for the best constant in Besicov- 
itch's theorem, a is the maximum number of balls in a satellite configuration, 
and i is a packing number for a ball of radius 2. Each of these numbers grows 
exponentially with the dimension d, and for certain spaces much better esti- 
mates can be given. Exact solutions are usually difficult to obtain, however, 
even in two dimensions. 

ADDED IN PROOF 

The authors are indebted to T. S. Michael for helpful comments. He and 
T. Quint have recently proved that a CSIG of n vertices in the d-dimensional 
space X has at most (5d - (3/2))n edges [30]. 
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