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Covering the Cube by Affine Hyperplanes

NoGa ALON aND ZOLTAN FUREDI

One can easily cover the vertices of the n-cube by 2 hyperplanes. Here it is proved that any
set of hyperplanes that covers all the vertices of the n-cube but one contains at least n
hyperplanes. We give a variety of proofs and generalizations.

1. HyperrLANE COVERINGS OF THE VERTEX SET or THE CUBE

Let V = {1, —1}" be the vertex set of an n-cube. Alon et al. {3] proved the following.
For even n the minimum cardinality of a family of hyperplanes of the form (a,, x)=0,
where the co-ordinates of each vector a; are in {—1, 1}, the union of which covers V, is
n. This result is somewhat surprising because each such hyperplane contains (,};) =
@(2"/\n) vertices in V.

Using arbitrary hyperplanes one can cover all the vertices in V by two parallel ones,
and there are several additional ways to obtain a covering by two hyperplanes. But
what is the minimum number, m(n), of hyperplanes covering exactly 2" — 1 vertices?
The problem in this form was proposed by Imre Bardny, who extracted it from
Komjdth [5]. Komjéith needed a weaker version (namely, a proof that m(n)— =), to
deal with an infinite extension of Rado’s theorem about regular equation systems. He
achieved his aim by proving that m(n) = log, n — 2log, log, n for n 2. On the other
hand, taking r faces of the cube meeting in a vertex, it is obvious that m(n) <n. Our
first result is an exact determination of m(n) (which turns out to be n). We also
establish a number of extensions of that result.

Our proofs apply linear algebra techniques and demonstrate the power of these
methods. In order to exhibit the variety of proof methods we try to apply a slightly
different method in the proof of each extension. In what follows it is more convenient
to consider the cube {0, 1}" instead of {—1, 1}", and we proceed with this convention.

THEOREM 1. Suppose that the hyperplanes H\, H,---H_  in R" avoid 0, bur
otherwise cover all the other 2° — 1 vertices of the unit cube {0, 1}". Then m = n.

Proor. We utilize the linear algebraic method from [3]. Let (a;, x)=b; be an
equation defining H;, where a, xeR" b;eR. Consider the polynomial P{x)=
I, ((a;, x) — ;). Let Q(x)} be the multilinear polynomial obtained from P(x) by
replacing repeatedly each occurrence of x¢, with 4 =2 in the standard representation
of P(x) as a sum of monomials, by x;. Clearly, Q(x) =0 for all x € {0, 1}"\{(}, and

0(0) = P(0) # 0. Moreover, deg(Q) < deg(P) = m. Thus the theorem follows from the
first lemma in the next section. m|

2. MULTILINEAR POLYNOMIALS

Lemma 1. If Q(x) € Z[xy, . . ., x| is a multilinear polynomial with 0(0)=c+#0 and
Q(x)=0 for xe {0, 1}"\{0}, then Q(x)=c(x;— 1)(x2—1)---(x, —1). In particular,
deg(Q) = n.

Proor. Let Q(X):= X, (1.2, ..n) ¢;X;, where x; is a shorthand for [, x;. We claim
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that ¢; = (—1)'c. To prove this claim we proceed by induction on the size of ).
¢z = Q(0) = c. Suppose we have already proved our claim for all J < I, J# I, where
now |I}=1. Consider the vector e(f)e {0, 1}" with co-ordinates 1 exactly in the
elements of I. Then

0=0(e()=Dc= 2 (—1Wec+g =c( > (%)(—1)") +o=c(-1M"'+¢. O

Jcf Jef, J=I O=sj i

3. UsiNnG Less THan n HYPERPLANES

CoroLLARY 1. If n=m =1 then m hyperplanes that do not cover all vertices of the
unit n-cube miss at least 2"~ vertices.

This result can be proved by imitating the argument that supplies a lower bound for
the distance of the Reed Muller Codes (see, e.g., [6]). Here we give another proof.

Proor. Induction on n —m. The case n —m =0 is obvious, and the case n —m =1
follows from Theorem 1. In general, suppose that H;, ..., H,, miss at least two
vertices x and y. There is a co-ordinate i with x;#y, Consider the two (n—1)-
dimensional subcubes {ve {0,1}": v, = a}, where a e {0, 1}. Neither is covered by
H,U---UH,_. So the induction hypothesis implies that these hyperplanes miss at least
20=Hm points of each. O

CoroLLARY 2. If H,, ..., H, is a minimal set of hyperplanes that cover all vertices
1 yperp
of the unit n-cube, then each such a plane contains at least 2"*' ™™ own vertices, i.e.

22ﬂ+1~m‘ D

w. )\ Y #)

JEE

4. More HypPERPLANE COVERINGS

Let V=V(hy, hy,...,h,) be the set of lattice points (y,,...,¥,) such that
0<y,=<h; Let veV, and define U = Vv, Clearly, the poiats of V can be covered by
min h; parallel hyperplanes. But to cover U by hyperplanes avoiding v one cannot
improve on the trivial upper bound, ¥ &;, obtained by using hyperplanes orthogonal to
the standard unit vectors. This is proved in the following theorem.

THEOREM 2. Suppose that the hyperplanes H,, H, - - - H,, in R" avoid v, but their
union HHUH, U .- - UH,, contains V(h,, ko, ..., A, )\v. Then m=h, +hy+---+h,.

Theorem 1 is a special case of Theorem 2, but here we present a slightly different
proof. For i=(iy,...,i)eV let B, ..., i, x)€Z(xy,...,x,) be the following
polynomial:

B(i,x):= H (x1—11) H (x2—j2) -+~ H (X = jn)-

O=j=<h O=jy=<h; O=j,=<h,
Ji#Edy Ja#is Jn¥Fin

All these polynomials have degree ¥ A;.

LemMA 2. The polynomials B(i, x) form a basis of the subspace Z generated by the
functions {x{x% - -x;:0=a, < h;}.
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Proor oF Lemma 2. Obviously, every B(i, x) belongs to Z and the dimension of Z
is precisely [1(h; + 1), so all we nced is to show that the polynomials B(i, x) are
linearly independent. Consider a linear dependence

>, a;B(i, x)=0.

ieV
For each i=(iy, ..., i,) one can substitute x; =, for all j in the above equation. For
this x=(x,, . . ., X,), B(i, x) is not zero, whereas for all k#i, B(k,x) =0 and hence
this implies that &; = 0 for all i, completing the proof. O

The proof of Theorem 2 now follows the previous proof. Consider the polynomial
Px)=TII"; ((a;, x) — b,). Let Q(x)e Z be the polynomial obtained from P(x) by
replacing repeatedly each occurrence of xf*' by x#*' — (Ilpajen, (x; — ) (which is a
polynomial of degree at most k; in x;.) Clearly,

Q(x)=0 (1

for all xe U, and Q(v) = P(v) #0. Apply Lemma 2 to write Q as a linear combination
O(x) = Liev a,B(i, x). Substituting here an x=ie U, (1) implies that a;=0 for all
ie U. However, Q is not identically 0, so @(x) =cB(v, x) for some 0#*c € R. Hence
m = deg(P) =deg(Q) =deg B(v,x) = X/ k. |

5. A ComMON GENERALIZATION FOR BRICKS OVER ANY FIELD

For a sequence of positive integers s = (5y, . . ., 5,), let M(s, [) denote the minimum
of the product of n positive integers y; <s, the sum of which is at least . For [<n we
have M =1, and for [=} s5; we define M =1Is;. One can give a formula, but let us
leave it in this form.

TueoreM 4.  Let F be an arbitrary field, let 8y, . . ., S, be non-empty subsets of F,
|$;| =s;, and let B be the set S, x 8, X---x8,. If m hyperplanes do not cover B
completely, then they miss at least M(s, (¥ 5;) — m) points of B.

Observe that if ¥, y,= Y 5, — m and if y, =s5; are positive integers then one can make
the union of the hyperplanes miss exactly [y, points by taking s; - y; hyperplanes of
the form x; = s for s; — y; distinct members s € §; for all &

To prove the above theorem it clearly suffices to prove the following:

THEOREM 5.  Any polynomial P(x,, ..., x,) of degree m which does not vanish on
all of B is non-zero on at least min I1 y, points of B, where the minimum is taken over all
positive integers y; < s; the sum of which is at least (3. s;) — m.

Proor. The proof is by induction on n. The result is trivial for n=1, as a
(non-zero) polynomial of degree m can have at most m distinct roots. Write s =5,.
Define Q(x,)=Ilcs, (x, — i) =x1—q(x,) and let us reduce P modulo Q; namely,
replace in P, repeatedly, every occurrence of x] by g(x;}. Observe that this does not
change the value of P on points of B, and in the end we obtain a polynomial, call it
R(x,, ..., x,), of total degree at most m, the degree in x, of which is at most s — 1.
Clearly, it is not identically zero, as it is non-zero on some points of B.

For each possible substitution for x,€S, we now obtain R, (x3, ...,x,), a
polynomial in x, ..., x,. Not all of these substitutions give the zero polynomial.
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Denote by y the number of substitutions that do not give the zero polynomial on
By:=8,x.--XS§,: that is, let Y:={x,€85:R, (x)#0 for some xe B,} and put
y:=1YI.

Coamm.  Each polynomial obtained from (R(x,, ..., x,,) by a substitution of a value
from Y to x, (which is not the zero polynomial on B,, by the definition of Y), is of
degree at mostm —s;+yon B,.

ProoF OF CLaM.  Write R(x,, ..., x,)=Rx7"'+ Rx572+---+R,, where R, is a
polynomial of degree at most m —s+i in x, .. ., x,,. The values of each polynomial
R.(x3, ..., x,) over B, can be considered as a vector r; from the space F?'.

For s — y substitutions of x,, namely for x, € (§;\¥), we obtain a linear equation
0=x5"1r, +- -+ +x,0,_; +1,. As the coefficients of the vectors Lo P2 - .-, I forma
Vandermonde matrix, this matrix is non-singular. So one can express these vectors, as
lincar combinations of {x}~'r,+-- - +x37r,1x, € (5\Y)}. We can thus express the
polynomials R, ., R,.2, . .., R, as lirear combinations of Ry, . .., R, (on B,), and the
degree of each of these is at most m —s, +y, proving the claim. O

Note that we did not prove that the polynomial R, (x5, ..., x,) is of degree at most
m —s +y, we have only proved that there is a polynomial 7, (x2, ..., x,) such that
degT=m-—s+y, and T, (x) = R, (x) for all xe B,.

It thus foliows that the number of points of B on which our polynomial R(x) is not
zero is at least y times G, where G is (by induction) the minimum possible value of the
product of n — 1 positive integers y,, . . ., ¥, with y; =<5, the sum of which is at least
(Y2<i<ns;) —m +s5 —y. Taking y = y, we obtain the desired result. O

6. ANOTHER PROOF FROM NULLSTELLENSATZ

SKETCH. Another proof for Theorem 1 can be obtained (in a way that resembles the
one in [3]), by using Hilbert’s Nullstellensatz. The polynomial P(x) defined in the proof
in Section 1 vanishes on the zero set of the ideal ¥ generated by xi—x,,
x3-x,, ..., x2—x,and (x; — 1)(x;—1) - - - (x, — 1). Thus a power of P should belong
to #. One can next show that in fact P € #, too. Finally, another argument proves that
P(x) vanishes identically if its degree is less than n. This proof can be probably
extended to the general case too.

Another proof for Theorem 2 can be obtained using the following lemma proved in
[2). If 8,,...,S, are sets of integers, |S;| =h; and P(x,, ..., x,) is a polynomial of
Xy, ..., x, that vanishes on all points of §; X 8§ % .- X §, but is not identically zero
then deg(P)=h,+ - -+ h,,.

Several additional algebraic proofs with a similar flavour can be found in [4] and in
[1].
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