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THE MINIMAL NUMBER OF ZERO SUMS

Z. FUREDI* and D. J. KLEITMANT

Let C = cy,cg,...,cn be an arbitrary sequence of integers. We asymp-
totically prove the following conjecture of Bialostocki: C contains at least

(l-"rff-') + ('—7%2]) subsequences of length m, whose terms add up to 0 mod-

ulo m. In the extremal case C contains only two distinct values (mod m), say
0’s and 1’s.

1. PRELIMINARIES, RESULTS

The purpose of this paper is to give an asymptotic proof of a conjecture
of Bialostocki concerning the minimal number of zero sum sets. Our start-
ing point is the following old result of Erdés, Ginzburg and Ziv [7]. Let
€1,€2,...,Com—1 be a sequence of integers. Then there exists an m-element
subset I C {1,2,...,2m — 1} such that

Zcz- = 0 (mod m). (1.1)
i€l

A sequence is called a mod m zero sum sequence if the sum of its members is
divisible by m. For an arbitrary sequence of integers, C, let Z,,(C) denote
the family of m-clement zero sum subsequences. If the value of m is clear,
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we call Z,,(C) the family of zero sum sets and abbreviate it as Z or Z(C).
Recently, Bialostocki and Dierker [4] raised several interesting problems
inspired by (1.1). For a list of the newest problems see Bialostocki [3], and
for a survey of the new developments see Caro [6]. A pleasing conjecture of
Bialostocki 2], (see in [5]) proposed: If |C| = n, then

zu@lz (M) (M) (1.2

Note that |n/2] 0’s and [n/2] 1’s show that the right-hand side cannot
be increased. The case m = 2 is trivial, and the case m = 3 was verified
by Dierker (see in [5]). The size of Z,,(C) is denoted by 2z,,(C), and let
Zm(n) := min{z,,(C) : |C| = n}. Here we prove the following.

Theorem 1.1. Conjecture (1.2) is true for the following cases:
(a) m is prime,
(b) for all m if n > ng(m),

(c) m =4, or n = pq, where p and q are distinct primes.

Bialostocki informed us that his conjecture was also proved, indepen-
dently, by Kisin [9] for the cases m = p® and m = p%q, where p and ¢
are primes, and « is a positive integer. The first few unsolved cases are
m = 30, 36, 42, 60, .... Kisin also believes that it is unlikely that (1.2) is
true for any m not in this form. However, our result (b) makes plausible
that (1.2) is always true.

In the next section we give a short proof for the prime modulus. We do
this for completeness, and also because we are going to use later not only
the result but the proof, too. In Section 3, we use induction on m, (more
exactly, an induction on the number of prime divisors of m), and prove the

lower bound
(1) > 2<Ln/2j> _ mz([’n/?J - 1) (1.3)

m m—1

for all m and n. The proof is an extension of the original method of Erdés,
Ginzburg and Ziv, using a proper matching of the entries in the sequence.
In Section 4, with some technical steps, we prove (1.2) for n > no(m).
Our main technique is to distinguish between the homogeneous and non-
homogeneous m-sets. Because of Kisin’s result, we cut short the proof of
(c) in Section 5, and conclude the paper with some problems and remarks
in Section 6.
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2. PROOF OF THE PRIME CASE

To prove the theorem in the case m is a fixed prime we use induction on n.
Obviously, z,,(n) = 0 for n < 2m — 2. We may suppose that for every entry
of c € C, 0 < ¢ < m. The multiplicity of ¢ € C is denoted by . (or p(C)).
Consider, first, the case when some multiplicity p := p. > n/2. Then, such
an element ¢ = ¢; € C belongs to at least ( T’:L__ll) zero sum sets. There are
at least z,,(n — 1) zero sum sets avoiding ¢;. We obtain

2m(C) > (7‘;__11) + 2m(n — 1)
> (fn/ﬂ_I 1) N <|_(n— 1)/2]) . (((n_ 1)/2]>

= () o (Y,

Consider now the case when all multiplicities are at most n/2. Then,
it is very easy to see, there exists a partition, M, of C into |n/2]| pairs and
a singleton (in case of n is odd), such that every pair contains two distinct
values. Such a partition is called a proper matching. A set R is orthogonal
to the (disjoint) sets Mj, Mo, ... if [RNM;| <1 for all i and R C UM;. The
following claim is the crucial step in the original proof of (1.1).

Claim 2.1. Suppose that {} UM U...UM,_1 = S is a proper partition
of 2p — 1 integers, where p is a prime. Then there is a zero sum set from
Z,(S) containing x and orthogonal to all parts.

The proof of this claim follows from the following (easy) special case of the

Cauchy-Davenport theorem (see, e.g., in [1]). For any subset S C Z,, of the
p-element cyclic group and distinct elements s, € Z, one has

1S + {s,£}| > min{p, S| + 1}. (2.1)
Proof of Claim 2.1. Suppose that every pair M; consists of distinct
integers mod p. Then for all integer y there is a p-element set, S, orthogonal
to these pairs and containing z such that > {s: s € S} = y (mod p). Le.,
these 2P~! sets produce all the p possible subset sums, including the 0.
Let the set S; be defined as all the possible 2! sums mod p in the form
Zo + 1+ ... + 4, where g = = and z; € M;. The inequality (2.1) easily
implies by induction on 7 that

1Si| > i+ 1, (2.2)
hence |Sp_1| =p. =
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Claim 2.1 induces the required number of zero sum sets, all orthogonal
to M. Indeed, every m pairs from the matching contains at least 2 of them,
this provides 2(L"T{L 2)) distinct zero sum sets. If 7 is odd, the singleton from

M carries additional (er/_ 21J) Zero sum sets. W

3. PROOF OF THE ASYMPTOTIC RESULT

The aim of this section is to prove (1.3) for all, not necessarily prime, m. We
first give some definitions. Let C be a collection of integers. A partition of
C is called an almost proper matching if it contains ||C|/2] pairs and either
1t is a proper partition or all the [|C|/2] parts have a common element ;.
A set S C C is called homogeneous mod p (or briefly p-homogeneous) if
s1 = sz (mod p) for all s1,s2 € S.
Proof of (1.3). We use induction on m. Suppose that p is a prime and p|m
(i.e., p divides m). Let C be a sequence of length n» with minimal number
of zero sum sets, Z,,(C) = zm(n). Let M be an almost proper matching
mod m with pairs My, Mo, ..., M)|5/2) such that M is almost proper mod
p, too. This can be done as follows. Rearrange C such that that identical
entries form intervals (i.e., C' consists of at most m subintervals). Suppose
further, that the p-homogeneous entries form (larger) intervals, and within
such an interval the elements are in increasing order. (Finally, in the case
n is odd, make sure that the longest p-homogeneous interval contains the
middle element c[y/91.) Form the pairs (c;, ¢;) if j =1+ [n/2].

Let P be a family of |n/2p| disjoint p-sets of pairs. One can choose
exactly

() (P )
such families P.

By Claim 2.1, for every P € P, UP contains at least two zero sum
sets mod p (not mod m, yet), orthogonal to M. Denote two of these by
S(P,1) and S(P,2), and let their sums be s(P,1) and s(P,2), respectively,
ie., s(P,e) =3 {c:ce€ S(P,e)}. There are

9ln/2p] (3.2)

choices of ¢ € {1,2}” to obtain a sequence of p-element zero sum sets
S(P,e(P)) : P € P. Consider the following sequence of integers of the same
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length: s(P,e(P))/p: P € P. It contains at least z,,/,(|n/2p]|) zero sum
sets mod m/p. These zero sum sets induce m-element zero sum sets mod
m in C, which are unions of the sets S(P,¢). In this way, altogether, each
family determined by a given P and ¢ induces at least

Zm/p([10/2p]) (33)

zero sum sets from Z,,(C'). An m-element set which is orthogonal to M
can be obtained in at most

e ()" ) (b

({r/2d = (/2= M GERC b,

1
(ln/2p] — (m/p))!

different ways by the above method. Dividing the products of (3.1)—(3.3)
by (3.4) we obtain

" i (1121 2oL/ 20)
) = [Zn(0)] > 270 (12) G (35)
m/p

n/4
(/) i) 2/ ()
m (Ln/4pJ ) (Ln/ 2pJ)
m/p m/p
Using the induction hypothesis, i.e., (1.3), (with m/p instead of m) we
obtain that for a fixed m the limit of the middle factor is 2 whenever n — oo,

while the limit of the third factor is 1. The rest of the proof of (1.3) is a
simple calculation. m

4. THE EXACT VALUE FOR LARGE n

Suppose that p is a prime and plm. An m-element set, A, has
m!/(pI™P(m/p)!) partitions into p-sets. If the set A itself is not
p-homogeneous, then not all of these partitions consist of zero sum sets
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modulo p. Denote by 6(S,p) the fraction of partitions having a non zero
sum set part, and let §(m,p) = min{6(S,p)}, where the minimum is taken
over all integer sequences of length m. Obviously, § > 1/m!, but one can
get a better bound (§ > 1/m?) by observing that each partition of zero sum
sets can be spoiled by exchanging 2 elements.

Split Z,,(C) into three parts. Let RP~2°™ denote those members A €
Z,,(C) which are orthogonal to the matching M and homogeneous mod p;

let R’ denote the non p-homogeneous zero sum sets mod m orthogonal to
M, and let R = R(M) = RP~hom R/, finally, let Q@ = Z \ R. Suppose

that
1Z2(C)| < (Lnfj> + ([nrf]), (4.1)

otherwise there is nothing to prove. We are going to show that equality
holds in (4.1). In the calculations in the previous Section we considered
only R, and proving the lower bound we have counted the members of R’
by a weight 1 — § only. We had

|Rp—hom| + |RI|(1 _ 6) > 2('.71’7{2’2]) - m2<|.n,,{712_|_1 1)
This inequality and (4.1) give, that A
RI+1el < @/omt (WA T —owm. w)

Lemma 4.1. Let 1, ra, r3 and k be four distinct nonnegative integers such
that k > 3 and 0 < r; < k for all i. Then, there exist positive integers a1,
az, az such that a; + az + a3 = k and a1r1 + azre + agrz = 0 (mod k).

Proof of the Lemma. (Easy.) The statement is independent from mod
k shifting, i.e., instead of r1, o and r3 we can consider 71 +7, ro +7, r3+7
mod k. So we may suppose that one of the r;’s is 0, say r3 = 0. For r; < rg
define the a;’s as follows, a1 =k~ 712, a2 =711, a3 =72 —71. W

Let W(j) = {c € C : ¢ = j (mod m)}. The next Proposition will enable
us to prove that most of these residue classes are relatively small.

Proposition 4.2. Suppose that W(ry), W(ra) and W(rs) are residue
classes of C such that the set {ri,r2,73} is not p-homogeneous. Then
minlsjs;g IW(T'J)I < mp(m=1/m

Proof. Suppose, on the contrary, that for j = 1,2,3 we have |W(r;)| >
m2n(m—1/m_  Apply Lemma 4.1 for the (distinct) numbers ry, 79,73 and
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k =: m. We get the positive integers a1, az, as such that a1 + ax + a3 =m
and > .a;r; = 0 (mod m). Consider the m-sets containing exactly a;
elements from the corresponding residue classes. This way we have got at

(IW::1)|> (lW(gz)l> (lW(ZP’)') > md (TL:/_2J1>

zero sum sets mod m. These sets are not p-homogeneous, all belong to
R'UQ. Thus the above lower bound contradicts the upper bound in (4.2). m

Lemma 4.3. Let V be a sequence of integers of length v. Suppose that
1 < d < m are integers, dim, and V is d-homogeneous. Then

(2 (V)] > 2tim-eiy 10 (1021 (4.3

v

Proof. Almost identical to the proof of (1.3). Make an arbitrary matching,
but now every d pairs carries 2¢ orthogonal zero sum sets mod d (instead of
only two; the sets S(P,¢) in that proof). For simplicity, suppose that v/4d
is an integer. The product of (3.1)—(3.3) divided by (3.4) becomes

@)1’%{(23!/2—@! X (297 X 2 ja(v/24)
(24)(v/2d)~(m/d) » m! (/2 —m)!

(@) (m]d) " (@)D (u]2d) — (m]d))}

Using the lower bound (1.3) for z,,/; we get (4.3). The details are left to
the reader. m

Let V(i) = {c € C: ¢ =i (mod p)} and let |V (a)| be the largest among
these. Our next aim is to prove that V(a) does not cover almost all of C,
we have

[V \V(a)] > n/4. (4.4)

We prove this by showing that |V (a)| < 21/Pn/2 + O(m3). Indeed, apply

Lemma 4.3 to the sequence V = V(a), v = |V(a)|, d := p; we obtain at

least (1 — 0(1))21=(m/P)y™ /m! zero sum sets mod m, then (4.1) implies the
desired upper bound on the size of V(a).

Let W(z) C V(a) be the largest residue class mod m in it, let Wi(y)

be the largest residue class mod m such that W(y) N V(a) = @ and let

W = W(z) UW(y). We claim, that almost all elements of C' belong to
W(z) or W(y),

|IC\ W| < mZn(m-1/m — g(p(m-1)/m), (4.5)
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Indeed, |W(z)| > |V(a)|/m > n/m by definition, and W (y) has at least
n/4m elements by (4.4). Then Proposition 4.2 implies that all the other
residue classes are small.

All the m-subsets of W (x) and W (y) belong to Z, so (4.1) implies that
(wa)l) + ('W"(Ly)l) < (L"T{LZJ) + (r",r/nz]). From (4.5) we have that |[W(z)| +

|W (y)| is almost n. Using the inequality

(2)+() (=252 ()

which holds for all £ > 2s > 0, after a short calculation we obtain that both
residue classes have sizes about n/2, more exactly

n 1 1 _1/9m
W(z) - 5l < §n1 (1/2m) (4.6)
and the same holds for |W(y)|, too.

The family Z,,(C) is unchanged if we add mod m the same amount
to each member of C, or if we multiply each entry by the same number b,
where g.c.d.(b,m) = 1 (greatest common divisor is 1, i.e., relatively prime
numbers). So we may suppose, that, say z = 0. As we have seen in the
proof of (4.4), a d-homogeneous set (where d > 1 is a divisor of m) cannot
be larger than 3n/4. As |W(0) U W (y)| = (1 — o(1))n, by (4.5), we obtain
that y and m are relatively prime.

It is well-known, that there exists a b, relatively prime to m, too, such
that by = 1 (mod m). Multiply each entry in C by this b; so from now on
we may suppose that z =0 and y = 1.

Considering the zero sum sets in W we obtain

o > (WOT) (WD) @)

m m

2 (03 ¢ () (),

where w; = |W(j)|. Suppose that C\ W # 0, and let ¢ € C \ W, we have
2 <c<m—1. If we select additional m — ¢ elements from W (1) and ¢ — 1
elements from W (0), we get a zero sum set mod m. Using (4.6) we obtain

(w2 ()0 (32 (21
<o) (7))
SAE
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zero sum sets containing the element ¢ and having m — 1 elements in W.
Considering all ¢ € C'\ W we get, that the number of not p-homogeneous
zero sum sets is at least (n — wg — wl)(m/2)(L£/_21J) This and (4.7) imply

that
212 (M0 + (M) + (= = o — ) (12),

This inequality and (4.1) give that n — wg — w; = 0., i.e., C has only 0’s
and l's. m

5. EXACT RESULTS FOR SOME COMPOSITE MODULI

We consider only the case n is even, the odd n requires only a few more
technical steps. Suppose that the elements of the sequence C can be ar-
ranged into a matching M of size |C|/2, such that every m pairs contain 2
orthogonal zero sum sets mod m. Then, obviously, z,(C) > 2(”7,/I 2). Call
such a matching m-perfect.

Theorem 5.1. There is an m-perfect matching of any sequence C of even
length, n, for m = 4, for m = p, and for m = pq, where p and q are distinct
primes.

Proof. We consider the case m = pg only. Define the matching M of size
n/2 as follows. Suppose that M contains the minimal number of identical
pairs, and among these matchings suppose that M contains the maximum
number of pairs with relatively prime entries. We claim that such an M
is pg-perfect. Consider any m pairs, P = {(a;,b;) : 1 < i < m}. The
construction of M is hereditary, P has the same properties, i.e., among the
(2m)!27"(m!)~! matchings formed from the sequence aj, ..., b,, P has the
minimal number of identical pairs, and beside that the maximum number
of pairs with relatively prime entries.

If there are m identical entries, say a; = ... = am,, then these a’s form
the first zero sum set. Another one, S, is contained in the 2m — 1 element
set (UP)\ {a1}, by (1.1). If S is not orthogonal to P, then we can replace
it by an orthogonal one, S, such that SN {by,...,bn} = S N{by,... b }.
From now on, we may suppose that a; # b; for all 5 (in P).
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Proposition 5.2. Let A be a sequence of integers of length 4. Then either
A is p-homogeneous, or g-homogeneous, or contains two members whose
difference is relatively prime to pq.

Proof. (Easy.) Define the graph G" (r € {p,q}) with vertex set A and a
pair z,y joined by an edge if z = y (mod r). If this graph is connected, then
A is r-homogeneous. If neither GP, nor G? are connected, then the union of
their edge sets does not cover all the 6 pairs from A. m

Split P into three classes, P = PP U P?U P, where P" = {(a;, b;) :
g.c.d.(a; — b;,m) = r. Consider two pairs, (a;,b;), (aj,b;) € PP. If there is
a repetition, say a; = a;, then all the four elements are p-homogeneous.
Otherwise, by Proposition 5.2, one find a pair, say (a;,a;), such that
g.c.d.(a; —aj,m) = 1. Replacing the original pairs by (a;, a;) and (b;, b;) we
get a matching Q with |Q!| > |P!|, a contradiction. So we may suppose,
that there are numbers h®) and h(® such that z = A" (mod r) all z € UP"
for r € {p, q}.

Suppose that P? # §, (a1,b1) € P?. We claim, that
either z = h{? (mod ¢) or y = h'? (mod q) (5.1)

holds for all pairs (z,y) € P.

Indeed, if not, then, for (z,y) € PP in the case of four distinct elements
(namely, a1,b1,z and y) by exchanging two entries one can create a new
pair for P! by Proposition 5.2. In the case (z,y) € P! only two disjoint
pairs between (a1,b;1) and (z,y) can belong to GP, so the other matching
consists of two pairs from P, our final contradiction proving (5.2). So we
may suppose that the elements a; form a ¢g-homogeneous set.

First, suppose that |P?| > p, (a;,b;) € P? for 1 < ¢ < p. Then, one can
find two zero sum sets mod m orthogonal to these p pairs and containing the
rest of the a’s, i.e., the set {a; : p < i < m}. To see this we need to consider
the p — 1 pairs formed by a} = (a; — h{®)/q and ¥, = (b; — h{?)/q and the
element z = 3 .. (a;i— h(9)/q. Then Claim 2.1 implies the existence of a
zero sum set mod p which corresponds to a zero sum set mod pg containing
the element a,. One can construct another zero sum set containing by, so
this case is done.

Finally, suppose that |P?| < p — 1, and similarly, |PP| < ¢ — 1. Then
[P > p+ q— 2 (because (p — 2)(g — 2) > 0). Reorder the pairs in such a
way, that the pair (a;, b;) belongs to P! for all ¢ with p|i and g|i. Then, by
an induction on 4, as in the proof of Claim 2.1, one can see that (2.2) holds,
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i.e., the 2™~ m-sets orthogonal to P (and containing a fixed element, say
am) produce all the m subset sums. This includes a zero sum set, too. This
completes the proof of case m =pg. m

Unfortunately, this pairing method cannot lead to a full solution of (1.2),
(without a further idea), as it is shown by the following counterexamples.

Example 5.1. If m has 3 distinct primg divisors p,q and r, or if m is
divisible by p*q?, then, for n > 16m, there exists an integer sequence C of

length n such that C has no m-perfect matching.

Let C consist of four distinct entries 0, pg, pr and qr, with multiplicities
[n/4] and [n/4]. We claim that this C' has no any m-perfect matching.
Suppose, on the contrary, that the matching M is m-perfect. We distinguish
two cases.

If the pair (0,0) has multiplicity at least m — 1 in M, then there exists
a pair (z,y) with z,y # 0. Then the m element matching containing (z,y)
and m — 1 pairs of (0,0) has no orthogonal zero sum set mod m.

Otherwise, there is another value from C, say pq, such that the muiti-
plicity of (0,pq) is at least m — 1. There exists a pair in M, (z,y), such
that (z,y) N (0,pq) = @. Then the m element matching containing (z,y)
and m — 1 pairs of (0, pg) has no orthogonal zero sum set mod m. This is
so, because the equation ipg + pr = 0 (mod pgr) has no integer solution for
i (since ¢ does not divide pr), and neither has the equation ipg + qr = 0
(mod pgr).

In the case p%¢®|m, we can consider a similar sequence, n/4 0’s, p?’s,
¢*’s and pg’s. The proof is similar and omitted. m

6. GENERALIZATIONS AND QUESTIONS

The first problem is to decrease the value of ng(m). We did not make a
serious effort, and got something like ng(m) < m®™. We strongly believe,
that conjecture (1.2) is true for all n > 4m.

Let C be a sequence of integers of length n, and suppose that it is not
m-homogeneous. What is the mazimum number of m-element zero sum
sets?

Suppose that p|m and A is a not a p-homogeneous sequence of length m.
What is the minimum of §( A, p), i.e., in other words, what is the maximum
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number of partitions consisting of p-element zero sum sets mod p? We think
that ¢ should be close to 1, § > 1 — O(1/m).

Consider the following polynomial of n variables

v =2 () ()

where the sum is taken for all 1 < i < m, 1 < jr < m, such that dDik=m
and 3 irjr = 0 (mod m). Clearly, the minimum of p(z;, ooy Tyy) OVEr
Y. xi = n, where every z; is a non-negative integer, is exactly our desired
zm(n). This was the way Dierker (see in [5]) established the case m = 3.
This approach might lead to a full solution, for example one might use the
fact that p(z1,29,...,2m) = p(z2, 23, ..., 71).

In Sections 3 and 4 we, in fact, characterized the extremal sequences.
Namely, for n > ng(m), if equality holds in (1.2), then the sequence C
consists of two values only, |n/2] a’s and |n/2] b’s such that b — a and m
are relatively prime.

The above questions can also be formulated for other finite groups,
not just cyclic, for abelian and non-abelian. For example, Olson ([12], see
e.g. in [1]) proved the following generalization of the Erdés-Ginzburg-Ziv
Theorem. Let g1, 9a,...,92m_1 be a sequence of 2m — 1 elements of a finite
(but not necessarily abelian) group of order m. Then there is sequence of
m terms such that g;, + g;, + ... + g;,, = 0, however, here not necessarily
11 <ig <...<ip. He conjectures, that one can find a subsequence. t00.

The Erdés-Ginzburg-Ziv theorem was rediscovered, even published, sev-
eral times. For a recent example, see [16].

Concerning zero sum sets of arbitrary sizes, Olson [11] proved the fol-
lowing. Let G' be an abelian group such that every sequence g1, g2, . . ., ge41
of length £+ 1 contains a (non-empty) zero sum sets. Then, every sequence
of length ¢ 4+ ¢ contains at least 2 — 1 non-empty zero sum sets. He also
determined ¢ = ¢(G) for a large class of groups.

These questions seem to be somewhat related to the following conjecture
of Manickam and Miklés [10]. Let C = ¢1,..., ¢, be a sequence of integers
with 3 ¢; > 0. Let A(C,m) denote the number of m-element subsets with
nonnegative sums, and let A(n,m) = min A(C,m). If m is not a divisor of
n, then A(n,m) = min{ (:ff_ll), ("_L:T/mJ)}, and A(n,m) = (Z‘_ll) for m|n.
(In particular, they conjecture A = (::;_11) for all n > 4m.) They proved
this for n > m™*!,
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A system of m-element subsets (called blocks) of an n-element set C is
called a Turdn (n, k, m)-system if every k-element subset of C' contains at
least one of the blocks. The Turdn number T'(n, k,m) is the minimal size
of such a system. The Erdés-Ginzburg-Ziv theorem implies

zZm(n) > T(n,2m — 1,m). (6.1)

Indeed, T'(n,3,2) = (Lnéﬂ) + ([néﬂ), by Turan’s theorem about the trian-
gles. Turdn conjectured (in about 1961) that T'(n,5,3) = (Lné%) + ([néﬂ).
However, this was disproved for n = 9 by Surdnyi [15] and for all odd n > 9
by Sidorenko and Kostochka [13]. For even n’s, the conjecture might be true.
For m > 3, the real order of magnitude of lim,_,o, T'(n,2m — 1, m) (::L)_l is
not even conjectured. A recent survey of this topic is [14], and about the
more general Turdn type problems [8].
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