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Abstract. Given a hypergraph H and a subset S of its vertices, the trace of H
on S is defined as H|S = {E ∩ S : E ∈ H}. The Vapnik–Chervonenkis dimension

(VC-dimension) of H is the size of the largest subset S for which H|S has 2|S|

edges. Hypergraphs of small VC-dimension play a central role in many areas of
statistics, discrete and computational geometry, and learning theory. We survey
some of the most important results related to this concept with special emphasis on

(a) hypergraph theoretic methods and (b) geometric applications.

1. Introduction

A basic theme of mathematics is the characterization of certain structures in
terms of their local properties. Many deep results are concerned with global con-
sequences of some local assumptions. Their applicability is explained by the fact
that it is often fairly easy to check if the local conditions are satisfied.
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Let H be a hypergraph whose vertex set and edge set are denoted by V (H)
and E(H), respectively. We frequently call (the edge set of) a hypergraph family
or set system. Often, if it does not cause any misunderstanding, we identify the
hypergraph H by its edge set E(H). The edges of H are called members of the set
system, the vertices are also called points. We call a hypergraph multihypergraph if
it has multiple edges. If we want to emphasize the lack of multiple edges in H we
call it simple. G is called a subhypergraph of H if V (G) ⊆ V (H) and E(G) ⊆ E(H).
A fundamental problem of extremal set theory is to estimate the maximum number
of edges a hypergraph can have without containing a subhypergraph isomorphic to
a given G. (For a recent survey, see [F91].)

In this paper we shall address a very similar type of question. For any S ⊆ V (H),
define H|S, the restriction of H to S (or the trace of H on S), to be the hypergraph

on the vertex set S with E(H|S) = {E ∩ S : E ∈ E(H)}. Let 2S ,
(

S
k

)

and
(

S
≤k

)

denote the hypergraphs on S, whose edges are all subsets, all k element subsets and
all at most k element subsets of S, respectively. We shall study the basic properties
of those hypergraphs whose restrictions to the ‘small’ subsets of their vertex sets
satisfy certain conditions. For example, we may require that H|S 6= 2S for any s
element subset S ⊆ V (H). We shall see e.g. that these hypergraphs have relatively
few edges and admit small transversals.

Throughout this paper [n] will denote the set of the first n positive integers, and
degH(x) (or, simply, deg(x)) will stand for the degree of a vertex x in H, i.e., for
the number of edges E ∈ E(H) for which x ∈ E.

2. VC-dimension and arrow relations

The Vapnik–Chervonenkis dimension (or VC-dimension, for short) of a hyper-
graph H is the maximum size of a subset A ⊆ V (H) with the property that for
every B ⊆ A there exists EB ∈ E(H) with EB ∩ A = B. The most significant
property of hypergraphs of small VC-dimension is that their number of edges is
bounded by a polynomial of |V (H)|.

Theorem 2.1. ([S], [P], [Sh], [VC]) For any hypergraph H with n vertices and
VC-dimension d,

|E(H)| ≤
(

n

0

)

+

(

n

1

)

+ · · · +

(

n

d

)

.

Because of its importance, this theorem was discovered independently by several
authors (Sauer [S] 1973, Perles [P] and Shelah [Sh] 1972, Vapnik–Chervonenkis [VC]
in an implicit form, 1971), and it was also conjectured by P. Erdős.

The tightness of the upper bound follows from the fact that the hypergraph
formed by all at most d-element subsets of an n-set has VC-dimension d. However,
there are many extremal families (e.g., the hypergraph consisting of all the sets
with at least n − d elements). We return to this problem in Section 5.

The proofs in [S] and [Sh] apply induction on n. Here we present a slightly longer
proof, found independently by Frankl [F83] and Alon [A], which gives more insight.

Given a hypergraph H and a subset S ⊆ V (H), let H|S denote (as before)
the trace of H on S. Note that in H|S we take every set only once (it is a simple
hypergraph). The arrow relation H → (s, t) means that there is an s-element subset
S ⊆ V (H) with at least t traces, i.e., |E(H|S)| ≥ t. The relation (n,m) → (s, t)
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means that whenever |E(H)| ≥ m one can find a subset S ⊂ V (H) with at least t
traces, i.e., H → (s, t). Theorem 2.1 states that

(n,m) → (s, 2s) if m >
∑

0≤i≤s−1

(

n

i

)

.

Recall that a hypergraph is called hereditary (or monotone, or it is said to form an
ideal) if F ⊂ E ∈ E(H) implies F ∈ E(H).

Theorem 2.2. ([A], [F83]) For every hypergraph H there exists a hereditary hy-
pergraph M on the same vertex set such that |E(H)| = |E(M)| and |E(H|S)| ≥
|E(M|S)| for all S ⊂ V (H).

Actually, Alon [A] proved a little bit more (see later in Section 11), while Frankl
[F83] stated Theorem 2.2 in a slightly weaker form, but the their proofs are identical.
Proof: Suppose that E = E(H) is not hereditary. One can find an E0 ∈ E and
an element i ∈ E0 such that E0 \{i} 6∈ E . Define the following push down operation
P : E → 2V (H).

P (E) =

{

E \ {i} if i ∈ E, and E \ {i} 6∈ E ,

E otherwise

Let P (E) = {P (E) : E ∈ E}. P is an injection, so |P (E)| = |E|. Moreover
P (E0) = E0 \ {i}, so

∑

E∈P (E) |E| <
∑

E∈E |E|. We claim, that |E|S| ≥ |P (E)|S|
for all S ⊂ V . This is obvious if i 6∈ S. Otherwise, one can split the subsets of
S into 2|S|−1 pairs, {Z,Z ∪ {i}} (Z ⊂ S \ {i}). It is easy to see, that |P (E) ∩
{Z,Z ∪ {i}}| ≤ |E ∩ {Z,Z ∪ {i}}|. Clearly, using a series of the above operations
one can transform E in finitely many steps into a hereditary hypergraph possessing
the desired properties. �

Proof of Theorem 2.1: Consider a hypergraph H on n vertices with VC-
dimension d. By Theorem 2.2 there exists an ideal I of the same size on the same
vertex set such that I 6→ (d + 1, 2(d+1)). All edges of I have at most d elements, so
|E(H)| = |E(I)| ≤

(

n
0

)

+
(

n
1

)

+ · · · +
(

n
d

)

. �

3. Collapsing one element

Bondy [Bon] observed that a hypergraph H on n points and with at most n
edges has an element i ∈ V such that the number of edges in H|(V \ {i}) is the
same as in H. With arrow relations,

(n,m) → (n − 1,m) if m ≤ n. (3.1)

Bollobás [Bol] proved that

(n,m) → (n − 1,m − 1) if m ≤ 3n/2. (3.2)

Notice that both of these theorems are easy corollaries to Theorem 2.2. E.g., to
show (3.2) consider a hypergraph E with |E| = m ≤ 3n/2 on an underlying set
V , |V | = n. There exists a hereditary hypergraph M on V with |M| = |E| such
that |M|Vi| ≤ |E|Vi| for all Vi := V \ {i}. If {i} 6∈ M, then |M|Vi| = m. Hence
M → (n − 1,m) and so does E . If M contains all the singletons, then there must
be an element, say i which is not covered by any 2-element set in M, otherwise
|M| ≥ 1+n+⌈n/2⌉. Deleting i from V , the only collapse of the traces on Vi comes
from the pair {∅, {i}}, so M → (n − 1,m − 1). �
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Theorem 3.1. (Frankl [F83]) (n,m) → (n − 1,m − (2t−1 − 1)) for m ≤ n(2t −
1)/t.

Proof: Let M be a hereditary hypergraph on V such that M 6→ (n − 1,m −
(2t−1 −1)). Then the degree of every point in M is at least 2t−1. Using a weighted
version of the Kruskal–Katona theorem ([Kr], [Ka], see Theorem 7.1) due to Katona
[Ka78], one can see that

∑

i∈E∈M 1/|E| ≥ (2t − 1)/t for every i ∈ V . Thus,

|M| = 1 +
∑

E∈M

∑

i∈E

1/|E| = 1 +
∑

i∈V

∑

i∈E∈M

1/|E| ≥ 1 + n(2t − 1)/t. �

If t is a divisor of n, the extremal families are obtained by taking n/t disjoint
sets of size t and all of their subsets. This weight function method was extended
by Watanabe [W]. She proved

(n,m) → (n − 1,m − 4) for m ≤ 17n/6,

(n,m) → (n − 1,m − 5) for m ≤ 13n/4,

(n,m) → (n − 1,m − 6) for m ≤ 7n/2.

The coefficients 17/6, 13/4 and 7/2 are best possible. The arrow relation (n,m) →
(n − 1,m − 2) follows immediately from Theorem 2.2 if m ≤ 2n.

Problem 3.2. Find the largest c = c(k) such that (n,m) → (n − 1,m − k) for all
m ≤ (c(k) − o(1))n.

Frankl and Watanabe have recently informed us that they determined c(k) for
all k ≤ 10. Bondy and Hajnal conjectured that (n, 1 +

∑

0≤i≤d

(

n
i

)

) → (n − 1, 1 +
∑

0≤i≤d

(

n−1
i

)

). Frankl [F78] disproved this conjecture for n = 6r + 3, d = 3r + 1.

He asked asked whether it holds for large values of n, n > n0(d). His example
consists of 2n−1 sets, namely M = {E ⊂ V : |E ∪Yi| ≤ r for at least 2 of the Yi’s},
where Y1, Y2, Y3 is a partition of V into (2r + 1)-element parts.

Problem 3.3. Is it true for n > n0(k, d) that (n, 1 +
∑

0≤i≤d

(

n
i

)

) → (k, 1 +
∑

0≤i≤d

(

k
i

)

)?

4. Arrow relations and Turán numbers

A hypergraph is called d-uniform (or a d-graph) if each of its edges consists
of d points. Let T (n, k, d) denote the maximum number of edges of a d-uniform
hypergraph on n points without a complete subhypergraph of k points. These
numbers are called the Turán numbers and, except for some trivial cases, their exact
values are known only for d = 2 (Turán’s theorem [T]), e.g. T (n, 3, 2) = ⌊n2/4⌋. A
recent survey can be found in this volume [dC]. The following theorem is an easy
consequence of Theorem 2.2. For d = 2 it was conjectured by Lovász and proved
independently by Alon [A] and Frankl [F83].

Theorem 4.1. (n, 1 +
∑

0≤i≤d−1

(

n
i

)

+ T (n, d + 1, d)) → (d + 1, 2d+1 − 1).

Proof: Let M be a hereditary hypergraph with M 6→ (d + 1, 2d+1 − 1). It is
easy to check that (1) M does not have an edge of size at least d + 1, and (2) it
cannot contain any complete d-graph on d + 1 vertices, as a subhypergraph. �

The sets S1, S2, . . . , Sk+1 are called disjointly representable if there exist x1, . . . , xk+1

such that xi ∈ Ej if and only if i = j. Erdős and Gyárfás observed that any large
set system of r-sets should contain k + 1 disjointly representable members.
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Conjecture 4.2. (Frankl, Pach [FP84]) Let E be an r-uniform hypergraph without
k + 1 disjointly representable edges. Then |E| ≤ T (r + k, k + 1, k).

This upper bound, if true, is best possible, as can be seen by the following
example. Take a k-uniform hypergraph F on the (r + k)-element underlying set V
without a complete k-graph on k + 1 elements. Then the system of complements,
E = {V \ F : F ∈ F}, is obviously an r-uniform hypergraph without more than k
disjointly representable edges.

Frankl and Pach proved their conjecture in the case r = 2 (and k is arbitrary),
and in the case k = 2 (and r ≥ 1 is arbitrary). Here we reformulate the latter one.

Theorem 4.3. (Frankl, Pach [FP84]) Let E = {E1, E2, . . . , Em} be an r-uniform
hypergraph such that from any three of its edges one is contained in the union of
the other two. Then m ≤ 1 + r + ⌊r2/4⌋.

Moreover, the only r-uniform hypergraph E without 3 disjointly representable
edges achieving this upper bound can be obtained as follows. Let A and B be two
disjoint sets with |A| = ⌊(r + 2)/2⌋, |B| = ⌈(r + 2)/2⌉, and let E be the family of
all r-subsets E ⊂ A ∪ B with |A \ E| = 1 and |B \ E| = 1.
Proof: Choose a minimal set Fi, such that Fi ∩ Ei = ∅, but Fi ∩ Ej 6= ∅ for all
j 6= i. Observe that |Fi| ≤ 2, because, by minimality, Fi represents |Fi| edges of E .
Apply induction on r. If there exists an |Fi| < 2, then m ≤ 1 + f(r − 1) < f(r),
where f(x) = 1 + x + ⌊x2/4⌋, and we are done. If |Fi| = 2 for all i, then define
G = {Fi : Fi ⊂ E1}. It is easy to see that G is a triangle-free graph, so Turán’s
theorem implies |G| ≤ ⌊r2/4⌋. Moreover, all other Fi’s with i ≥ 2 meet E1 in
distinct points. So the rest contains at most 1 + r pairs. �

We are going to return to this problem in Section 8.

5. Extremal families

We say that F → H if H is contained in a trace of F , i.e., there exists F1, . . . , Ft ∈
F and S ⊆ V (F), |S| = |V (H)| such that F1∩S, . . . , Ft∩S form a hypergraph on S
isomorphic to H. Let f(n,H) be the largest m such that there exists a hypergraph
F on n vertices and m edges with F 6→ H. If F 6→ H and |F| = f(n,H), then F
is called extremal (or H-extremal).

By this terminology, Theorem 2.1 states that f(n, 2S) =
(

n
0

)

+
(

n
1

)

+ · · · +
(

n
d

)

,

where d = |S| − 1. We shall see that there are many 2S-extremal hypergraphs. Let

n ≥ d ≥ ℓ > 0. One might think that f(n,
(

S
ℓ

)

) is much smaller than f(n, 2S).
However, the following example shows, that they coincide.

Example 5.1. (Füredi, Quinn [FQ]) Let F = F(n, d, ℓ) consist of those E ⊂ [n]
for which there exists a j such that |[j] ∩ E| = ℓ and |{j, j + 1, . . . , n} \ E| ≤ d − ℓ.

Moreover, let
(

[n]
i

)

⊂ F for all i < ℓ. Then |F| =
∑

0≤i≤d

(

n
i

)

, but F 6→
(

S
ℓ

)

. That

is, F is an
(

S
ℓ

)

-extremal hypergraph.

Proof: For any set Y = {y1 < y2 < · · · < yd+1} ⊂ [n], Y ∩ E = {y1, y2, . . . , yℓ}
is impossible. �

The characterization of
(

S
ℓ

)

-extremal hypergraphs (or more generally, H-extremal
hypergraphs) is a challenging open problem.

Conjecture 5.2. (Füredi, Quinn [FQ]) If F is an
(

S
ℓ

)

-extremal hypergraph, then

|F ∩
(

[n]
i

)

| = |F(n, d, ℓ) ∩
(

[n]
i

)

|, i.e.,
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|F ∩
(

[n]

i

)

| =

{

∑

a

(

i+d+1−2ℓ
i−ℓ+1+2a

)(

n−i−d−1+2ℓ
ℓ−1−a

)

for ℓ ≤ i ≤ n − d − 1 + ℓ
(

n
i

)

otherwise.

The cases ℓ = 0, ℓ = d + 1 are trivial, the case ℓ = 1 (and hence, by taking
complements, the case ℓ = d) was proved in [FQ]. The case |S| = 3, ℓ = 2 was con-
firmed by Anstee [An80]. He has also established the following structure theorem.

If F is a
(

[3]
2

)

-extremal hypergraph, then F 6→ Ck for all k (here Ck denotes the
cycle of length k). Furthermore, if F0 6→ Ck for all k, then it can be extended to a
(

[3]
2

)

-extremal hypergraph. Consequently, the number of C3-extremal hypergraphs
is at least as large as the number of trees, i.e., its order of magnitude is exponential
([An83]).

6. Linear algebraic proofs

The investigation of C3-free hypergraphs by linear algebraic techniques was ini-
tiated by Ryser [R72]. Let F be a hypegraph with vertex set [n], r a natural
number. The generalized incidence matrix of F , M = M(F ,≤ r), is defined as
an |F| × (

∑

0≤i≤r

(

n
i

)

) matrix where the rows are labeled by the edges of F , the

columns are labeled by the at most r-element subsets of [n], and

MF,Y =

{

1 if Y ⊂ F,

0 if Y 6⊂ F.

The definition of M(F , r) is similar, except that now the columns are labeled by
the r-subsets only. Note that M(F , 1) is the usual incidence matrix of F .

Theorem 6.1. (Frankl, Pach [FP83]) Let F be a hypergraph on n points. If the
rows of the generalized incidence matrix M(F ,≤ r) are linearly dependent, then
F → 2S for some S ⊂ [n], |S| ≥ r + 1.

This immediately implies Theorem 2.1. Here we present the proof of a related
result of Frankl and Pach, but the proof of Theorem 6.1 is almost identical.

Theorem 6.2. (Frankl, Pach [FP84]) Let F be an k-uniform hypergraph on [n],
(n ≥ k > r ≥ 1). If the rows of the matrix M(F , r) are linearly dependent, then
VC-dim(F) ≥ r + 1.

Proof: Consider a linear dependence with coefficients α(E), i.e.,
∑

E∈F α(E)ME,Y =
0 for all Y ⊂ [n], |Y | = r. It follows that

∑

E∈F,Y ⊂E α(E) = 0 holds for all |Y | ≤ r.

Let S be a minimal subset of [n] with
∑

E∈F,S⊂E α(E) 6= 0. Clearly, |S| ≥ r + 1.
Using a backward induction it can be shown that for all Z ⊂ S

∑

E∈F,E∩S=Z

α(E) = (−1)|S\Z|
∑

E∈F,S⊂E

α(E).

This yields, in particular, that for every Z ⊂ S there exists E ∈ F with E ∩ S =
Z. �
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Let f(n, k,H) be the largest m such that there exists a (simple) k-uniform hyper-
graph F on n vertices with F 6→ H. The upper bound in the following inequality
is an immediate corollary of Theorem 6.2. For every n ≥ k ≥ i ≥ 0 one has

(

n − 1

k − 1

)

≤ f(n, k,

(

[k]

≥ i

)

) ≤
(

n

k − 1

)

(6.1)

The lower bound follows by considering all k-element sets containing a common
element. The upper bound cannot be improved, for example in the case n = 2k−1,
i = 0. Applying Theorem 8.1 to the system of complements, we obtain

f(n, k,

(

[k]

≥ k − 1

)

) =

(

n − 1

k − 1

)

. (6.2)

Conjecture 6.3. (Frankl, Pach [FP84]) For n sufficiently large, (n > n0(k)), the
lower bound in (6.1) is tight.

This conjecture is particularly interesting in the case i = 0, for it would yield a
new generalization of the Erdős–Ko–Rado theorem [EKR].

7. The number of dense subsets

We shall demonstrate the power of classical hypergraph theory by answering a
question of M. Karchmer [Kar] about the minimum number of dense subsets.

Let H be a hypergraph with vertex set [n]. A subset S ⊂ [n] is called d-dense if
H|S = 2S and |S| = d. Let Dd(H) is the family of d-dense sets. Karchmer posed
the following question. Given |H|, what is the minimum number of d-dense sets?
By Theorem 2.1, Dd(H) 6= ∅ for |H| >

∑

0≤i≤d−1

(

n
i

)

, but it can be ∅ below that
threshold.

The antilexicographic ordering of the (finite) subsets of N = {1, 2, 3, . . . } is de-
fined by A < B if and only if max(A△B) ∈ B. This is a total (linear) order, starts
with ∅, 1, 2, 21, 3, 31, 32, 321, 4, 41, 42, 421, 43, 431, . . . Let F(f, k) (F(f,≥ k))
denote the first f k-sets (subsets of size at least k, respectively) according to this
ordering.

Theorem 7.1. (Kruskal [Kr], Katona [Ka]) Let F be a k-uniform hypergraph,
|F| = f . For any 0 < ℓ < k the number of ℓ-element sets contained in at least one
edge of F is at least as large as the corresponding number for F(f, k).

Denote the set of ℓ-subsets covered by some edge of F by ∂ℓF . It is easy to see
that any positive integer f can be uniquely written in the following cascade form:

f =

(

ak

k

)

+

(

ak−1

k − 1

)

+ · · · +

(

at

t

)

, (7.1)

where ak > ak−1 > · · · > at ≥ t ≥ 1 are integers. Then Theorem 7.1 states
that |∂ℓF| ≥

(

ak

ℓ

)

+
(

ak−1

ℓ−1

)

+ · · · +
(

at

t−(k−ℓ)

)

. A short proof of the Kruskal–Katona

theorem was found by Frankl [F84]. Now we are in a position to answer Karchmer’s
question.
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Theorem 7.2. Let H be a hypergraph with vertex set [n], and write |H| in the form

|H| =

(

n

0

)

+

(

n

1

)

+ · · · +

(

n

d − 1

)

+ m. (7.2)

Then the number of d-dense sets in H, |Dd(H)|, is minimal if H = F(n, d,m) :=
(

[n]
≤d−1

)

∪ F(m,≥ d).

For example, if m = 2k − ∑

0≤i≤d−1

(

k
i

)

, then |Dd(H)| ≥
(

k
d

)

.

Proof: Apply Theorem 2.2 to an optimal hypergraph H. We obtain an ideal I
with |I| = |H| and Dd(I) = Dd(H). Let I(i) denote the set of i-element edges of I.
Let f be the largest integer such that for the initial segment F := F(f,≥ d) one has

|F (d)| = |I(d)|. Then, F (i) is an initial segment in
(

N

i

)

, with ∂dF (i) ⊆ F (d) (i ≥ d).
The hypergraph F (together with the sets of size less than d) is again an ideal.
The Kruskal-Katona theorem implies that F (i) is a largest i-uniform hypergraph
J with |∂d(J )| ≤ |F (d)|. That is, |F (i)| ≥ |I(i)| holds for every i. As F(m,≥ d) is
a subfamily of F , and |Dd(I)| = |F (d)|, the proof is complete. �

Using (7.1) one can also obtain an exact formula.

8. More about disjointly representable sets

Let m(r, k) be the largest m such that there exists an r-uniform hypergraph of
size m without k + 1 disjointly representable edges. This function was investigated
in Section 4. The definition of m(≤ r, k) is analogous.

Theorem 8.1. (Füredi, Tuza [FT]) Let F be a hypergraph of rank r and |F| >
(

r+k
r

)

. Then F →
(

[k+1]
≤1

)

, i.e., there exists F0, F1, . . . , Fk+1 ∈ F and a set Y =

{y1, . . . , yk+1}, such that Y ∩ F0 = ∅ and Y ∩ Fi = {yi} for all 1 ≤ i ≤ k + 1.

In the proof we are going to use the following important result.

Theorem 8.2. (Frankl [F82], Kalai [K]) Let A1, A2, . . . , Am be at most r-element,
B1, B2, . . . , Bm be at most k-element sets with Ai∩Bi = ∅. Suppose that Ai∩Bj 6= ∅
for i > j. Then m ≤

(

r+k
r

)

.

The same assertion was proved by Bollobás [B] in 1965, under the stronger
assumption that Ai ∩ Bj = ∅ iff i 6= j.
Proof of Theorem 8.1: Let F = {F1, F2, . . . , Fm} be an ordering of the sets
such that |Fi| ≤ |Fj | for i < j. For every set F ∈ F one can find an at most
k-element set B = B(F ) such that F ∩ B(F ) = ∅ and B(F ) ∩ F ′ 6= ∅ whenever
F ′ ∈ F and F ′ 6⊂ F . Then, Theorem 8.2 can be applied to {Fj , B(Fj)}1≤j≤m. �

Together with the results of Section 4, this yields

T (r + k, k + 1, k) ≤ m(r, k) ≤ m(≤ r, k) =

(

r + k

k

)

. (8.1)

Note that here the lower and upper bounds are very close to each other. If k is
fixed and r tends to infinity then the ratio of the lower and upper bounds above
tends to a limit ck > 0. Moreover, limk→∞ ck = 1. Using Example 5.1, one can

obtain several extremal families, e.g. F := ∪0≤i≤r

(

[i+k−1]
i

)

. The description of all
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extremal families does not seem to be hopeless. In [FT] it was proved that for any

hypergraph F of rank r with |F| =
(

r+k
r

)

and with F 6→
(

[k+1]
≤1

)

one has

|Fi| =

(

i + k − 1

i

)

, (8.2)

where Fi denotes the set of i-element edges of F . The structure of
(

[k+1]
1

)

-extremal
families is probably more complicated, (8.2) does not hold. In the case k = 2, other
extremal families can be exhibited using the result of Anstee [An83] mentioned
after Conjecture 5.2.

The sets E1, E2, . . . , Eℓ form a ∆-system of size ℓ with kernel K if Ei∩Ej = K for
every pair 1 ≤ i < j ≤ ℓ. The sets F1, . . . , Fk+1 are called disjointly t-representable
if one can choose disjoint t-element subsets Yi ⊂ Fi such that Yi ∩Fj = ∅ whenever
i 6= j.

Problem 8.3. Determine max |F| over all hypergraphs F of rank r without con-
taining a ∆-system of size ℓ whose kernel has at least r−t points and without having
k + 1 disjointly t-representable edges.

Frankl and Pach [FP84] proved that there are constants c1, c2 depending only
from k, ℓ and t such that

c1r
k(t−1) < max |F| < c2r

(k+1)(t−1)−1.

9. Forcing an ordered substructure

Given a natural number n and a class L of (0, 1)-matrices (so called forbidden
submatrices), determine the maximum integer m such that there exists an m ×
n (0, 1)-matrix M without repeated rows and containing no element of L as a
submatrix. Let us denote this maximum by ex(n,L). We write A → L if A has a
submatrix that belongs to L. So ex(n,L) = max{m : M is an m × n simple (i.e,
no multiple rows) (0, 1)-matrix such that M 6→ L}. If A is the incidence matrix of
the hypergraph F , and L(H) is the family of matrices obtained from the incidence
matrix of H by row and column permutations, then A → L(H) if and only if F → H.
Moreover, using the notation in Section 5, ex(n,L(H)) = f(n,H). For example, if
Ls is the family of all 2s × s matrices containing every (0, 1)-vector of length s (as
a row) exactly once, then Theorem 2.1 states that ex(n,Ls) =

∑

0≤i≤s−1

(

n
i

)

.

Theorem 9.1. (Frankl, Füredi, Pach [FFP]) Let L be any family of forbidden
(0, 1)-matrices, and suppose that there is a t × s-matrix L ∈ L. Then,

ex(n,L) ≤
(

(t − 1)

(

n

s

)

+ 1

)





∑

0≤i≤s−1

(

n

i

)

+ 1



 − 1 ≤ tn2s−1. (9.1)

Proof: Let M be a simple m × n matrix. If m exceeds the bound of (9.1),
then M contains (t − 1)

(

n
s

)

+ 1 copies of Ls, each of them lying entirely below its
predecessors. But then, by the pigeonhole principle, there are at least t such copies
of Ls having the same set of s columns. ¿From the ith copy, we can select the ith
row of L and so produce a forbidden submatrix. �
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Conjecture 9.2. ([AnF], [FFP]) For any t × s matrix L, there is a constant cL

so that (9.1) may be replaced by ex(n,L) ≤ cLns.

In [AnF] it was proved that for any 1 × s matrix L

ex(n,L) =
∑

0≤i≤s−1

(

n

i

)

. (9.2)

This was given by a generalization of Example 5.1. A number of other cases were
also considered:
(9.3) where L is a 2 × s matrix,
(9.4) matrices with repeated rows,
(9.5) matrices having only one column.

As an application of the results, mainly constructions, in [AnF] the case of 2× 3
matrices has been studied in detail. There are 14 essentially different 2 × 3 (0, 1)-
matrices (up to taking (0, 1)-complements and reversing row and/or column order):

F1 =

[

0 0 0
0 0 0

]

F2 =

[

0 0 0
1 0 0

]

F3 =

[

0 0 0
0 1 0

]

F4 =

[

1 0 0
0 1 0

]

F5 =

[

1 1 0
0 1 0

]

F6 =

[

1 0 1
0 1 0

]

F7 =

[

1 1 0
1 0 0

]

F8 =

[

1 0 0
1 0 0

]

F9 =

[

0 1 0
0 1 0

]

F10 =

[

1 1 1
0 0 0

]

F11 =

[

1 1 0
0 0 0

]

F12 =

[

1 0 0
0 0 1

]

F13 =

[

1 0 1
0 0 0

]

F14 =

[

1 0 0
0 1 1

]

Figure 1. The 14 essentially distinct 2×3 (0,1) matrices

Theorem 9.3. (Anstee, Füredi [AnF])

ex(n, Fi) =

(

n

3

)

+

(

n

2

)

+

(

n

1

)

+

(

n

0

)

, for 1 ≤ i ≤ 7,

ex(n, Fi) =

(

n

2

)

+

(

n

1

)

+

(

n

0

)

+

(

n − 1

2

)

for i = 8, 9

ex(n, F10) =

(

n

3

)

+ O(n2),

ex(n, F11) =

(

n

3

)

+

(

n

2

)

+

(

n

1

)

+

(

n

0

)

+

(

n − 2

2

)

,

(

n

3

)

+

(

n

2

)

+

(

n

1

)

+ 1 ≤ ex(n, Fi) ≤
(

n

4

)

+

(

n

3

)

+

(

n

2

)

+

(

n

1

)

+ 1 for 12 ≤ i ≤ 14.
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Theorem 9.4. (Frankl, Füredi, Pach [FFP]) Let Ds be a 2×s (0, 1)-matrix, a row
of 1’s followed by a row of 0’s. Then, for s = 2 (and n > 1) ex(n,D2) =

(

n
2

)

+2n−1.
For s > 2, n ≥ 2s,

(

n

s

)

+ 2

((

n

s − 1

)

+

(

n

s − 2

)

+ · · · +

(

n

0

))

−
(

2s − 1

s

)

≤

ex(n,Ds) ≤
(

n

s

)

+ 5s2

(

n

s − 1

)

. (9.6)

Let F be a simple hypergraph with vertex set [n], and let s ≥ 2 a fixed natural
number. It is well–known, and follows easily from Theorem 2.1, that, if |F \F ′| < s
for all F, F ′ ∈ F , then |F| ≤ ∑

0≤i≤s−1

(

n
i

)

, and this bound cannot be improved.

The problem of determining ex(n,Ds) can be reformulated as follows. What is the
maximum length of a sequence {F1, F2, . . . , Fm} of distinct subsets of [n] with the
property that

|Fi \ Fj | < s for all i < j? (9.7)

Without loss of generality we may suppose that the Fi’s are listed in increasing
order of their cardinalities, i.e., |Fi| ≤ |Fj |. The lower bound in (9.6) is shown by
the following construction. Fix a chain of subsets E1 ⊂ E2 ⊂ · · · ⊂ En = [n] with
|Ei| = i and let Fi = {F ⊂ [n] : |F | = i, F ⊃ Ei−k+1}. Finally, define

F =: {F ⊂ [n] : |F | < s} ∪ (∪s≤i≤n−sFi) ∪ {F ⊂ [n] : |F | > n − s}.

Conjecture 9.5. (Frankl, Füredi, Pach [FFP]) There exists a sufficiently large
n0(k) ≥ 2k such that if n ≥ n0(k), then ex(n,Ds) equals the lower bound in (9.6).

It might be difficult to confirm this conjecture, because if n = 2s +
√

s/10, then
ex(n,Ds) significantly exceeds the left hand side of (9.6); and in the case s = 2
there are exactly 2n−2 essentially different extremal families [FFP]. A hypergraph
F is called a Sperner family if F 6⊂ G holds for every pair F,G ∈ F .

Conjecture 9.6. (Frankl, Füredi, Pach [FFP]) Let F = {F1, F2, . . . , Fm} be a
Sperner family of the subsets of [n] satisfying condition (9.7). Then |F| ≤

(

n
s−1

)

holds for n ≥ 2s − 3.

The cases 2s − 3 ≤ n ≤ 2s have been settled.

10. The density of matrices without a forbidden submatrix

A configuration C = (cij) (1 ≤ i ≤ t, 1 ≤ i ≤ s) is a partial matrix with 1’s and
‘blanks’ at the entries. We say that a (0, 1)-matrix M contains the configuration
C if one can find t rows i1, i2, . . . , it, i1 < i2 < · · · < it and s columns j1, j2, . . . , js,
j1 < j2 < · · · < js in M such that the corresponding submatrix contains C, i.e.
Miα,jβ

= 1 whenever cα,β = 1. Let g(m,n; C) denote the maximum number of 1’s
in an m × n matrix M not containing C. In the case n = m we write g(n; C). For
a collection C of forbidden configurations, the corresponding threshold function is
denoted by g(n; C).

This problem is closely related to the Turán–type questions of extremal graph
theory. Our matrices can be considered as bipartite graphs. The important dif-
ference is, however, that in our case the vertices (i.e., the rows and columns) are
ordered.
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In [FH] it was proved that for all configurations C with at most 3 entries,
and for 28 of the 37 configurations of 4 entries the threshold function is linear,
g(n; C) = O(n). A result on the Zarankiewicz problem (due to [EKST]) imme-

diately gives g(n;

(

1 1
1 1

)

) = Θ(n3/2). For all other matrices with four entries

g(n; C) = O(n log n). For example,

Ω(n
log n

log log n
) ≤ g(n;





1 1
1

1



) ≤ O(n log n). (10.1)

(Bienstock and Győri [BG].)

Conjecture 10.1. (Bienstock, Győri [BG]) In (10.1) the lower bound gives the
correct order of magnitude.

The result g(n;

(

1 1
1 1

)

) = O(n log n) was used in [F90] to prove that the

number of unit distances determined by n points in the plane in convex position is
at most 12n log n. The best lower bound, 2n − 7, for this distance problem is due
to Edelsbrunner and Hajnal [EH].

More results, problems, connections to the Davenport–Schinzel theory can be
found in [FH].

11. Further generalizations

Alon generalized Theorem 2.2 to [k1]×[k2]×. . . [kn], instead of the Boolean lattice
2[n]. The corresponding analogue of Theorem 2.1 was first proved by Karpovsky
and Milman [KM], and independently by Anstee and Murty [AM]. Many similar
questions can be asked for other classes of matrices, when we allow, say, 0, 1, 2
entries (instead of 0’s and 1’s only).

Another direction of research is to investigate the minimum degree, instead of
the size of the hypergraph. This problem was proposed by Cunningham and Frankl.
Let H be a hypergraph and let d(n,H) := maxF{minx∈[n] degF (x)} where F ⊂ 2[n]

and F 6→ H. It is easy to see, that d(n, 2[s]) =
∑

0≤i≤s−1

(

n−1
i

)

. A hypergraph H
is k-partite if there exists a partition V1 ∪ · · · ∪ Vk = V (H) such that |E ∩ Vi| ≤ 1
for every edge E, 1 ≤ i ≤ k. In [FQ] it was observed that if H is not k-partite, then
d(n,H) ≥ Ω(nk). For further problems consult [FQ].

A hypergraph F is called t-wise ℓ-intersecting if |F1∩· · ·∩Ft| ≥ ℓ holds for every
F1, . . . , Ft ∈ F .

Theorem 11.1. There exists a function v(r, t, ℓ) such that the following holds. If
F is a t-wise ℓ-intersecting r-uniform hypergraph, then there exists a set S with
|S| ≤ v(r, t, ℓ) such that any t edges of F meet in at least ℓ vertices of S, i.e.,
|F1 ∩ · · · ∩ Ft ∩ S| ≥ ℓ for all F1, . . . , Ft ∈ F .

This theorem was proved by Ca lczyńska-Kar lowitz [C-K] in the most important
special case t = 2, ℓ = 1. His upper bound has been significantly improved by Erdős
and Lovász (see [F90]), and Tuza [Tu]:

2r − 4 + 2

(

2r − 4

r − 2

)

≤ v(r, 2, 1) ≤
(

2r − 1

r − 1

)

+

(

2r − 4

r − 2

)

.
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The general case has been studied independently by several people. For any fixed t
and ℓ, Alon and Füredi [AF] found a lower bound on v(r, t, ℓ) exponential in r. For
the latest developments and conjectures in this area, consult Kohayakawa [K90].

12. Packings, coverings and fractional matchings

The packing number of a hypergraph H is defined as the largest number ν = ν(H)
of pairwise disjoint edges in H. The covering number (or transversal number) of H
is the smallest number τ = τ(H) such that one can choose τ vertices of H with the
property that any edge of H contains at least one of them. Clearly, ν(H) ≤ τ(H).
There are many interesting results in integer programming showing that for some
very special classes of hypergraphs equality holds here, but in general τ(H) is not
even bonded from above by any function of ν(H).

One can define the “fractional” versions of these parameters, as follows. A
fractional packing of a hypergraph H = (V (H), E(H)) is a nonnegative real function
p defined on the edge set E(H) such that

∑

E∋x

p(E) ≤ 1 for every vertex x ∈ V (H).

The maximum of
∑

E∈E(H) p(E) over all fractional packings of H is called the

fractional packing number of H, and is denoted by ν∗(H).
In the same spirit, a fractional covering (or transversal) of H is a nonnegative

real function t defined on the vertex set V (H) such that

∑

x∈E

t(x) ≥ 1 for every edge E ∈ E(H).

The minimum of
∑

x∈V (H) t(x) over all fractional transversals is called the fractional

transversal number of H, and is denoted by τ∗(H). It immediately follows from the
duality theorem of linear programming that

ν(H) ≤ ν∗(H) = τ∗(H) ≤ τ(H) for all H.

13. Examples with bounded VC-dimension

¿From any hypergraph of small VC-dimension we can construct a large variety
of other hypergraphs of bounded dimension, using the following rules.

Lemma 13.1. Let H be a hypergraph of VC-dimension d, and let ϕ(E1, . . . , Ek)
be a boolean formula of k variables.

(i) If every edge E′ of a hypergraph H′ can be expressed as ϕ(E1, . . . , Ek) for
some Ei ∈ E(H), then

VC-dim(H′) ≤ 2dk log(2dk);

(ii) If H∗ denotes the dual hypergraph of H, then

VC-dim(H∗) < 2d+1.
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It may be an interesting problem to decide if the above upper bounds are asymp-
totically tight in the worst case.
Example 13.2 Given an n element point set S ⊆ R

d, let H be a hypergraph
on the vertex set S, whose edges are all possible intersections of S with a closed
halfspace. It is easy to see (using Radon’s theorem) that VC-dim(H) = d + 1. A
similar statement is true if we intersect S with closed balls rather than halfspaces.
Example 13.3 Given an n element point set S ⊆ R

d, let H denote the hypergraph
with V (H) = S and

E(H) = {S ∩ Pk | for all convex polyhedra Pk with ≤ k facets}

By Lemma 13.1 (i) and the previous example, now we have VC-dim(H) ≤ 2(d +
1)k log(2(d + 1)k).
Example 13.4 Given an n element set L of straight lines in the plane, let H be
defined by V (H) = L and

E(H) = {Ls | for all segment s},

where Ls denotes the set of all elements of L that intersect s. It is not difficult to
show that there is a small integer d(≥ 15) independent of n such that VC-dim(H) ≤
d.
Example 13.5 Given an n element set L of straight lines in the plane, let H be
defined by V (H) = L and

E(H) = {L∆ | for all triangles ∆},

where L∆ denotes the set of all elements of L that intersect ∆. Using Lemma
13.1 (i) again, we obtain that VC-dim(H) ≤ 6d log(6d), where d denotes the same
constant as in 13.4.

It might be interesting to note that Example 13.4 can be regarded as a dual
counterpart of (the special case d = k = 2 of) Example 13.3, under the standard
duality between points and lines in the plane. Examples 13.2 and 13.3 appear to be
quite general in another sense, too. A subset Ak,j ⊆ R

d is said to be semialgebraic
(with parameters k and j), if it consists of all points x = (x1, . . . , xd) satisfying k
algebraic inequalities of degree j, i.e.,

∑

I

a
(t)
I xI ≥ 0 (1 ≤ t ≤ k),

where the coefficients a
(t)
I are real, the

∑

is taken over all I = (i1, . . . , id) with
nonnegative integer coordinates whose sum is at most j, and

xI = xi1
1 · · ·xid

d .

Given an n element point set S ⊆ R
d, define a hypergraph H on the vertex set

S by

E(H) = {S ∩ Ak,j | for all semialgebraic Ak,j with parameters k, j}.
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The mapping ϕ : R
d → R

(d+j

d )−1 defined by

ϕ(x) = (. . . , xI , . . . ),

where we assign a coordinate to each I = (i1, . . . , id) 6= 0, takes every Ak,j into a
set satisfying k linear inequalities

〈

a(t), ϕ(x)
〉

≥ −a
(t)
0 (1 ≤ t ≤ k).

Thus, ϕ defines a bijection between the sets S ∩ Ak,j and the sets of the form

ϕ(S) ∪ Pk, where Pk is a convex polyhedron in R
(d+j

d )−j having at most k facets.
By Example 13.3, this yields that

VC-dim(H) ≤ 2

(

d + j

d

)

log

(

2

(

d + j

d

)

k

)

.

In most applications this upper bound is much too generous, and can be improved
substantially by using ad hoc methods. However, as we shall see later, usually it
is sufficient for our purposes that there is an upper bound on the VC-dimension
of a hypergraph, independent of the number of its vertices. The actual value of
VC-dim(H) will only effect the constants implied in our results.

The above argument might suggest that there exists a function f(d) such that
any hypergraph of VC-dimension d can be embedded into the f(d)-dimensional
Euclidean space so that every edge can be obtained as the intersection of the vertex
set with some convex polyhedron with at most f(d) facets. However, as it was
pointed out by Alon, Haussler, Welzl and Wöginger [AHWW], f(d) does not exist
even for d = 2. This fact also follows from a result of Goodman and Pollack
[GP], which implies that the number of hypergraphs embeddable into R

f(d) is much
smaller than the total number of hypergraphs of VC-dimension d.

14. Bounds on the transversal number of a hypergraph

V. N. Vapnik and A. Ya. Chervonenkis [VC] have discovered that hypergraphs of
small VC-dimension can be statistically very well represented by taking relatively
small samples from their vertex sets (see later in Section 15). Their ingenious proof
technique was adapted by Haussler and Welzl [HW] to establish the upper bound

τ(H) ≤
⌊

8d

ε
log2

8d

ε

⌋

for the transversal number of a hypergraph H with VC-dimension d, all of whose
edges are of size at least ε|V (H)| for some 0 < ε < 1. This bound was improved
by Blumer, Ehrenfeucht, Haussler and Warmuth [BEHW], Shawe-Taylor, Anthony
and Biggs ([STAB], see also Anthony [Ant]) to O ((d/ε) log(1/ε)). We shall sketch
the proof of the best known result of this type, which is also based on the original
ideas of Vapnik and Chervonenkis.

Theorem 14.1. (Komlós, Pach and Woeginger [KPW]) Let H be a hypergraph
of VC-dimension d, all of whose edges have measure at least ε with respect to an
arbitrary probability distribution µ on V (H). Then

τ(H) ≤ d

ε

(

log
1

ε
+ 2 log log

1

ε
+ 3

)

,
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provided that ε > 0 is sufficiently small.

Proof. Pick a sequence x of t random points from V (H) with possible repetition,
where the selections are done with respect to µ. Then choose another sequence y
of T − t points in the same way, and let z = xy ∈ [V (H)]T . Furthermore, let
〈z〉 = 〈xy〉 denote the multiset of all elements occurring in z, i.e., the elements are
counted with multiplicities, but their order is irrelevant.

Given any E ∈ E(H), let I(E, x) denote the number of bits of x that belong to
E. By the independence of x and y, we have

Prob [∃E ∈ E(H) such that I(E, x) = 0] ≤
Prob [∃E ∈ E(H) such that I(E, x) = 0, I(E, y) ≥ mE ]

minE∈E(H) Prob [I(E, y) ≥ mE ]
.

Choosing mE to be the median of I(E, y), we get

Prob [∃E ∈ E(H) such that I(E, x) = 0] ≤
2Prob [∃E ∈ E(H) such that I(E, x) = 0, I(E, y) ≥ mE ] .

For a fixed E ∈ E(H), the conditional probability for given 〈z〉 = 〈xy〉

Prob [I(E, x) = 0, I(E, y) ≥ mE | 〈z〉]

≤ χ [I(E, z) ≥ mE ]

(

T − t

I(E, z)

)/(

T

I(E, z)

)

≤ χ [I(E, z) ≥ mE ]

(

1 − t

T

)mE

By the Sauer–Shelah–VC theorem (Theorem 2.1), a fixed multiset 〈z〉 has at

most
∑d

i=0

(

T
i

)

different intersections with the edges of H. Thus, for a given 〈z〉,

Prob [∃E ∈ E(H) such that I(E, x) = 0, I(E, y) ≥ mE | 〈z〉]

≤
d

∑

i=0

(

T

i

)(

1 − t

T

)m

,

where m = minE mE ≥ (T−t)ε−1. Choosing t = ⌊(d/ε) (log(1/ε) + 2 log log(1/ε) + 3)⌋,
T =

⌊

(d/ε) log2(1/ε)
⌋

, we get

Prob [∃E ∈ E(H) such that I(E, x) = 0]

≤ 2Prob [∃E ∈ E(H) such that I(E, x) = 0, I(E, y) ≥ mE ]

≤ 2

d
∑

i=0

(

T

i

)(

1 − t

T

)(T−t)ε−1

< 1.

Hence, there exists a sequence x of t points intersecting every edge of H. �

Most often we apply Theorem 14.1 for the uniform distribution on V (H), i.e.,
when µ(E) = |E|/|V (H)|.
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Corollary 14.2. Let H be a hypergraph of VC-dimension d, and let ε be a fixed

small positive number. Then there exists an at most
d

ε

(

log
1

ε
+ 2 log log

1

ε
+ 3

)

-

element subset N ⊆ V (H) which intersects every edge E ∈ E(H) with |E| ≥
ε|V (H)|.
A subset N ⊆ V (H) with the above property is usually called an ε-net for H.

Another interesting special case of Theorem 14.1 is the following. Let t be a
fractional transversal of H with

∑

x∈V (H)

t(x) = τ∗(H).

Then µ(x) = t(x)/τ∗(H), x ∈ V (H) is a probability distribution, and

µ(E) =

∑

x∈E t(x)

τ∗(H)
≥ 1

τ∗(H)
for every E ∈ E(H).

Theorem 14.1 now yields the following result.

Corollary 14.3. For any hypergraph H of VC-dimension d,

τ(H) ≤ dτ∗(H)(log τ∗(H) + 2 log log τ∗(H) + 3),

provided that τ∗(H) is sufficiently large.

Given a hypergraph H, we can define many other interesting parameters similar
to the VC-dimension. For instance, for any fixed k, let dk(H) denote the maximum
size of a subset A ⊆ V (H) with the property that for any k element subset B ⊆ A
there exists EB ∈ E(H) such that EB ∩ A = B. Obviously, VC-dim(H) ≤ dk(H)
for every k. Combining Corollary 14.3 with Ramsey’s theorem, Ding, Seymour and
Winkler [DSW] established the following.

Theorem 14.4. (Ding, Seymour, Winkler [DSW]) For any hypergraph H,

τ(H) ≤ 6d2
2(H∗)(d2(H∗) + ν(H))

(

d2(H∗) + ν(H)

ν(H)

)2

,

where H∗ denotes the dual of H.

Ding et al [DSW] have also established the following geometric corollary to the
above bound. Let P and R be a set of points and a set of axis-parallel rectangles
in the plane, respectively. Then, for any natural number k, either there are k + 1
rectangles in R so that no point of P belongs to more than one of them, or one can
find at most (k + 63)127 points in P meeting every member of R. This has been
improved recently by Pach and Törőcsik [PT].

In many interesting geometric applications of Theorem 14.1 and Corollary 14.2
the logarithmic terms can be replaced by constants. (See Agarwal [Ag], Chazelle
and Friedman [CF], Clarkson [C], Matoušek,, Seidel and Welzl [MSW], Pach and
Woeginger [PW].) However, in the combinatorial setting these results are not far
from being best possible.

Theorem 14.5. (Komlós, Pach, Woeginger [KPW]) Given any natural number
d ≥ 2 and γ < 2/(d + 2), for any sufficiently small ε > 0 one can find a hypergraph
H, all of whose edges are of size at least ε|V (H)| and

τ(H) ≥ d − 2 + γ

ε
log

1

ε
.
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15. Discrepancies and ε-approximations

Let H = (V, E) be a hypergraph with n vertices and m edges, and let c : V →
{−1, +1} be a mapping. This defines a partition of the vertices V = V + ∪V −. We
will call such a partition a coloring of H. For a set S ⊂ V let c(S) = 1

2 (
∑

p∈S c(p)),

i.e., the difference between the number of elements with the same sign and |S|/2.
Define the discrepancy of c on H by

disc(H, c) = max
E∈E

1

2
||V + ∩ E| − |V − ∩ S||,

and the discrepancy of H by

disc(H) = min
c:V →{−1,+1}

disc(H, c).

The discrepancy of a hypergraph H with n vertices and m edges is at most
disc(H) ≤ 2

√
n log m (m ≥ 4). If m ∼ nk, then this gives O(

√
n log n), and a

random construction shows that this bound is best possible. However, much better
bounds hold if the hypergraph has bounded VC-dimension. In fact, a somewhat
weaker assumption will already enable us to show that disc(H) = o(

√
n).

The primal density function πH : [n] → R of a hypergraph H is defined by

πH(s) = max
S⊂V, |S|≤s

|{E ∩ S : E ∈ E}|.

The dual density function π∗
H : [m] → R is the primal density function of the dual

hypergraph of H arising by exchanging the role of points and edges. Thus, π∗
H(t)

is the maximum number of atoms into which the points of V can be partitioned
by a collection of t edges of E . By Theorem 2.1, and Lemma 13.1(ii), hypergraphs
with bounded VC-dimension have polynomially bounded density (and dual density)
functions. For example, consider (P,B) where P is a finite set of points in R

d and
B is the set of intersections of P with balls. Then the primal density function is
of order O(sd+1), while the dual density is of order O(td) and the VC-dimension is
d + 1.

A subset S is an ε-approximation for H if
∣

∣

∣

∣

|E ∩ S|
|S| − |E|

|V |

∣

∣

∣

∣

≤ ε

for every set E ∈ E .

Theorem 15.1. (Vapnik and Chervonenkis [VC]) Let d be fixed and let H be a
hypergraph of VC-dimension (at most) d. Then for every r > 1, there exists a
(1/r)-approximation for H of size O(r2 log r).

The following theorem greatly expands Theorem 15.1 and the discrepancy bounds
for hypergraphs with polynomially bounded (dual) density functions.

Theorem 15.2. (Matoušek, Welzl and Wernisch [MWW]) Let H = (V, E) be a
hypergraph on n vertices, d and C constants. Suppose that πH(s) ≤ Csd for all
s ≤ n. Then the discrepancy disc(H) of H is bounded by

O(n(1/2)−(1/2d)(log n)1+(1/2d)), if d > 1, and O(log5/2 n), if d = 1.

Moreover, for every r ≤ n, there exists a (1/r)-approximation for H of size

O(r2−(2/(d+1))(log r)2−1/(d+1)), if d > 1, and O(r log5/2 r), if d = 1.
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Theorem 15.3. (Matoušek, Welzl and Wernisch [MWW]) Let H = (V, E) be a
hypergraph on n vertices, d and C constants. Suppose that π∗

H(t) ≤ Ctd for all
t ≤ n. Then the discrepancy disc(H) of H is bounded by

O(n(1/2)−(1/2d) log n), if d > 1, and O(log3/2 n), if d = 1.

Moreover, for every r ≤ n, there exists a (1/r)-approximation for H of size

O(r2−(2/(d+1))(log r)2−2/(d+1)), if d > 1, and O(r log3/2 r), if d = 1.

These beautiful results allow to rederive and extend many of the upper bounds
of Beck [BC] about geometric discrepancies. For example, if P ⊂ R

d is an n-set
and B is a family of intersections of P with balls, then

disc(B) = O(n(1/2)−(1/2d)
√

log n).

This result holds for every probability measure µ of R
d. This bound can easily be

generalized to the case when B is the set of k-fold boolean combination of balls,
too.

The dual density function seems to be more appropriate to investigate geometric
discrepancies, because it depends on the complexity of the figures determining the
subsets rather than the dimension of the space.

Finally, we remark that Beck [BC] and, by a different method, Alexander [Ale]
gave almost matching lower bounds (up to logarithmic factors) for all the discrep-
ancy bounds of Theorems 15.2 and 15.3.

The proof of Theorem 15.3 is based on the following result about the cross-
ing number of hypergraphs. We say that an edge E crosses the pair {x, y} if
|E ∩ {x, y}| = 1. A spanning path, P , of H is a linear order of the vertices
V = {v1, v2, . . . , vn}. The crossing number of E with respect to P is the number
of pairs {vi, vi+1} crossed by E. The crossing number of a hypergraph H = (V, E)
with respect to P is the maximum of the crossing numbers of the edges E ∈ E .

Theorem 15.4. (Chazelle and Welzl [CW]) Suppose that the dual density func-
tion π∗

H(t) is bounded by π∗
H(t) ≤ Ctd for some constants C and d. Then there exists

a spanning path P with crossing number O(n1−(1/d) log n), if d > 1 and O(log2 n),
if d = 1.

This result also shows that the use of intervals in constructing extremal families
in Section 5 is probably not a coincidence.

The discrepancy of a matrix A is

disc(A) = min
x is a (−1/2,+1/2) vector

||Ax||∞

and the hereditary discrepancy of A is

herdisc(A)= max
B is a submatrix of A

disc(B).

For further definitions, see [LSV]. Note that if A is the incidence matrix of a hy-
pergraph H, then disc(A) = disc(H). Furthermore, all entries of an integer matrix
A with herdisc(A) ≤ d are between −2d and 2d. Let h(n, d) denote the maximum
number of distinct rows in an m × n integer matrix A with herdisc(A) ≤ d.
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Theorem 15.5. (Lovász and Vesztergombi [LV])

∑

0≤j≤n

(

n

j

)(

n + j

j

)(

2d

d

)

≤ h(n, d) ≤
∑

0≤j≤n

(

n

j

)

(2πd)j

(

Γ

(

j

2
+ 1

))2

where Γ is the usual gamma function.

Anstee [An90] showed, using Theorem 2.1, that for a fixed d, h(n, d) is bounded

by a polynomial of n. More precisely, h(n, d) = O(n7d2+3d). This is the first step
to establish the conjecture of Lovász and Vesztergombi [LV], h(n, d) = O(n4d).

16. A problem of Danzer and Rogers

Problem 16.1. Determine the smallest number f(ε) of points that can be arranged
in the unit square [0, 1]2 so that every convex set C ⊆ [0, 1]2 with area ≥ ε contains
at least one of them.

Let ε > 0 be fixed. Then we can choose a sufficiently large m with the prop-
erty that any convex set ∆ ⊆ [0, 1]2 with area ≥ ε/3 contains at least εm2/6
points belonging to the m by m square grid Sm×m placed on the unit square.
Construct a hypergraph H with V (H) = Sm×m, whose edges are all sets of the
form Sm×m ∩ ∆, where ∆ ⊆ [0, 1]2 is a triangle of area at least ε/3. By Exam-
ple 13.3, VC-dim(H) ≤ 6 log 18 < 18, and every edge of H has at least εm2/6 =
(ε/6)|V (H)| points. Thus, Corollary 14.2 implies that there exists an at most
(18/(ε/6)) (log(6/ε) + 2 log log(6/ε) + 3) = O ((1/ε) log(1/ε)) element set N ⊆ Sm×m

intersecting all triangles ∆ of area ε/3. Since every convex set C ⊆ [0, 1]2 of area
at least ε contains such a triangle, we obtain

f(ε) = O

(

1

ε
log

1

ε

)

.

Note that this relation can also be shown by a straightforward construction. How-
ever, there does not appear to exist an equally easy construction establishing the
same bound in higher dimensions, without using Corollary 14.2 or some other prob-
abilistic argument. It is an exciting open problem to decide whether f(ε) = O (1/ε).
The answer is probably in the negative.

17. Bounds on incidences

The fact that a large variety of hypergraphs arising in geometric problems has
bounded VC-dimension was already noted by A. Rényi, C. Rényi and J. Surányi
[RRS] in the 1950’s. Although it has been known for more than twenty years that
this concept plays a crucial role in mathematical statistics, the relevance of the
methods discussed in previous sections to a wide range of problems in discrete and
computational geometry was realized only a couple of years ago by Haussler and
Welzl.

In what follows, we shall outline an elegant argument due to Clarkson, Edels-
brunner, Guibas, Sharir and Welzl [CEGSW], which provides an elegant alternative
proof of a well–known result of Szemerédi and Trotter [ST] on the number of in-
cidences between points and lines in the plane. It is a typical application of the
so–called “ε-net technique” based on Corollary 14.2.
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Theorem 17.1. (Szemerédi, Trotter [ST]) There exists a constant c such that the
maximum number of incidences, I, between m distinct points and n distinct lines
in the plane,

I(m,n) ≤ c(m2/3n2/3 + m + n).

Proof. [CEGSW] Let S = {p1, . . . , pm} and L = {ℓ1, . . . , ℓn} be given sets of
points and lines in the plane, respectively. Construct a bipartite graph G with
V (G) = S ∪L, where pi and ℓj are joined by an edge if and only if pi is incident to
ℓj . Obviously, G does not contain a cycle of length 4, so we can apply an old result
of Erdős and Kővári, Sós and Turán [EKST] to obtain that

I(m,n) = max
G

|E(G)| ≤ c′(mn1/2 + n), (17.1)

where c′ is a suitable constant.
Define a hypergraph H on the vertex set V (H) = L by

E(H) = {L∆ | for all triangles ∆},

where L∆ denotes the set of all elements of L intersecting a triangle ∆. By Example
13.5, VC-dim(H) ≤ 500 (but, of course, this bound can be substantially lowered).

According to Corollary 14.2, for any sufficiently small ε > 0, H has an ε-net
of size at most (103/ε) log(1/ε). That is, there exists an at most (103/ε) log(1/ε)
element subset L′ ⊆ L with the property that any triangle ∆ with |L∆| ≥ εn
intersects at least one element of L′. The lines of L′ partition the plane into some
polygonal regions, which can be further subdivided into at most

5|L′|2 <
107

ε2

(

log
1

ε

)2

triangles ∆i (i = 1, 2, . . . ). Note that here we also allow ∆i to be a degenerate
triangle having only two sides, i.e., an infinite cone. Using an additional trick, we
can spare the logarithmic factor, i.e., the number of these triangles can be reduced
to 107/ε2. Let ni denote the number of lines of L intersecting the interior of ∆i.
By our construction, ni < εn for every i. Let mi denote the number of points of S
belonging to ∆i. (If a point of S is lying on the boundary of several triangles, then
it is counted only at one of them.) Thus,

∑

mi = m, and we have that the number
of incidences between S and L,

I(m,n) ≤
107/ε2

∑

i=1

I(mi, ni) +

(

103

ε
n + m

)

,

where the second term bounds the number of incidences between S and L′. Using
(17.1), we get

I(m,n) ≤ c′
107/ε2

∑

i=1

(mi(εn)1/2 + εn) +
103

ε
n + m

≤ c′′
(

m(εn)1/2 +
n

ε
+ m

)

.
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If n ≥ m2, then (17.1) yields that I(m,n) ≤ 2c′n. Otherwise, let ε = max
(

(n/m2)1/3, 1/n
)

,
and Theorem 17.1 follows from the last inequality. �

The main advantage of this proof technique lies in its flexibility. In particular, it
allows us to generalize the above theorem without too much effort in many different
directions.

Let Γ be a class of curves in the x-y plane defined in terms of d real parameters.
We say that Γ is a regular class of curves with d degrees of freedom if there exists
an integer s such that

(a) the dependence of the curves on x, y and the parameters is algebraic of
degree at most s;

(b) no two disjoint curves intersect in more than s points;
(c) for any d points in the plane, there are at most s element of Γ passing

through all of them.

Theorem 17.2. (Pach and Sharir [PS]) Let Γ be a regular class of curves with
d degrees of freedom. Then there exists a constant c = cΓ such that the number of
incidences between m distinct points and n distinct curves in Γ is at most

c(md/(2d−1)n(2d−2)/(2d−1) + m + n).

Since the class of all unit circles is regular with d = 2, we immediately obtain
the following result.

Corollary 17.3. (Spencer, Szemerédi and Trotter [SST]) The maximum number
of times that the unit distance can occur among n points in the plane is at most
cn4/3.

For further proofs and geometric applications see [PA].
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