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Sets of Vectors with Many Orthogonal Pairs: 

Abstract. What is the most number of vectors in R d such that any k + 1 contain an orthogonal 
pair? The 24 positive roots of the root system F 4 in R 4 show that this number could exceed dk. 

1. Almost Orthogonal Systems 

The pu rpose  of this pape r  is to call a t t en t ion  to the fol lowing problem,  whose 
so lu t ion  might  involve different b ranches  of  combina tor ics .  Let  ~ be a col lect ion 
of  nonzero  vectors  of the d -d imens iona l  eucl idean space. Deno te  by a ( ~ )  the size 
of  the largest  subset  A c ~ such that  no two of  the vectors  v 1, v 2 e A are  o r thogona l .  
F inal ly ,  o~td)(k) s tands  for m a x { l ~ ] :  ~ c Rd, 0~(~) _~ k}. Tha t  is, ~(d)(k) is the maxi-  
m u m  n u m b e r  of  vectors  such tha t  any  k + 1 of  them conta in  an o r thogona l  pair.  
Cons ider ing  k o r thogona l  basis  we have 

c~(a)(k) _> dk (1) 

O n  the o ther  hand,  e(d)(k) is finite, e(a)(k) _< R(d + 1, k + 1) _< d , where R is 

the usual  Ramsey number [3]. The  p rob l em of de te rmin ing  c~(a)(k) is due, of course,  
to Erd6s  [5]. He  asked whether  equal i ty  holds  in Eq. 1. 
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Obviously,  ~d)(1) = d, and Rosenfeld [5] gave an ingenious algebraic p roof  for 
~(d)(2) = 2d. The p roof  of  ~(2)(k) = 2k is easy (see Sect. 4). 

2. The Root System F4 

The following example  shows that  

~4(5) _> 24 > 2 0 ,  (2) 

i.e., we do not  always have equali ty in Eq. 1. Let  ea, e2, e3, e 4 be the four  unit  vectors, 
and let ~ consist of  the following 24 vectors  

:= {ea , . . . , e4}  U {e i + ej: i < j }  U {e 1 _+ e2 _+ e3 + e4}. 

We claim that  any 6-element subset of N contains  an o r thogona l  pair. Suppose,  on 
the contrary,  tha t  A ~ ~ has no o r thogona l  pair  and [A] = 6. Split ~ into 6 bases: 

1 0 0 0  
0 1 0 0  
0 0 1 0  
0 0 0 1  

1 1 0 0 
1 --1 0 0 
0 0 1 1 
0 0 1 --1 

1 0 1 0 
1 0 - - I  0 
0 1 0 1 
0 1 0 --1 

1 0 0 1 
1 0 0 --1 
0 1 1 0 
0 1 - 1  0 

1 1 - 1  - 1  
1 - 1  1 - I  
1 - 1  - 1  1 
1 1 t 1 

1 --1 - 1  - 1  
1 1 1 - I  
1 1 --1 1 
1 --1 1 1 

We obtain  that  A meets  each basis in exactly one element. Observe,  that  the vector 
v e ~ has the same role as - v  and, similarly, all i ' th coordinates  can be replaced 
by their opposi te  ones (i.e., x by - x )  keeping all the orthogonali t ies.  In  this way, 
the first coordinate  has no except ional  role, so we m a y  suppose  that  el ~ A. Simulta- 
neously, we m a y  suppose  tha t  (1, 1, 1, 1) E A, too. Then, f rom the second, third and 
fourth basis the (non-or thogonal )  vector  of  A is (i, 1, 0, 0), (1, 0, 1, 0) and  (1, 0, 0, 1), 
respectively. However ,  each vector  of  the sixth basis is o r thogona l  to one of el + % 
a contradiction.  [ ]  

3. Asymptotic  Results 

The next inequalities imply that  limk-,~ o:(d)(k)/k equals to its supremum,  ~(d) 

:dd)(k) + :t(d)(l) _< odd)(k + l) 

~(d)(k) + ~(S)(k) _< ~(a+Y)(k) 

We get from Eq. 2 

~(4~(k) _> 24Lk/5J + cd4)(k - 5 Lk/5J) > 4.8k - 4. 

(3a) 

(3b) 
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Let 5 e be an S(d, 4, 2) Steiner system (d - 1 or 4 (mod 12), d > 13), and define 
c R d as follows. Consider the d unit vectors, the vectors of form el _+ ej 

(1 < i < j  < d), and finally the vectors of the form ei + e~_+ eu__ ev(1 < i < j  < u < 
v<d,{i,j ,u,v}~5~). We have that [~[=l+(5 /3 )d (d -1 ) ,  and c~(~)= 
1 + (4/3)(d - 1). (In case oflA] > 16, ifA is an orthogonal-free subset of~', then the 
supports of the vectors from A have a common element, etc.) This implies 

~d) > 4 d _ 3. 

Even more, Eqs. 2 and 3 imply that there is no equality in Eq. 1 except, eventually, 
if either d < 3, or k < 4. 

Blokhuis showed us that the following 8-dimensional example gives ~ts)(8) > 
120. Then, using the same procedure as above, for large k or d, one gets better ratios. 

: =  {ei +__ ej: 1 _< i < j  _< 8} U {e I + e 2 _+"" _+ e8}. 

4. A Geometric Upper Bound 

Let S d-1 denote the unit sphere in R a, and let C a-~ := {x s S d-l" I(x, el) I > 1/~2}. 
This set consists of two spherical caps. Two vectors from the same cap determine 
an acute angle, and from different caps form an obtuse angle. An averaging argu- 
ment shows that ~r > Area(C~-~)/Area(S~-l)I~l. This implies ~t2)(k) < 2k, and 

cd3)(k) ___ (2 + x/~)k ~ 3.41... k. 

In general we obtain 

~ta)(k)/k < (1 + o(1)) x/~d 2a/2 (4) 

Remark. Witsenhausen [1] proposed the following problem. What is p(d), the 
largest area of a measurable subset C c S d-1 such that no vectors of C are 
orthogonal? Even the exact value of #(3) is unknown. The best known lower bound 
(and the conjectured exact value) is given by C d-~. The best upper bound 
(#(d) < (1 + o(1))1.13 -a) is due to Frankl [1], and follows from Eq. 5 (see later). 
Obviously, the essence of Eq. 4 is the upper bound Ot(d)(k) <~ (Area(S~-~)/#(d))k. 

Considering, e.g., the first orthant of R d and its opposite (instead of Ca-a), we 
obtain the simpler but weaker ~d)(k) < 2a-lk, which holds for all d and k. 

5. Further Examples from _+ 1 Codes 

Let Qa be the set of vectors of R a of the form (el . . . . .  ca) where e~ is 1 or - 1. We have 
IQd] = U. Larman and Rogers [4] raised the question in 1972 that what is the 
maximum number re(d) of elements of Qd so that no two are orthogonal, i.e., the 
determination of ~(Qd). The really interesting case is when the dimension is divisible 
by 4. Frankl and R6dl [2] proved that m(4q) < (2 - c) 4q for some small but positive 
c. Frankl [ 1] proved the following exact statement: If q is an odd primepower, then 

q-~ ( 4 q -  1) 
m(4q) = 4 ~ < 44q /33q  = (1.754...)4q (5) 

i=0 i 
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This and Eq. 3 imply the exponent ia l  lower bound  (27/16) q < ~(4q), and in general, 
for d > d o 

1.13 a < c~ ~a). 

Frankl  uses Eq. 5 to est imate the chromatic number z(d) of R a, i.e., the chromat ic  
number  of  the graph  with vertex set R a and two points  are joined if their  Eucl idean 
distance is 1. Even the value of :~(2) is unknown.  

6. Sets with More  Orthogonal Pairs 

Denote  by ~n)(k) the m a x i m u m  n u m b e r  of  vectors such that  any  k + 1 of them 
contains l +  t pairwise o r thogona l  ones. Thus  ~]d)(k)= ~(a)(k). All the above  
questions and examples  can be generalized. Fo r  example,  considering a larger cone 

(l(x, el)l > 1//,,/~+ 1) instead o fEq .  4 we get 

~f~d ( l  + 1~ (a/2)-1 
a~a)(k) _< (1 +o(1))X/  2 / \  l J k. 

Frankl  and R6dl  [2] proved  that  there exists a positive c = c(l) such that  every 
subset of  Q4n of size more  than  (2 - c)*" contains  1 + 1 pairwise o r thogona l  vectors. 
This implies that  ~a)(k)/k is exponent ial ly  large in d. 

We conjecture that  there is a constant  g = a(1) such that  ~la)(k) < (dk) g. 
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