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Singularities of Minimal Surfaces and Networks
and Related Extremal Problems in Minkowski Space

Z. FUREDL, J. C. LAGARIAS, AND F. MORGAN

ABSTRACT. This paper describes results on two questions about points in
a Minkowski space arising from the study of minimal surfaces and net-
works with singularities. Let @ denote a norm on R" having unit ball
& . The first question concerns the maximal number of vectors in a &-
equilateral set both for general norms and for strictly convex norms. A new
proof is given of the known result that a @-equilateral set has cardinality at
most 2" for a general norm. There exists a strictly convex norm having a
d-equilateral set of cardinality at least (1.02)", for large n. The sec-
ond question concerns the maximal number of ®-unit vectors such that
D(x; +x J-) < | whenever i # j, both with and without the side condition

E:l]xj = 0. Here, exponentially large sets exist without the side condition;
with it there are at most 2n vectors in the set.

1. Introduction

Soap films, grain boundaries in materials, and crystals all tend to minimize
energy, and often have interesting singularities. The study of such singulari-
ties leads to various auxiliary problems, including questions in combinatorial
geometry concerning arrangements of unit vectors in Minkowski space; [16-
19; 23, Problem 11; 24-25].

A Minkowski space (R", ®) is just R” with distances measured using a
norm ®. A norm @ is completely determined by its unit ball

& ={x:®(x) < 1},

which is a bounded convex body with nonempty interior, centrally symmetric
around 0. The dual norm ®" has unit ball

B ={y:(x,y) < 1forall xe F},

and ®* = ®. A norm ® is said to be strictly convex (also called rotund)
if the boundary of Z contains no line segment; it is said to be smooth
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(also called differentiable) if each point on the boundary of . % has a unique
supporting hyperplane. These are dual notions: a norm @ is strictly convex
if and only if ®" is smooth [5].

Lawlor and Morgan [13] recently obtained results on the structure of sin-
gularities of cones and of networks minimizing energies given by certain
functionals involving general norms ® on R". They show that sets of ®-
equidistant points yield singular hypersurfaces C that minimize an energy
Jo @ (n), where n is the unit normal to C, subject to certain boundary
conditions.

THEOREM 1. Let ® be a norm on R" with dual norm ®* . Suppose there
are points p,, ..., p,, € R" such that

®(p;, —p,) =1 fori#j.
Let C c #(0,1) be a hypersurface that divides the Euclidean unit ball
#(0, 1) into regions R, ..., R, separated by pieces of hyperplanes HU.
with unit normals n,; dual to p,—p; (le, n;-(p,—p;) =P(n;)). Then C
minimizes Z,—,j (I)*(HU) among hypersurfaces (closed sets that are C' mani-

Jolds almost everywhere) that separate the fixed boundary regions R,nS(0, 1)
on the sphere S(0, 1) from each other in Z (0, 1).

Lawlor and Morgan also prove a result concerning the singularity at 0 of
a network C in R” that minimizes I ®"(t), where t is the unit tangent to
G

THEOREM II. Let ® be a strictly convex norm on R", and let ®* denote

the dual norm. Let a, ..., a, € R”, normalized so that CD*(aj) =1, and let
b,, ..., b, denote the unique dual vectors such that P(b;) =1 and a;-b, =
1. Then the network C consisting of rays from the origin to a, ..., a, is

@ -minimizing if and only if every subcollection J of the b, has a sum in
the ®-norm of length at most one, i.e.,

(1.1) tb(zbj) = 1,

j€d
and in addition
(1.2) b, +---+b, =0.

If @ is not strictly convex, the dual vectors b, are not necessarily uniquely
determined, but if (1.1) and (1.2) hold for some choice of such b, then C is
@ -minimizing.

We call the condition (1.2) a balancing condition. For the Euclidean norm
on R?, these conditions include the well-known conditions for a Steiner point

in a Euclidean length-minimizing network: three edges must meet at 120°
angles. Hwang [11] surveys results on the Steiner problem, and Alfaro et al.
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[1] and Levy [14] obtain results on two-dimensional singularities for general
norms.

Determining the maximal complexity of possible singularities leads to the
following extremal problems for unit vectors in Minkowski space.

(1) EQUILATERAL SET PROBLEM. What is the maximum cardinality of a
®-equilateral set {x;} C R", i.e., a set such that ®(x; — xj) = 1 whenever
i #j?

(2) Sums oF UNiT VEcTORS PROBLEM. What is the maximal number m

in a set § = {x;} of ®-unit vectors ®(x,) = 1 such that P(x; +x;) < 1
whenever i # j and Y| x,=0.
Here, (2) has weakened condition (1.1) of Theorem II to requiring a bound
only on sums of pairs of vectors in the set S ; we will see, presently, that this
does not affect the answer. In the context of Theorem II, we are especially
interested in the case that @ is strictly convex.

These are natural problems, and versions of them have been raised re-
peatedly as pure questions in combinatorial geometry. For example, Kusner
[12] lists a number of such problems concerning equilateral sets. Variants of
these problems include putting extra restrictions on the norm (e.g., smooth-
ness) and, in the case of (2), by adding or removing the balancing condition
> x=0,

The purpose of this paper is to give new results and new proofs of old
results on these problems. We also describe known results and state some
open problems. It turns out that there are upper bounds exponential in n
for both problems (Theorems 2.1 and 3.5), and exponential lower bounds
for most variants of these problems (Theorems 2.4 and 3.6); however, the
balancing condition in (2) is shown to imply sharp upper and lower bounds
linear in n (Theorems 3.1 and 3.4).

These extremal problems turn out to have interesting connections to sev-
eral other problems in combinatorial geometry. These include the problem
of characterizing convex bodies that can be perfectly packed with identical
smaller copies of themselves, and Hadwiger’s problem of finding the maximal
number of translates of a body % that all intersect .% and have disjoint
interiors. These also include problems of finding large sets of points {x.}
and {y;} in R" whose inner products (x,, y;) are constrained in various
ways, such as the Inner Product Problem discussed in §3, in which all angles

xI.Oyj. are required to be at least 7.

2. Equilateral sets
The Equilateral Set Problem for a general norm was settled by Petty [20].
THEOREM 2.1 [20]. Any set S = {x,} of points in (R", ®) such that
D(x,—x;)=1 fori#j

has cardinality |S| < 2" . Equality is attained only when the unit ball of ® is
affinely equivalent to the n-cube.
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Petty [20] deduced this theorem from results of Danzer and Griinbaum
[3] on sets of pairwise antipodal points. We give an alternate proof.

ProOF OF THEOREM 2.1. The upper bound 2" is a simple consequence of
the

ISODIAMETRIC INEQUALITY. Let ® be a norm on R" with unit ball %
and let # be a closed body of ®-diameter < 2. Then

(2.1) Vol(%) < Vol(Z),

with equality if and only if % = % .

This inequality is a generalization of the so-called Bleberbach inequality.
In the case of the Euclidean norm, Bieberbach proved it for R? and Urysohn
[26] for R". Mel'nikov [15] proved it for general finite-dimensional normed
spaces. Burago and Zalgaller [2, 11.2.1, p. 93] give a short proof of the
isodiametric inequality using the Brunn-Minkowski theorem.

To deduce Theorem 2.1, observe that if {x,,...,x,} is a set of ®-
equidistant points, then the interiors of the ®-balls %L@ + x; are disjoint,

and 7 = U‘;‘Zl(%@ +x;) has diameter < 2. Hence,
(2.2) vol(B) > vol(#') = k27" vol(F) .

Thus, k <2".
For the case of equality k = 2", one must have equality in (2.2), and the
isodiametric inequality requires that

k
B = U(%L@+xi),

i=1

ie., & is perfectly packed with translates of 1.% . We use the following re-
sult of Groemer [9, Hilfssatz 2], which says that for arbitrary full-dimensional
convex bodies %, this last property is already sufficient to force # to be
affinely equivalent to an n-cube. Here, % is not assumed to be centrally
symmetric.

THEOREM 2.2 [9]. Let Z be a bounded convex body in R" that is the
closure of its interior, such that for some finite t > 1, the body t% can be
perfectly packed by translates of % . Then % is affinely equivalent to an
n-cube, and t is an integer. The packing is unique and extends to a lattice
packing of R".

The remaining part of Theorem 2.1 follows immediately. Since the pack-
ing is unique, any equilateral set S of cardinality 2" must be affinely equiv-
alent to the set of vertices of the n-cube, under the same affine equivalence
taking .% to an n-cube. O

We remark that Gritzmann [7, Theorem 3.4] has proved a stronger variant
of Theorem 2.2; see also [8].
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THEOREM 2.3 [8]. Let . be a bounded convex body in R" that is the
closure of its interior and that can be perfectly packed by translates of a convex
body F# . Then there are complementary subspaces of dimension k and n—k
and convex bodies %, and %, in these subspaces such that %, is affinely
equivalent to a k-cube, with % = % +.%, and ¥ =% + %,, where t is
a positive integer and + denotes Minkowski sum.

Now we consider the Equilateral Set Problem for strictly convex norms.
For n = 2, a sharp bound is easily seen to be 3. For n = 3, Petty [20]
observes that results of Griinbaum [10] imply that a strictly convex norm
in R has at most five vectors at unit distances from each other. Lawlor
and Morgan [13, §3.5] give a smooth and strictly convex norm where five
vectors occur. The exact answer for strictly convex norms is not known for
any n >4,

For n dimensions, there is an exponential lower bound for strictly convex
normes.

THEOREM 2.4. There is a strictly convex norm @ in R" and a set S = {x,}
of ®-unit vectors such that

CD(X‘-—XJ-)=1 ifi#j,
which has cardinality |S| > (1.02)", for all n > n,.

To prove this theorem, we will construct a suitable norm. The fundamental
fact used to do this is that for the Euclidean norm there exist exponentially
large sets of “nearly orthogonal” unit vectors.

LEMMA 2.5. For any fixed 6 > 0, there is a constant f(J) > 0 such that
for all sufficiently large n there exists a set Y ={y,} in R" such that

(2.3a) (¥;,y)=1 foralli,
(2.3b) (yi» ¥)| <6 wheneveri+# j,

which has cardinality Y| > (1 + £(8))". In particular for 6 = %, one may
take f(6) > .02.

Proor. Without loss of generality, § < % We use a simple random
construction. Draw m independent uniform samples {z.} from the set of
all £1 vectors in R”. Any such sample having the property that

(z,, zj.)] <dn whenever i # j,

givesaset ¥ = {ﬁzf} satisfying (2.3). Now for any pair of samples (z,, zj),
one has
Prob{|(z,;, z;)| > on} = =t Z (n) < 2!+[H(I,-'2—5}—l)n,
0<j<(1j2=8)n M
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where H(t) = —tlog,? — (1 — t)log,(1 — ¢) is the binary entropy function;
[27, Theorem 1.4.5]. Since there are () such pairs, one has

2

This probability is nonzero if we choose m = |Y| =
H(} —6) < 1, the desired bound follows.

For 6 = ¢, H(3 — ) < .918, and one may take f()>.02. O

Proor oF THEOREM 2.4. By Lemma 2.5, for all large enough » there

Prob{all |(z,,z,)| < on} > 1 - (m)2|+(muz—a)—1;n_

21,‘2(1 H(1/2—é8))n _ Since

exists a set ¥ = {w,,...,w,} of m+ 1 Euclidean unit vectors in R"
having
(2.4) [(w;, w;)| < § wheneveri#j,

with m > (1.02)".

Consider the centrally symmetric polytope .%, which is the convex hull of
all w, W, with i # j. We show that all points w;, —W; lie on the boundary
of @1 : and, furthermore, that each point can serve as its own dual vector in
the norm determined by %, .

CLAM 1. For [ # j and small enough # > 0, the hyperplane

Hy(n) = {x: (x, w,—w,) = [lw, = w,[ = n}

separates w;, — W, from 0, and from all w, —w, with (k, DH#(, 7).
The proof of Claim 1 starts with the estimate
- 10
(W, —w,, W, — j)—2—2(w£,wj.)zg.
Separation of w; — L from 0 and w; —w; is clear. For i, J, k,l, al
distinct
( k = w,‘ s W, — W, ) < = s
while if exactly one of k, ! equals i or j, then
(W, —w, w,—w)>2,
proving Claim 1.

Now let ., be the intersection of the half-spaces containing 0 cut out by
all the hyperplanes HI.J.(O) . Then &, C %, , and Claim 1 implies, on letting
n — 0, that the boundaries of %, and .%, intersect exactly in the points
w, —w; for i # j and that each of these points lies in the relative interior
of a facet of %, .

It suffices to show that there exists a strictly convex, centrally symmetric
body # with & C # C %,. If so, then the strictly convex norm @
determined by % has

®(w, —w;) =1 wheneveri#/,

since they are on the boundaries of both .%, and .%,. If we then set x;, =
w, —w, for 1 <i<m, then
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(2:5) O(x;) = P(x;, —x;) =1 whenever i # j,
which proves the theorem.

Thus, it remains to show

CLamM 2. Let %, and %, be convex polytopes with %, C %, , whose
boundaries intersect in a finite number of points, all in the relative interior
of facets of .%,. Then there exists a strictly convex body & with &, C
# C F,. If B, and B, are centrally symmetric about 0, then such a &
exists that is centrally symmetric about 0.

To prove Claim 2, let & be a closed halfspace with the bounding hyper-
plane H , and suppose first that %, is a convex polytope which is contained
in & and which touches H only at a single point q. Then for all sufficiently
large radii r, the spherical ball of radius r contained in & that is tangent to
H at q contains %, — {q} in its interior. If %, is strictly inside &, then
for an arbitrary point q on H, one can find such a ball in £ containing
%, . Next, given &, C %, satisfying the given hypotheses, one constructs
such balls associated to pairs (&, q) for each hyperplane & containing a
facet of %, . Finally, take % to be the intersection of the balls associated
to the various pairs (&, q); it is strictly convex. In the centrally symmetric
case, these balls can be chosen in symmetric pairs for opposite facets (€, q)
and (—&, —q) so that .Z is centrally symmetric. O

The proof of Claim 2 actually constructs a body % that is uniformly con-
vex, a property that is stronger than strict convexity. A norm @ is uniformly
convex if there exists f > 0 such that ®(x) — f||x|| is also a norm. Claim
2 probably remains true with its conclusion further strengthened to require
that & be both of class C™ and uniformly convex. Any strengthenings of
the conditions of the norm constructed in Claim 2 automatically carry over
to corresponding strengthenings of Theorems 2.4 and 3.6.

The following problem is open.

CONJECTURE 2.6. There is a constant y > 0 such that, for any strictly
convex norm ® in R", any equilateral set S for ® has

ISI<(2-p)".
This is analogous to a conjecture of Erdés and Fiiredi [6], which states: If

S is a finite set of points in R” such that any angle determined by three of
its points is less than 7, then its cardinality |S| < (2 — 7.

3. Sums of unit vectors
Given § = {x; : 1 <i < m} with ®(x;) = 1, we begin by relating the
bounded sums condition
(3.1) D(x; +x;) < 1
to a condition involving only the Euclidean norm. Consider the dual norm
®", specified by the unit ball
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(3.2) B ={x":(x",y)<1foralye#},

where (x,y) = Z?=1 x,;y; is the Euclidean inner product on R". For each
vector x with ®(x) = 1, there exists at least one dual vector x~ with
P (x*) =1 and

(3.3) x,xy=1,

e.g., X points in a direction normal to a tangent hyperplane to the unit ball
# of ® at its boundary point x. Choose for each x, € S a corresponding

x; € B" satisfying (3.3), and set S” = {x] : 1 <i < m}. We claim that if
S satisfies (3.1), then

(3.4) (x;,x;) <0 wheneveri#j.

Indeed by (3.1) and x; € &~

*

(X, X)) +1=(x;+%,;, x;) <P(x; +x;) <1,

which proves (3.4).

This leads us to consider the auxiliary problem

INNER PRODUCT PROBLEM. Let X and Y besetsin R” with |[X|=|Y|=
m , such that

(3.5a) (x;,¥)>0 for1<i<m.
(3.5b) (x;,¥;) < 0 whenever [ # j.

Bound m, under given side conditions on X and Y.
The condition (3.5b) is a condition on angles: all angles x,0y; are at least

=

Upper bounds for the Inner Product Problem (with side conditions) will
imply the same upper bounds for the Sums of Unit Vectors Problem (with
side conditions); the converse is not necessarily true. We consider, in partic-
ular, the following side conditions:

(1) EucLIDEAN NorRM Case: X =Y.
(i1) WEAK BALANCING ConpiTiON: 0 is in the relative interior of the
convex hull of X = {xi 1 <i<m}.
Note that the balancing condition

m

implies that the weak balancing condition (ii) holds.
We first consider the Sums of Unit Vectors Problem, assuming the weak
balancing condition.
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THEOREM 3.1. Let ® be a norm on R". If S = {x,} is a set of ®-unit
vectors in R" such that

(3.6) D(x; + xj.) <1l fori#]J,

which satisfies the weak balancing condition, then it has cardinality |S| < 2n.
Equality can be attained only when the set S is linearly equivalent to the set
{xe,: 1< i< n}, where e; are the unit vectors in each coordinate direction.

In fact the equality |S| = 2n is still attained under the stronger hypotheses

"
¢.(Z x,| <1 foralJcs, > x,=0,
x,€J i=1
if ® has the n-cube as unit ball and § = {xe; : 1 < i < n}. Under these
stronger hypotheses, it can be proved that the case of equality |S| = 2n holds
only when the unit ball of ® is affinely equivalent to the n-cube.

Theorem 3.1 is an immediate corollary of a similar upper bound for the
Inner Product Problem.

THEOREM 3.2. (a) Given sets X and Y in R" with cardinalities |X| =
|Y| = m such that

(3.7a) (x;,¥,)>0 for1<i<m,
(3.7v) (x;, yj) <0 wheneveri+#j,

where X satisfies the condition that 0 is in the relative interior of the convex
hull of X. Then m < 2n, and equality can hold only if the x; can be
renumbered so that X, ; = —Ax; with 4; >0 Jor 1<i<n.

(b) If in addition

(x;,¥;) <0 wheneveri#j,
then m<n+1.

Our proof of Theorem 3.2 is based on an observation of I. Barany, im-
proving on the original proof of the authors’. It uses

STEINITZ's THEOREM. (1) Let S be a finite set in R" whose convex hull
is a body # of dimension r, such that 0 lies in the relative interior of % .
Then there is a subset T of S of cardinality t <2r,say T = {x;: 1 <i<t},
whose convex hull is of dimension r, such that 0 is a strict convex combination

of T, Le.,
t
0= Ziixl.,
i=1

withall 2,>0, ¥'_ 2, =1.

i=1"f
(2) If there exists no subset T with t < 2r — 1 having the above property,
then necessarily T consists of exactly 2r vectors, which are collinear in pairs.
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The first part of Steinitz’s theorem is due to Steinitz and is discussed at
length in Danzer, Griinbaum, and Klee [4, §3], and the second part is due to
Robinson [22, Lemma 2a].

ProoF oF THEoOREM 3.2. The weak balancing condition implies by
Steinitz’s theorem that there is a subset 7" of ¢ < 2n vectors of X, say
T={x;:1<i<t},with

£
(3.8) 0=> ix, alli >0,
i=1

and dim(T) = dim(X) =r. If |[X|>¢+ 1 then

1
X = Z ViXpo
=i

since X,,, is in the subspace spanned by 7. By adding a large enough
multiple of (3.8) to this equation, we obtain

t

X = Zﬁixi

i=1
with all g, >0. But (x_,, ym) > 0 by hypothesis, while

']
Xppps Yerr) = Zﬁi<xf= Y} 0
i=1
by (3.7b), a contradiction. Hence, T'= X and |X|<t<2n.

If |X| = 2n, then the case (2) of equality in Steinitz’s theorem requires
that the vectors in X be collinear in pairs. This proves the second assertion
in (a).

For part (b) we use Caratheodory’s theorem in place of Steinitz’s theorem:
Every vector in the convex hull of X is a convex combination of at most
n+ 1 vectors in X . Thus, the weak balancing condition implies that

=1

with all o, >0, Y77/, = 1, after renumbering X if necessary. If |X| >

m+ 2, then

n+1 n+l
b= <Z“’:‘"v Yn+2> = o{X;, ¥,,5) <0,
i=1 =1
a contradiction proving part (b). O
A similar easy upper bound 2r holds for the Inner Product Problem as-
suming the Euclidean norm side condition X = Y, without any balancing
condition .
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THEOREM 3.3. Given a set X of cardinality |X|=m in R" such that

(3.9a) (x;,x)>0 for1<i<m,
(3.9b) {x;, xj) <0 wheneveri#j,
then m < 2n.

Proor. This is proved by induction on the dimension #, the case n =1
being obvious. Given X in R", let w; denote the projection of x; onto
the (n — 1)-dimensional subspace perpendicular to x, . Then w, =0, and at
most one other w; = 0, which occurs only if there is some x; = —4x, with
A > 0. Now for i > 2, (3.9b) implies that x, = w,—4,x, with 4, >0, hence
for i # j i

(x;, x;) = (w,, W) + ﬂ.‘.ljﬂxl”‘ <0.

Thus, the set of nonzero w; satisfies the hypotheses (3.9) in R"™', so there
are at most 2n — 2 of them, and the induction step follows. 0O

Note that in (3.9a) we can rescale x; to require (x;,x,;) = 1 without
changing (3.9b). Then (3.9) asserts that all open spherical caps of angular
measure % about each x; are disjoint. In this reformulation the inequality
|X| < 2n is derived in Rankin [21], exactly as above.

For a strictly convex norm the weak balancing condition gives the stronger

bound # + 1 in place of 2n.

THEOREM 3.4. Let ® be a strictly convex norm in R". Let S = {x;} be
a set of ®-unit vectors in R" such that

D(x; +x;) <1 fori#j,

which satisfies the weak balancing condition. Then S has cardinality |S| <
n+1.

Proor. The condition of strict convexity of @ sharpens the condition
(3.4) to

(3.10) (X, x;) <0 whenever i # j.

Now the result follows from Theorem 3.2(b). O
Next, we consider the Sums of Unit Vectors Problem without any balanc-
ing condition and give an exponential upper bound.

THEOREM 3.5. Consider any norm ® in R" and any set S = {x;} of
@-unit vectors satisfying

(3.11) O(x; +x,) < 1 whenever [ # j.
Then S has cardinality |S| < 3" - 1.
Proor. By the triangle inequality

D(x; —x;) 2 D(2x,) - D(x; +x;) 2 1,
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whenever i # j, and all ®(x,) > 1 also. Hence, the interiors of all the sets
X, + 3% and of }%Z are pairwise disjoint. Since these sets all lie in 37,
volume considerations yield |S|+1<3". O

The proof of Theorem 3.5 shows that the sets {2x.+.%} satisfy the condi-
tions of Hadwiger’s problem, which is that of bounding the maximum number
of translates of a closed convex body .% that intersect % , but which have
pairwise disjoint interiors. The bound 3" is sharp for Hadwiger's prob-
lem on taking % to be affinely equivalent to the n-cube, and Theorem 2.2
shows that this is the only case of equality. Since (3.11) does not hold for
the n-cube, improvement is possible in the upper bound of Theorem 3.5. See
Danzer, Griinbaum, and Klee [4, p. 149] for history and results on Hadwiger’s
problem.

In fact, exponential size sets can occur in the Sums of Unit Vectors Prob-
lem when no balancing condition is present, even with strict convexity im-
posed.

THEOREM 3.6. There exists a strictly convex norm ® in R" and a set
S = {x;} of ®-unit vectors satisfying

(3.12) O(x, +x,) < | whenever i # .
which has cardinality |S| > (1.02)".

ProOF. The proof uses similar ideas to Theorem 2.4. By Lemma 2.5,
for all large enough n, there exists a set of ¥ = {w} in R""' having
|Y| > (1.02)" and

(3.13) [(w,, w,)| < § wheneveri#j.
View R"™' embedded in R” as the first » — | coordinates, take the unit
vector e = (0,0, ..., 0, 1) orthogonal to all w;, and set

X, =w,+Ae, L = s

where A > 0 is arbitrary. Now let %, be the convex hull of all the vectors
+x; and *1.01(x; + x;) where i # j. Clearly each x; +x; € Int(%,)
whenever i # j, and we assert that

(*) All x; are on the boundary of %, .
To show this we use the dual vectors
y; =W, — g€, 1<i<m.
One has
(X, ¥)=(w,+ie,w,—he)=1-1(e, e) = 3.

Then () is an immediate consequence of the following:
Cramm. The hyperplane H, = {x:(x,y;) = % — 55} separates x; from 0,
from —x,, from all other +x,, and from all +1.01(x, +x;) having k #/.
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The claim is obvious for 0 and —x,, while for j # i,

(X;,y)=(w, +1e, w, — $re) = (W, w) —

€ —
J i =g

L
30

whl—

and
/ oo By i
{ xj,y;.)—( wj—/le,wf—glje)—(-wj,wi)i—g<3+§.

Also for j#1i,

Ll

(x;+x;,y,)= ,
“-(x+x;), 7)) = ~ +<xj,3:-)§~%,

and, finally, for i, k, [ all distinct,

(xk + X{., YJ) = {xk E] }r,} (x[ E] ) < O
(_(xk + xf)* y;‘) = ("xk s Y,') + ('"x;: Y;') i 2(% + %) = % = % i

Multiplying all these inequalities by 1.01 keeps all inner products <
hence, the claim is proved.

Thus, the norm @, determined by %, has the desired properties of the
theorem, except that it is not strictly convex. To finish the proof, take .%,
to be the intersection of the closed half-spaces Q, = {x: (x,y,) < 3}. Now
B, C &, , and their common boundary points are exactly {£x,:1< i< m},
so Claim 2 of Theorem 2.4 applies to give a body % that is strictly convex
and symmetric about 0, with &, C % C %, . The norm @ determined by
F has the required property. 0O

For the Inner Product Problem with no side condmons there is no upper
bound at all on m when n > 3. To see this, write R’ = {(x,y,z)} and
take for any fixed m the set X = {x, : | < i < m} where all x; lie in
the plane z = 1 and form an equilateral m-gon centered at (0, 0, 1), say
x; = (cos 2L sinzT’f,i, 1) for 1 < j < m. Now we can find m lines {/,: 1 <

m ?

i < m} lying in the plane z = 1, which separate each x; from all the other
X;, €8,
3 2nj 2miy
l:x(cos =)+ y(sin<H)=1—¢,

for small enough positive ¢; see Figure 3.1.

Now let Y = {y;}, where y; is a unit vector perpendicular to the plane
H,; determined by the line /; and the point (0, 0, 0), and lying on the same
side of H; as x; does. Then (3.7a)-(3.7b) clearly hold since H; separates
x; from all {xj : j # i} . (In this example, the hyperplane z = % separates
all points in X from 0.)

Finally, we pose the problem of whether the stronger condition (1.1) on
sums of unit vectors implies a polynomial upper bound on their number,

when no balancing condition is present.
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FIGURE 3.1. Lines separating each vertex of a regular m-gon from the
other vertices are used in showing the necessity of same side condition
in the Inner Product Problem.

ProBLEM 3.7. For a general norm (R”, ®) and aset S of ®-unit vectors,
does the condition

o> x| <1

JEJ

for all J C S imply a polynomial bound p(n) on |5|?
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