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For Paul Erdds on his 80th birthday

Gallai [1] raised the question of determining z(n), the maximum number of triangles in
graphs of n vertices with acyclic neighborhoods. Here we disprove his conjecture (¢(n) ~
n?/8) by exhibiting graphs having n?/7.5 triangles. We improve the upper bound [11] of
(n? — n)/6 to t(n) < n?/7.02 4 O(n). For regular graphs, we further decrease this bound to
n?2/7.75 + O(n).

1. Introduction

Let WFG,, be the class of graphs on n vertices with the property that the neighborhood
of any vertex is acyclic. A graph G is given by its vertex set V(G) and edge set E(G). The
subgraph induced by X <« V(G) is denoted by G[X]. The neighborhood N(v) of vertex v
is the set of vertices adjacent to v. Note that v ¢ N(v). The degree of v € V(G), denoted
by d, or d,(G), is the size of the neighborhood: d, = |N(v)]. The maximum (minimum)
degree is denoted by A (8), or A(G) (6(G), respectively) to avoid misunderstandings. A
matching M < E(G) is a set of pairwise disjoint edges. A wheel W; is obtained from a
cycle C; by adding a new vertex and edges joining it to all the vertices of the cycle; the
new edges are called the spokes of the wheel (i > 3, W3 = K4). Therefore, WFG,, consists
of all graphs on n vertices containing no wheel. Let {(G) denote the number of triangles
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in G and let t(n) be the maximum of {(G) over WFG,,. Gallai (see [1]) raised the question
of determining t(n).

Take a complete bipartite graph Kj,,—24, where a is the closest integer to n/4, and add
a maximum matching on the side of size 2a. We obtain a wheel-free graph G!, having
|n?/8] triangles [1]. Gallai and, independently, Zelinka [10] in 1983 conjectured that this
is the maximum possible. However, Zhou [11] recently constructed wheel-free graphs
having (n? 4 n)/8 triangles whenever n is of the form 8g + 7. He also found an upper
bound, t(n) < (n* — n)/6. In this paper we improve both bounds.

Theorem 1. There exists a wheel-free graph on n vertices with n?/1.5 + n/15 triangles
whenever n is a multiple of 15, i.e., t(n) > n?/7.5 4+ n/15.

This theorem is proved by giving a construction, G2, in Section 2. As ¢(n) is monotone,
we get t(n) > n?/7.5 — O(n) for all n. P. Haxell observed that G2 has the additional
property that it is locally tree-like, i.e., every neighborhood induces a tree. (More exactly,
she improved it so.) Zelinka [10] proved that any locally tree-like graph with n vertices
has at least 2n — 3 edges and posed the question; what is the maximum number of edges
of these graphs? As G2 has n?/5 + O(n) edges, we got a counterexample for a conjecture
of Froncek [5], who believed that a locally tree-like graph on n vertices contains at most
[n(3n + 8)/16] edges (for n > 8).

Theorem 2. Every wheel-free graph on n vertices contains at most n*/7.02+ O(n) triangles,
more exactly, t(n) < n?/7.02 + 5n for all n.

The main tool of the proof is Proposition 11 (proved in Section 4), which gives
HG) < n2[8 + o(n?) for several types of graphs. One example is given by the following
theorem.

Theorem 3. Let G € WFG, be a wheel-free graph on n vertices, n > 100. If 6 > (2/5)n +
16/5, then t(G) < n?/8.

Looking at regular wheel-free graphs one can observe that, if n is of the form 4a — 1,
the previously mentioned construction, G., is regular. Hence, there exist regular graphs in
WFG, having |n?/8] triangles. But the graph constructed in Section 2 is not regular. In
fact, the upper bound we prove for regular graphs in Section 7 is lower than the lower
bound for general graphs.

Theorem 4. If G is a regular wheel-free graph, t(G) < n?/7.75 + O(n).
We conjecture that Gallai’s conjecture holds for regular graphs.

Conjecture 5. If G is a regular wheel-free graph, t(G) < n?/8.
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k=1,..,n15

Figure 1 A wheel-free graph having n?/7.5 + n/15 triangles.

2. Wheel-free graphs having more than n?/7.5 triangles

Define the graph G2 on n vertices, where n is a multiple of 15 (see Figure 1) as follows. Its
vertex set V(G2) consists of a;, b;,c;,d; for i = 1,...,n/5, and e, fx, gk for k =1,...,n/15.
Its edge set E(G2) consists of

— two matchings of size n/5: (a;, b;) and (¢;, d;),

— three matchings of size n/15: (e, fx), (fx,gk) and (ex, gk), and

— all the edges of types: (a;,c;), (a;,d}), (ai, gk), (bi,d}), (bis fi), (bi, gk)s (cj» ex), (cj, fx) and
(dj, ex). (Here, again, 1 <i,j<n/5and 1 <k <n/15))

It is easy to verify that this graph belongs to WFG,. For example, the neighborhood of
the vertex a; consists of the matching {(c;,d;) : 1 < j < n/5} as well as a star rooted at b;
with edges {(b;,gx) : 1 <k <n/15} and {(b;,d;) : 1 < j < n/5}.

Each triangle in G2 contains an edge from the matchings, and its vertices are in three
different classes. An easy calculation shows that t(G2) = n?/7.5 + n/15.

3. Improved upper bounds for t(n)

In this section we prove a series of Lemmas that lead to Theorem 6, an upper bound for
all n. This theorem was independently proved by P. Haxell [8].

Theorem 6. Every wheel-free graph on n vertices contains at most (1/7)n*+(9/7)n triangles,

, 1,
<z =n.
ie., t(n) 7n +7n

Let G € WFG, be an arbitrary wheel-free graph. By definition, G[N(v)], the neighbor-
hood of any vertex v, is acyclic. Hence, the number of edges in N(v) is less than or equal
to d, — 1, where d, = |N(v)|. By summing d, — 1 over all vertices of G, we obtain an upper

3 CPC3
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bound for 3#(G). On the other hand, the summation of the degrees over all vertices is
precisely twice the number of edges of G. Hence,

3t(G) < 2|E(G)| — n. (1)
Since 2|E(G)| < nA, where A stands for the maximum degree, (1) gives
(o) < =1 @)

Our next aim is to obtain the following upper bound on the number of edges of G:
n

z 3
Together with (1), this gives Zhou’s upper bound, t(n) < (n?> — n)/6. The upper bound (3)
follows from the following theorem of Erd6s and Simonovits [3]: if G does not contain
a Wy or a Wy, then |E(G)| < |(n® + n)/4), whenever n > ng. They wrote: “.. are easy to
prove by induction and can be left for the reader’. For completeness we reconstruct their
argument in a somewhat simplified form.

A graph is called (k, ¢)-free if |[E(G[K])| < ¢ holds for every k-element subset K < V(G).
Let f(n;k,/) be the maximum number of edges of a (k,/)-free graph with n vertices.
Turan’s classical theorem determines f(n;k, (’;)) for example, f(n;3,3) = |n?/4]. He
proposed the problem of determining f(n;k, /), but it is still unsolved in a number of
cases. Erdés [2] investigated, first, all the cases k < 5, he also proved that excluding only
W, implies |E(G)| < |n?/4) + |(n + 1)/2] (for n > ng). For recent accounts, see [6, 7).
A wheel-free graph has neither W3 nor Wy, so it is (5, 8)-free. Thus (3) follows from the
following. :

2
IE(G)] < "Z +

Claim 7. If G is a graph with n vertices such that any 5 vertices span at most 7 edges,
|E(G)| < (n* 4+ n)/4 holds for n > 5.

Proof. The case n = 5 is trivial. Let G be a (5, 8)-free graph with n vertices, n > 6.
Considering all the n subgraphs G \ x, we have (n —2)|E(G)| = }_ .y |E(G\ x)|, implying
f(n:5.8) < | —= fin—1;5,8)) . @

n
n—?2

Let s, = [(n* +n)/4], n > 1. It is easy to see (by induction, distinguishing four subcases
according to the residue of n modulo 4) that s, = |(n/(n — 2))s,—;| holds for all n > 2. As
f(5;5,8) = s5 =7, (4) implies the desired upper bound. ]

A vertex cover C of the graph H is a subset of vertices with the property that all edges
of H are incident to at least one vertex in C.

Lemma 8. If C is a vertex cover of G[N(w)], where w is a vertex of maximum degree A,
then

HG) < %(A —1)(n—A+|C]).
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Proof. Since C is a vertex cover of G[N(w}], the set § = (V — N(w))UC is a vertex cover
of G. Hence, all triangles of G contain at least two vertices belonging to S. Summing
(d.—1) over all vertices v in S, we obtain an upper bound on twice the number of triangles
in G:

21(G) < Z(d,, —D<A-DSI=@A—-1)n—A+|C)).

ves

O

Observe that if |C| = o(n), the function (1/2)(p — 1)(n — p + |C]) is maximized at
p = (1/2)n 4 o(n). In this case, we get

t(G) < % + o(n?).

On the other hand, if the acyclic graph G[N(w)] has no vertex cover of ‘small’ cardinality,
we can use the following two lemmas to isolate two vertices of G that are contained in a
small number of triangles. The total degree of the subset S (in the graph H) means the
sum of degrees: y_ ¢ d<(H).

Lemma 9. Let H be an acyclic graph on p vertices with at least one edge, and let b be
any positive integer. Then either there exist two adjacent vertices whose total degree is at
most b + 1, or there exists a vertex cover of H of cardinality at most (p — 2)/b.

Proof. Suppose that the size of each cover exceeds (p — 2)/b. As H is a bipartite graph,
Ko6nig’s theorem implies that one can find a matching M of size m > (p — 2)/b. If we sum
up all the degrees of the vertices of UM, we count all edges of H at most once, except
the edges included in UM. Hence 3 {d, : u € UM} is at most (p — 1) + (2m — 1). This
guarantees the existence of a pair (a,b) € M such that d, +d, < (p — 2 + 2m)/m, which is
less than b + 2. O

Lemma 10. Suppose that G € WFG, and w € V(G). Suppose also that the d,(G[N(w)])+
d,(G[N(w)]) < s, where u and v are adjacent vertices in G[N(w)]. Then G has at most
n—d, +s— 2 triangles containing at least one of {u,v}.

Proof. We claim that given any two adjacent vertices u and v, the total number of triangles
containing u or v is at most |N(u) U N(v)| — 2. Indeed, u is contained in at most [N(u)| —1
triangles and v is contained in at most |N(v)| — 1 triangles, while the number of triangles
containing both u and v is exactly |N(u) N N(v)|. Hence, the total number of triangles
containing u or v is bounded above by |N(u)|—1+|N(v)|—1—|N@)NN(v)| = [N(u)UN(v)|-2.

The assumption in the Lemma implies that |[N(u)UN(v)| < [V(G)\ N(w)|+s. Combining
this bound with the previous observation completes the proof. ]

Proof of Theorem 6. We prove the bound (n* + 9n)/7 by induction on the number of
vertices n. Let G be a graph in WFG,, with maximum degree A, and let w € V(G) be such
that d,, = A. We consider three cases.

32
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If A< @B3/Tn+5, ie. A < (3n+ 34)/7, the result follows from the inequality (2).
If there exists a vertex cover of G[N(w)] of cardinality less than or equal to A/8, Lemma
8 implies that

7
{G) < %(A— 1) <n——A+%) < ém—;?‘—A—) <n?/1.
In these two cases, we have not used the inductive hypothesis.

Finally, assume that A > (3/7)n + 5, and that there is no vertex cover of G[N(w)] of
cardinality less than or equal to A/8. By Lemma 9, there exist two adjacent vertices u and
v in N(w) whose total degree in G[N(w)] is at most 9. Lemma 10 now implies that there
are at most n — A + 7 < (4/7)n + 2 triangles containing u or v. By deleting u and v, we
obtain a graph in WFG,_; that contains at most

(n—=22% 9
7 -+ 7(" — 2)
triangles, by the inductive hypothesis. Hence,
n—2¢% 9 4n 9
t(G) < 7 +7(n——2)+—7—+2—7+7n.

4. Triangles from a matching

In order to prove the slight additional improvement described in Theorem 2, we first
prove a weaker form of Gallai’s conjecture. This result is also crucial in improving the
upper bound in the case of regular graphs. Let d,, denote |N(u) N N(v)], the number of
triangles containing the edge uv.

Proposition 11. Let G be a graph that contains no wheel with 3 or 4 spokes, and let M be
a matching in it. Then

Y dws< (5)

(up)eM

Proof. For simplicity, throughout this proof, a triangle always refers to a triangle

containing an edge in M. Thus, the left-hand side of (5) is the number of triangles in G.

Let m denote the cardinality of M, let P denote the set of unmatched vertices, and let

p=|P|=n—-2m

Observation 1. For two edges (u,v) and (x,y) in M, the induced graph G[u,v,x,y] can
contain at most two triangles (Figure 2).

Indeed, more than two triangles would imply that {u,v,x,y} induces a Ky, i.e., a wheel
with 3 spokes.

Consider first the graph H with a vertex uv for each edge (u,v) of M, and with an edge
(uv, xy) whenever {u,v,x,y} induces two triangles. Let Q be a maximum matching in H.
Let S be the set of vertices in G belonging to edges of M that are saturated by Q, and let
R be the remaining vertices in M. Hence (S, R, P) is a partition of V(G). Let g denote the
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v y

Figure 2 Observation 1 in the proof of Proposition 11

w

Figure 3 Observation 2 in the proof of Proposition 11

cardinality of @, and let r denote the number of unmatched vertices in H, i.e., r = m—2q.

Clearly, |S| =4q and |R| = 2r. Thus, p+ 2r + 49 =n.

Observation 2. If (uv,xy) € Q and w is any vertex of G, then {u,v,x,y} and w can connect
with one another in at most 1 triangle (Figure 3).

Indeed, if {u,v,x} is one of the two triangles induced by {u,v,x,y}, and w forms two

triangles with {u,v,x, y}, then {u,v,x,w} induces a K.

Observation 3. If (uv,xy) € Q and (a,b) € M, then {u,v,x,y} and {a,b} connect with one
another in at most two triangles (Figure 4).

Assume without loss of generality that (4, x), (v, x) and (v, y) are in E(G). If {u,v,x,y} and
{a,b} connect with one another in three or more triangles, we can assume without loss
of generality that {u,v} and {a,b} connect with one another in two triangles. Without
loss of generality, we can assume that (4, a) and (v, b) are in E(G). We consider two cases.
If (v,a) € E(G) (see Figure 4.a), then {x,y,a,b} is included in N(v), implying that any
triangle between {x,y} and {a,b} would create a K4. If (u,b) € E(G) (see Figure 4.b), a
triangle of the form {a,b,z} with z € {x, y} would create the cycle u—a—z —v —u in the
neighborhood of b, while a triangle of the form {x, y,c} with ¢ € {a,b} would create the
cycle u— ¢ — y — v — u in the neighborhood of x.

From Observations 2 and 3, there are at most gq(n — 4q) triangles that connect S to
V — S. Within S, in addition to the 2q triangles corresponding to the edges in Q, there
are at most (1/2)4q(q — 1) triangles, by Observation 3. Therefore, the number of triangles
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(@ ®)

Figure 4 Observation 3 in the proof of Proposition 11

containing vertices in § is at most

29(g — 1)+ q(n—4q) + 29 = q(n — 29). (6)

We now concentrate on the number of triangles induced by V — S. Recall that V — §
corresponds to vertices in P (which are unmatched in M) and to vertices in R (which are
incident to edges in M that are unmatched in Q).

Observation 4. If uv and xy are unmatched vertices in Q, then {u,v} and {x, y} can connect
with one another in at most one triangle by the maximality of 0.

Observation 5. Consider a vertex w € P. We say that two edges (u,v) and (x,y) in M are
independent if {u,v,x,y} does not induce any triangle. Since the neighborhood of w
cannot contain any triangle, w can induce triangles only with independent edges in
M.

Let s be the cardinality of a largest set of independent edges in G[R]. The number of
triangles in G[R] is at most s(r — 5) + (1/2)(r —s)(r —s— 1) < (r2 —s2)/2 by Observation 4.
Moreover, the number of triangles between P and R is at most ps by Observation 5.
Therefore, there are at most T = ps + (r? — s?)/2 triangles in G[V — S]. We have that
ps+ (r? —s%)/2 < (2r + p)?/8 for all real r > s, p = 0 (because this is equivalent to
4p(s —r) < (p — 25)?). Hence, the number of triangles in G[V — S] is at most (n — 4q)%/8.
Combined with (6), this implies that the number of triangles containing edges in M is at
most g(n — 2q) + (n — 4q)*/8 = n?/8. O

5. Graphs with large minimum degree

In this section we prove Theorem 3.

Partition the edge set of G into two classes. We say that an edge (u,v) of E(G) is a fat
edge if at least \/n triangles contain it, ie., dy, > J/n- An edge that is not fat is said to be
lean. In the next two lemmas, we show that the set of fat edges is an ideal candidate to
play the role of the matching M in Proposition 11.
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Lemma 12. Let G be a graph in WFG, with d, + d, + d,, = n+ 3 /n for every triangle
uvw. (For example, 8 > n/3 + \/n.) Then every triangle of G contains a fat edge.

Proof. Consider a triangle with vertices u, v and w. Observe that N(u) " N(v) N N(w) = 0.
Indeed, a vertex adjacent to u, v and w would have a cycle in its neighborhood. Hence,

nz |N(u)UN(U)UN(W)| =du+dv +dw_duv_duw_de- (7)

Sinced, +d, +d, > n+ 3ﬁ, at least one of the quantities d, d,» and d,,, is greater than
or equal to \/n. O

Lemma 13. Every fat edge of G € WFG, belongs to a triangle with two lean edges.

Proof. Let (u,v) be a fat edge. Suppose, on the contrary, that for each x € N(u) N\ N(v),
at least one of the edges (u, x) and (v, x) is fat. This implies, that

Y (@~ D+ (@ — 1) 2 INW AN~ 1) 2 1~ du- (8)

xEN(u)NN(v)
Consider all the triangles of G of the forms uxy and vxy, where x € N(u) N N(v) and
y ¢ N(u)NN(v), y # u,v. The number of these triangles is exactly the left-hand side of (8).
However, all of these triangles have a distinct third vertex outside (N(u) N N(v)) U {u,v},
so their number is at most n — 2 — d,,,, contradicting (8). Indeed, for example, if uxy and
ux'y are triangles with x, x’ € N(v), the cycle xyx'v forms a wheel with center u. O

Proof of Theorem 3. Let G be a graph in WFG, with d,, > (2/5)n+17/5 for each vertex
u. For n > 96, Lemma 12 implies that each triangle contains a fat edge.

We claim that the fat edges form a matching.

Let m be the maximum number of fat edges incident to a vertex of G. We shall prove
that m = 1. Consider a lean edge (v,w). By the above argument, any triangle containing
(v, w) must contain a fat edge. Since there are at most 2m fat edges incident to either v or
w, we obtain that

dyw < 2m 9)

for any lean edge (v, w).

Let u be a vertex with m fat edges incident to it, say (u,v1), (4, 02),- .., (4, vp). Since G is
wheel-free, there exist at most m — 1 triangles containing two fat edges incident to u. By
summing d,, over i = 1,...,m, we count every triangle containing 4 at most once, except
for those containing two fat edges incident to u. Hence,

m
> dy, <dy— 1+ (m—1). (10)

i=1
The left-hand side is at least m\/ﬁ, hence we get m < \/ﬁ + 1. For any fat edge (u,v),
Lemma 13 implies that there is a triangle uvw with two lean edges. Then (7) and (9) give

dp=d,+d,+d, —n—4m. (11)
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We derive that
D du 2 mdy+ Y dy + Y dy, — nm— 4. (12)
i=1 i i

Comparing (10) and (12), we get m—2 > 3m—1)d —nm —4m?. If 2 < m < \/ﬁ+ 1,
n > 500, 6§ > (2n+ 16)/5, which leads to a contradiction. If 100 < n < 500, we can use
d,w < /n instead of (9) to get a contradiction in exactly the same way. Therefore m must
be equal to 1, i.e., the fat edges form a matching.

Every triangle contains a fat edge, so, by Proposition 11, there are at most n?/8 triangles
in G. 0

6. Proof of the upper bound

Here we prove Theorem 2 by induction on n. If n < 9126, it follows from Theorem 6. Let
c=1/2457=1/7—-1/7.02.

If A > ((3/7)+4c)n the proof is similar to the proof of Theorem 6. Either there
exists a vertex cover of G[N(w)] of cardinality less than or equal to A/9, in which case
t(G) < 9/64n* < (1/7 — c)n?, or there exist two adjacent vertices u and v in N(w) whose
total degree in G[N(w)] is at most 10. In the latter case, Lemma 10 implies that we destroy

less than
7 C | h

triangles by deleting 4 and v. The claim therefore follows by induction.
If [E(G)| < (3/2) ((1/7) — ¢) n?, the result follows from (1).
Assume now that

Assumption 1. A < (% +4c)n,

Assumption 2. |E(G)| = % (% —c) n?.

If G satisfies the hypotheses of Theorem 3, we are done. Otherwise, we must have
d < (2/5)n+16/5. Consider the graph G’ obtained from G by repeatedly deleting a vertex
of minimum degree until

16

<5

Let vg,v1,...,0,—; be the sequence of vertices that we delete, and let G; be the graph
obtained from G by deleting {vo,...,v;_1}. In particular, Gy = G and G, = G'. By
definition, we have that

6(G") > %lV(G')I +

2 16
d,(Gi) < g” (G + <

and

2 16
dU.‘(G) < g(n - l) + ? +fi’

where f; denotes the number of edges in G joining v; to {vo,...,vi—1}. Let ¢ = t/n. In order
to give an upper bound on ¢, we consider the number of edges of G. Using Assumptions 1
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and 2, we derive

1 2|E(G)| 1
3(7—-c>s - )

veV

3 12 /2 2 16
< (7+4C>(1—8)+F§(§n~§l+?+fi>

(3 2 1, |EGHvo,...,0-1}])l | 17e

= (-7—+4C)(1—-8)+58 5¢ + ) + 57
3 1 1, T3¢

< 7*‘“‘(3*““)8*%8 * 20w

where we have used (3), i.e. that the number of edges of G[{vy,...,v—1}] is at most
(en)?/4 + en/4. For n sufficiently large, say larger than ny = 9126, and given the value of
¢, the above inequality can be seen to imply & < 0.12. Since G’ satisfies the hypotheses of
Theorem 3, we have £(G’) < (n?/8)(1 — &)>. Moreover,

t—1 t—1
t(G) — (G < ;(dv,.(G,-) —-1)< ; (%—n — %i + %) = %sn2 — %aznz + lszsn.
Therefore,
2
t(G) < (%(1 P %s— %) 24 1—52£n < thnz + 5n.
a
Remark. The result can be improved to t(n) < n?/7.03 + O(n), as shown below. Let
¢ = 1/1540. We execute the first two steps of the previous proof, so from now on we may
suppose that Assumptions 1 and 2 hold. We delete from G a vertex x if dx < (n—i)/3+ /n.
Lemma 13 implies that we obtain a graph where each triangle contains a fat edge. Delete
a fat-lean-lean triangle, uvw, if d, +d, +d,, < 1.2(n—1i)+ 12. We get that for each fat edge,
dy > 0.2(n — i) + O(1). If there exists two adjacent fat edges, (u, x;) and (u, x;), for some
fat-lean-lean triangles ux;w, and ux,w;, we get that d,+d, +dx, +d,, +dw, < 2(n—i)+0(1).
Delete these 5 points and repeat these steps.
The upper bound for the number of edges implies ¢ < .235. At each of the above steps,

by'dcleting ¢ vertices (1 < £ < 5) we have destroyed only £(n — i)/3 4+ O(1) triangles at
most. We get that t(G)/n? < (1/8)(1 — &)? + (1/3)e — (1/6)e* + o(1). O

7. Upper bound for regular graphs

In this last section, we prove Theorem 4, the upper bound for d-regular graphs.

If d < (12/31)n, equation (2) implies that t(G) < n?/7.75.

If d > (2/5)n + 16/5, then Theorem 3 implies that t(G) < n*/8, (for n > 100).

Assume now that (12/31)n < d < (2/5)n+ 16/5. From (12) we can deduce that any
vertex of G is incident to at most two fat edges. (The details are left to the reader.) If no
vertex is incident to two fat edges, the result follows from Proposition 11. Otherwise, let
r be the maximum, over all vertices u, of the number of triangles containing a fat edge
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that is incident to u, and let w be a vertex attaining this maximum. From the definition
of r, we must have d,, < r for all edges (u,v) € E. Moreover, since a fat edge is contained
in at least 3d — n — 8 triangles, by (11), and since there exists a vertex incident to two fat
edges, r must be at least 6d —2n—17. Let S = V — {w} — N(w), and let T; for i =0,...,3
be the number of triangles having exactly i vertices of S. Clearly, Ty < d — 1, since any
such triangle must involve w. Moreover, by summing d, — 1 over all vertices v € S, we
observe that 3T3 + 2T, + T < (d — 1)(n — d). Finally, we claim that T} < r(d —r) + O(n).
To see this, observe that the number of lean edges contained in N(w) is at least r — 1 if w
is incident to just one fat edge, or r — 2 if w is incident to two fat edges. Thus the number
of fat edges contained in N(w) is at most d —r + 1. To compute an upper bound on Tj,
we sum d,, — 1 over all edges contained in N(w) (the —1 term comes from the fact that
we do not need to count triangles involving vertex w):

i <3r—=2)+(r—1D)d—r+1)=r(d—r)+0(n),
since lean edges are contained in at most 4 triangles by (9), while fat edges are contained
in at most r triangles by definition of r. Therefore,

1 1 1
t(G) < Ty + E(Tl +2T, +3T3) + §T1 < E(d(n —d)+r(d—r))+ O(n).

When r > 6d — 2n — 17 (= d/2), the right-hand side is maximized for r = 6d — 2n — O(1),
giving t(G) < (1/2)(d(n—d)+(6d —2n)(2n— 5d))+ O(n). Under the constraint (12/31)n < d,
this is in turn maximized for d = (12/31)n + 0O(1), proving that (G) < n?/7.75 4+ O(n). O

8. Wheel-free triple systems

A family of 3-element sets is called wheel-free if it contains no k triples isomorphic to
{{0,1,2},{0,2,3},...,{0,i, (i + 1)},...{0,k, 1}}, where k > 3 is an arbitrary integer. For
example, the vertex sets of the triangles in a wheel-free graph form such a system. But
the general case is different. Let ex(n; W) denote the largest cardinality of a wheel-
free triple system on an n-element set. V. T. Sos, Erdés and Brown [9] proved that
lim,_o ex(n; W)/n?* = 1/3.

For further problems of this type, see, for example, [4] and the references therein.

Another interesting question is whether (and how) our results can be extended to
{W3, Ws}-free graphs, or even more generally for (5, 8)-free graphs.
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