Note

Random Ramsey graphs for the four-cycle

Zoltán Füredi*

Department of Mathematics, University of Illinois, Urbana, IL 61801-2917, USA Mathematical Institute of the Hungarian Academy, P.O.B. 127, Budapest 1364, Hungary

Received 9 April 1992

Abstract

It is shown that there is a graph \mathscr{G} with n vertices and at least $n^{1.36}$ edges such that it contains neither \mathscr{C}_3 nor $\mathscr{K}_{2,3}$ but every subgraph with $2n^{4/3}(\log n)^2$ edges contains a \mathscr{C}_4 , $(n > n_0)$. Moreover, the chromatic number of \mathscr{G} is at least $n^{0.1}$.

1. Results, problems

A graph \mathcal{G} is Ramsey with respect to \mathcal{H} , $\mathcal{G} \rightarrow \mathcal{H}$, if every two-coloration of the edges of \mathcal{G} results in a monochromatic subgraph isomorphic to \mathcal{H} . It is easy to see that $\mathcal{H}_6 \rightarrow \mathcal{C}_4$ and $\mathcal{H}_{3,7} \rightarrow \mathcal{C}_4$. Erdős and Faudree [2] asked to find a $\mathcal{H}_{2,3}$ -free graph Ramsey with respect to \mathcal{C}_4 . The graphs \mathcal{H}_6 , $\mathcal{H}_{3,7}$ are saturated by \mathcal{C}_4 's, so it could be not so surprising they arrow \mathcal{C}_4 . What Erdős and Faudree asked was whether a graph \mathcal{G} exists with $\mathcal{G} \rightarrow \mathcal{C}_4$, such that any two four-cycles in \mathcal{G} are either (vertex) disjoint, or share a common vertex, or an edge. The aim of this note is to show that the random method implies the existence of such a graph.

We obtain that for $E > E_0$ and for some c > 0 there are $\mathcal{X}_{2,3}$ -free graphs with E edges such that the largest \mathcal{C}_4 -free subgraph has only E^{1-c} edges. Given this result Erdős asked for the best exponent. We have $c \ge 1/51 - o(1)$ which can be easily

Correspondence to: Zoltán Füredi, Department of Mathematics, University of Illinois, Urbana, IL 61801-2917, USA.

This paper was written while the author visited the Dept. of Combinatorics, University of Bielefeld, Germany.

^{*}Research supported in part by the Hungarian National Science Foundation, grant No. 1812.

408 Z. Füredi

improved to $c \ge 1/21 - o(1)$. On the other hand, obviously, every (connected) graph contains a \mathcal{C}_4 -free subgraph of size $|V(\mathcal{G})| - 1$ (namely, a spanning tree). This is at least $E^{2/3}$, as every $\mathcal{K}_{2,3}$ -free graph has at most $(1+o(1))n^{3/2}$ edges. Probably, the best exponent is at least 8/9. It seems interesting to consider other graph pairs $(\mathcal{A}, \mathcal{B})$, i.e.

Problem 1. Determine the minimum size of the largest \mathscr{A} -free graphs in a \mathscr{B} -free graph with E edges.

The most is known about the case $\mathscr{A} = \mathscr{K}_3$. Frankl and Rödl [3] proved, e.g., that there are \mathscr{K}_4 -free graphs (even with $\Omega(n^2)$ edges) in which every $(\frac{1}{2} + \varepsilon)E$ edges contain a triangle.

Let $f(\mathcal{A}, n)$ be the number of \mathcal{A} -free graphs on n vertices. The latest asymptotic results on $f(\mathcal{A}, n)$ for several \mathcal{A} 's with $\chi(\mathcal{A}) \geqslant 3$ were given by Prömel and Steger [8]. Here we need a generalization.

Problem 2. Find bounds on $f(\mathcal{A}, n, E)$, the number of labeled \mathcal{A} -free graphs on n vertices with E edges.

Having a good bound on $f(\mathcal{A}, n, E)$, we would be able to extend our Ramsey-result for graphs other than \mathcal{C}_4 . A class of graphs \mathfrak{B} is Ramsey if for all $\mathcal{G} \in \mathfrak{B}$ there exists an $\mathcal{H} \in \mathfrak{B}$ with $\mathcal{H} \to \mathcal{G}$. So our result is a modest first step in proving that $Forb(\mathcal{K}_{2,3})$ the class of $\mathcal{K}_{2,3}$ -free graphs is Ramsey. Nešetřil and Rödl [6] proved that $Forb(\mathcal{C}_4)$ is Ramsey, and announced that $Forb(\mathcal{C}_i)$ for i=5,6,7 are Ramsey-classes, too. Recently, Nešetřil informed me that their method can be extended. They can decide for each \mathcal{G} whether $Forb(\mathcal{G})$ is Ramsey or not, and they will return to this problem in a forthcoming book. (The bipartite case can be found in [7].) However, their method, using Hales-Jewett theorem and the partite lemma, generally is unable to yield density theorems.

Another recent density result is due to Łuczak [5], who obtained by counting the \mathscr{C}_{2k} -free graphs on n vertices that there exists a graph \mathscr{G} with at most $2^{6l}(kl)^{100k^2}$ vertices of girth 2k such that any $|E(\mathscr{G})|/l$ edges of it contains a \mathscr{C}_{2k} .

2. The properties of $\mathcal{G}(n, 3n^{-0.64})$

To prove the theorem stated in the abstract we use standard probabilistic methods. Consider the random graph $\mathcal{G}(n, p)$ (with $p = 3/n^{0.64}$) where the edges are chosen independently with probability p, and suppose that n is sufficiently large, $n \ge n_0$. With probability 1 - o(1) $\mathcal{G}(n, p)$ has

$$(1+o(1))\binom{n}{2}p \sim \Theta(n^{1.36})$$

edges, and it contains

$$(1+o(1))\binom{n}{3}p^3 \sim \Theta(n^{1.08})$$

triangles and

$$(1+o(1))10\binom{n}{5}p^6 \sim \Theta(n^{1.16})$$

copies of the complete bipartite graph $\mathcal{K}_{2,3}$. Delete the edges of the appearing triangles and $\mathcal{K}_{2,3}$'s. The obtained graph, \mathcal{G}^n , still has more than $n^{1.36}$ edges.

The expected number of \mathscr{C}_4 -free subgraphs with $T := 2n^{4/3}(\log n)^2$ edges in $\mathscr{G}(n, p)$ is exactly $f(\mathscr{C}_4, n, T)p^T$, where, as above, $f(\mathscr{C}_4, n, T)$ denotes the number of distinct \mathscr{C}_4 -free graphs over n (labeled) vertices with T edges. This expected number is o(1), as shown by the next lemma.

Lemma. For all $T \ge 2n^{4/3} (\log n)^2$

$$f(\mathscr{C}_4, n, T) < \left(4\frac{n^3}{T^2}\right)^T. \tag{1}$$

The proof of (1) is the only nontrivial part of this note, and is postponed to the next section

Finally, to prove $\chi(\mathcal{G}^n) > n^{0.1}$ we use the fact that (with probability 1 - o(1)) for $v > 20(\log n)/p$ every v-subset of the vertices of $\mathcal{G}(n, p)$ contains at least $\frac{1}{2}\binom{v}{2}p$ edges. (This is a consequence of the Chernoff inequality, see [1]). It follows that every subset of size $n^{0.9}$ contains more edges in $\mathcal{G}(n, p)$ than we have deleted, so $\alpha(\mathcal{G}^n) < n^{0.9}$ yielding $\gamma(\mathcal{G}^n) > n^{0.1}$.

3. The number of \mathscr{C}_4 -free graphs

Here we prove (1). We extend the ideas of Kleitman and Winston [4] who established

$$f(\mathscr{C}_4, n) < (2.15 \cdots)^{n^{3/2}}$$
.

Their key lemma is as follows. If \mathcal{G} is a \mathcal{C}_4 -free graph on n-1 vertices with minimum degree at least d-1, then there are at most

$$n\binom{n}{z}\binom{x}{d-z} \tag{2}$$

ways to extend it to a \mathcal{C}_4 -free graph by adding a new vertex of degree d. In (2) x is defined as

$$x = \left| n \left(1 - \frac{d^2}{n+3d} \right)^z + \frac{n}{d} \right|,\tag{3}$$

and z can be any integer, $0 \le z \le d$. As a \mathcal{C}_4 -free graph has at most $\frac{1}{2}n(\sqrt{n}+1)$ edges we have $d \le \sqrt{n}+1$. (In [4] there is an unimportant error. Instead of $d^2/(n+3d)$ they simply write d^2/n .) One can build a \mathcal{C}_4 -free graph on n vertices with T edges by

410 Z. Füredi

starting with a single point (step one) and adding new points of minimum degree d_i (in step i, $2 \le i \le n$). For $d_i \le n^{1/3} \log n$ we set z = 0 and get

$$n\binom{n}{d} < \exp(n^{1/3}(\log n)^2)$$
 for $n > n_0$.

For the other terms set $z = \lfloor n^{1/3} \rfloor$. In (3) we get $x = \lfloor n/d \rfloor$, hence the last binomial coefficient in (2) is not more than $(en/d^2)^d$. Collecting all factors we get

$$f \le \exp\left(n^{4/3}(\log n)^2 + \sum d_i + (\log n)\sum d_i - 2\sum_{i=2}^n d_i \log d_i\right).$$
 (4)

Here $\sum_{1 \le i \le n} d_i = T$, the function $x \log x$ is convex, so we get

$$\sum d_i \log d_i \geqslant n(T/n) \log (T/n)$$

by Jensen's inequality. Then (4) gives the desired upper bound. \square

For $T = \lfloor 2n^{4/3} (\log n)^2 \rfloor (1)$ gives the upper bound

$$f(\mathscr{C}_4, n, T) < n^{T(1+o(1))/3}$$

while considering all T-subsets of a \mathcal{C}_4 -free graph with $\frac{1}{2}n^{3/2}(1+o(1))$ edges we get

$$f(\mathcal{C}_4, n, T) > n^{T(1-o(1))/6}$$

Having no other reasonable example one can think that the 1/6 is the correct exponent.

Acknowledgments

The author is indebted to P. Erdős, J. Kahn, J. Nešetřil and A. Steger for fruitful discussions.

References

- [1] B. Bollobás, Random Graphs (Academic Press, New York, 1985).
- [2] P. Erdős and R. Faudree, Problem presented at Kolloquium über Kombinatorik, Bielefeld, Germany, Nov. 1990.
- [3] P. Frankl and V. Rödl, Large triangle-free subgraphs in graphs without \$\mathscr{X}_4\$, Graphs Combin. 2 (1986) 135-144.
- [4] D.J. Kleitman and K.J. Winston, On the number of graphs without 4-cycles, Discrete Math. 41 (1982) 167–172.
- [5] T. Łuczak, Graphs of small girth: how to count them and what for, Lecture at Kolloquium über Kombinatorik, Bielefeld, Germany, Nov. 1989.
- [6] J. Nešetřil and V. Rödl, Strong Ramsey theorems for Steiner systems, Trans. Amer. Math. Soc. 303 (1987) 183–192.
- [7] J. Nešetřil and V. Rödl, On Ramsey graphs without bipartite subgraphs, Discrete Math. 101 (1992) 223-229.
- [8] H.J. Prömel and A. Steger, The asymptotic number of graphs not containing a fixed color-critical subgraph, Combinatorica 12 (1992) 463-473.