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Abstract: Starting with the émpty graph on n points, two players allernatingly pick edges with
the restriction that no player may complele a triangle. The score is the Lotal number of edges drawn
and the first player’s objective is Lo oblain as high score as possible. It will be shown that the first
player can achieve a score of §2(n log n).

The result will follow from a lower bound on the minimumn mnnber of edges in a maximal triangle-
free graph containg a large matching. More generally, we deterimine the asyinplotic behavior of the
minimum number ol edges in maximal triangle-lree graphs containing a malching of size |n/2] and

having each verlex valency < D.

1. The triangle-free game

Andris Hajnal proposed the following gamme. Starting with the empty graph on
n points for some n > 3, two players, Aand 23, alternatingly draw edges. The only
restriction is that they are not allowed to pick an edge which completes a triangle
with two previously chosen edges and the loser is the player who cannot move. The
problem is to determine the winner as a function of n and give a winning strategy.
Note that the difference between this game and the usual Ramsey-type games is that
we do not distinguish edges chosen by 2€and B.

The winning strategy is known only for small values of n; namely, A wins if n = 6
and Bwins in3 <n <5o0r 7<n <9. However, in [S], a complete analysis is given
for the connected version of the game. In this version, the players must obey the
additional rule that, after cach pick, the graph of chosen edges inust consist of one
connected component. In other words, except the very first pick of A, the players

are not allowed to choose edges connecting two isolated vertices.
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TueoreM 1.1. [S] Awins the connected version of the triangle-free game if and

only if n is cven.
2. The length of the game

The winning strategy for the connected version described in [S] allows the loser
to play cssentially as long as possible in a triangle-free graph; i.e., the loser cannot
move only after n?/4 — O(n) steps. This motivated the investigation of the following
variant. The score of the game is the total number of edges drawn. The aimn of player
is to achieve a high score; on the other hand, player B tries to keep the score low.

The main result of this note is the following. (All logarithms are of base 2.)
THEOREM 2.1. 2 can score (nlogn)/2 — 2nloglogn + O(n).

On the other hand, Paul Erdds [E] proved that B can always finish the game in
n?/5 steps.
It is easy to sce (cf. Lemma 5.1) that 2 can achieve that the graph created by the

players contains a matching of size [1/2]. So Theorem 2.1 follows from Theoremn 2.2:

THEoREM 2.2. If a maximal triangle-free graph G(V, E) contains a matching of size
v, then G has at least vlogv — 4w loglog v + ©(n) edges.

3. A maximal triangle-free graph with a large matching
The following example shows that Theorem 2.2 is asymptotically best possible.

LEMMA 3.1. There exists a maximal triangle-free graph G(V, E) containing a match-
ing of size |[n/2] and with (nlogn)/2 4+ (nloglogn)/4 + O(n) edges.

Proof. First, let us suppose that 1 is even. Let m be the smallest integer such that
dm+ (%) > n > 14. Then m = (logn)/2+ (loglogn)/4+ O(1). Let V = XUYuZz,
Z = {ai,bi : 1 <i < nf2-2m}, |X| = |V]| = 2m. We dcfine the edge set of G
as follows. X and Y are independent scts and the only edges in Z are the pairs
{(ai,b;) : 1 < i < n/2 —2m}. There are no edges between Y oand Z and there
is a complete bipartite graph between X and Y. Finally, each z € Z is connected
to an m-element subset N(z) C X such that N(z;) # N(zz) for all z; # 22, and
N(ai) = X \ N(b;) for all 1 < i < n/2— 2m. Clearly, G satisfies the conditions of
the lemma.

In the case when n is odd, we perform the above construction on n — 1 vertices
and, with the addition of < n/2 edges incident to the last point, we augment the
graph to a maximal triangle-free one. §

In case of v < [1/2], we perform the above example on 2v — G vertices, and add

the vertices a, b, z and the set W to the vertex sct, where [W| = n — 2v 4 3. Join
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a to all a; and V', join b to all b; and to Y, join z to the vertices of X, and join
every vertex in W to @, b and 2. The obtained graph has matching number v and
2vlog v + (vloglog ) /2 4+ O(n) edges.

4. Degree restrictions

If a triangle-free graph contains an almost perfect inatching, then the maximal
valency of points is at most (n + 1)/2. Hence a lower bound on the number of edges
in maximal triangle-free graphs with maximal valency < (n + 1)/2 provides a lower
bound for the score 2 can achieve. Partly, this argument served as motivation in [FS]
for the study of the function F(n, D), where F(n, D) denotes the minimum number
of edges in maximal triangle-free graphs with each verlex having valency < D. In

the range D = 2(n) the following result was proved.

THEOREM 4.1. [FS] There exists a monotone decreasing, piecewise lincar, right-
continuous function K(c) defined on the interval (0,00) such that the points of dis-
continuities of I(c) are all rational and are included in a sequence ¢; > ¢z > ... = 0
and, for all ¢ # ¢, - '

F(n,en) = K(e)n + o(n).

Morcover, for cach ¢* > 0, the determination of () on (¢*,00) is a finite problem

(by solving finitely many linear programming problems).

This result is related to a problem of Duffus and Ianson [DII]. They investigated
the following more general problem: Determine E(n, k, §), the minimum number of
edges of a maximal Kg-free graph on n vertices with minimum degree 6.

Theorem 4.1 gives only a linear lower bound for the score 2 can achieve by creating
a matching of size [1n/2]. (To be more specific, the value of F(n, D) is known exactly
for D > (n —2)/2; in particular, F(n, (n +1)/2) = 3n — 15.) However, it was proven
that maximal triangle-free graphs with F(n, D) edges must have an independent set of
size n—o(n) and, consequently, cannot contain a matching of size §(n). The presence
of a large matching enables us to prove the nonlinear lower bound of Theorem 2.2.

Similarly to the above argument, we can define the function M(n, D) as the mini-
mum number of edges in a maximal triangle-free graph containing a matching of size
/2] and having maximal valency < D. The second part of the paper is devoted to

the asymptotic evaluation of M(n,cn).

Tugonem 4.2, For all ¢ > 0, (nlogn)/2 — 2nloglogn -+ O(n) = M(n,en) <
(nlogn)/2 + (nloglogn)/4 + O(n).

We conjecture that for fixed ¢ > 0, |M (1, en)—(nlogn)/2—(nloglogn)/4] = O(n).
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5. Forcing a large matching

LEMMA 5.1. Either player can achieve that the created graph contains a matching

of size |n/2].

Proof. We present a possible strategy for 2; the strategy for Bis similar. Let X;
denote the set of non-isolated vertices after 2’s i'* move. The strategy is to ensure
that as long as |X;| < n, |X;| is even and there is a perfect matching in X;. This
condition is satisfied after 2’s first move (with |X;| = 2). Suppose that the condition
holds for X;; we shall give an appropriate response for each possible i** move of B.
If B's it" move connects two vertices in X; or two isolated vertices then 2 connects
two isolated vertices; if there are less than two isolated vertices left, 2 can pick any
edge not completing a triangle. On the other hand, if B’s ith move connects a vertex
in X; and an isolated vertex y then 2 connects y to an isolated vertex. Clearly, the
strategy ensures that the resulting graph contains a matching of size [n/2]. i
6. Proof of the lower bound

Here we prove Theorem 2.2, Let {(ai, b)) : 1 € ¢ < v} be a matching in G and
let 1 = {ai, b; @ deg(ai) 2 d V deg(by) = d}. We also add the unmatched points to
V. We shall choose the value of the parameter d Iater. Also, we choose the notation
such that V\ W = {a;,bi 1 1 <1 < s} for some s < v. For i< s, let Ay C W oand
B; C 1V the sct of neighbours of a; and b; in W, respectively. We shall give a lower

bound for

e = Y (Al +1B:)

clearly, this will be a lower bound for |E| as well.

For each i < s, A; N B; = | since G is triangle-free. Moreover, for fixed ¢ < s,
there are 2WI=14:=1Bil sets X C W such that A; C X and B; C W\ X. On the
other hand, for fixed X C W, there are at most d? indices i < s such that 4; C X
and B; ¢ W\ X. To sce this, abscrve that if ApAj € X and B, B; C W \ X for
some 7 # j then, from the maximality of G, there is a path of length < 2 from a; to
b; in V \ W. However, since the valeney of vertices in ¥V \ W is < d, the number of
vertices reachable via a path of length < 2 from «; is < d?.

Thus, counting the number of pairs (i, X), 1 <1< s, Ai C X ¢ W\ B; two ways,
we obtain X

22111}1“1;{4434 < 2lWig2.

i=1
Since the function f(a) = 27% is convex, Jeusen’s inequality implies 4285 < 8,
i.e.

e> slogs —2slogd. (1)
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Now let us choose d = log’v. If s > v — (2v/logv) then (1) gives |E| > e >
vlogv —4vloglog v 4 O(v), and we are done. Otherwise, there are at least 2v [logv

vertices in G with valency > log? v and |E| > viogv. §

7. A maximal triangle-free graph with a large matching

and small maximum degree

Theorem 2.2 provides the lower bound for M(n,cn). The upper bound is proven

in the next theorem.

Tuneonrem 7.1. For 0 < ¢ < 1/2, there exists a function f(c) such that M(n,en) <
(nlogn)/2+ (nloglogn)/4 + f(c)n + o(n).

Proof. Suppose that n is even. (In the case when n is odd, we perforin the construe-
tion on n — 1 vertices and connect the unmatched point to all vertices in X.) Given
¢, let g be a prime power such that 2qe > 1. Let p be the smallest integer such that
(2;') > 2(g+1) and let I be the smallest integer such that (2“) > [n/(¢* +¢+1)]. Let
P, P{,L;,L},Z;,1 <i < ¢*+q+1, be pairwise disjoint sets such that |P;| = |P{| = p,
|Li| = |Li] = I for all i. Morcover, each Z; has an even number of elements,
0<(Zi|-1Zj]<2forall 1 <i<j<qg®+q+1,and

7' +g+1 2 +q+1 g+l 7> +q+1 g+l

V= U r;u U Plu U L;u U I U Z;

is an n-clement set. Heuristically, alter defining 1%, P!, L;, L}, we distribute the re-
maining points of ¥V into the sets Z; as cveniy as possible. We shall define a maximal
triangle-free graph G on the set V.

The sets X = |J; P UJ; Li and Y = |J; P/ U J, L} are independent in G and the
only edges in Z = J; Z; are that of a perfect matching {(a;,0;) : 1 < 5 < |2]/2}.
Moreover, there is no edge between distint Z;’s. Each z € Z is connected to an
l-element set Ny(z) in one of the (L; U L})’s and to p-element sets in ¢ + 1 of the
(P;UP!)s. We denote the union of these p-element sets by Na(z), |Na(2)| = p(g+1).
Ny(z), N3(z), and the edges between X and Y are defined by the following rules.

Let p1,.oy Pg24g+1 and I,y lg2 444 be the points and lines of a projective plane
of order q, respectively. If z € Z; then Ny(z) C (L; U L) such that N;(z) contains
points from both L; and Li. We also require that Ny(z;) # Ny(22) for all z; # 2z,
and Ny(aj) = (Li U L) \ Ni(bj) for aj,b; € Z;, 1 £ j <|Z]|/2. Moreover, z € Z; is
connected to p points exactly in those (P U Pp) for which pr € I; in the projective
plane. We require that N2(z) contains points from both Px and Pf. Also, if aj, ,a;, €
Z; then Ny(aj,) = Na(aj,) and Na(a;) N No(bj) =0 for all 1 < j < |Z]/2. For 2,2,
in different Z;’s, we require that they arc not counccted to the same p-clement set
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in any of the (Pr U P)'s. After that, we add those edges of the complete bipartite
graph K(X,Y) to G which do not complete a trinngle with some z € Z. In particular,
a € L; is connected to all vertices in Uj;&i L} UUmEii P and y € L! is connected to
all vertices in |J;.; Li UU,, @, P-

First, we check that G is indeed a triangle-free graph. The restrictions of G to
X UY and to Z are bipartite. There are no triangles with two vertices in Z since
we ensured Ny(a;) N Ny(b;) = 0 and Na(aj) N Na(bj) = 0. Also, it is obvious that
there are no triangles with one vertex in Z. Next, we prove that G is maximal. If
21,27 € Z; then cither they are paired in the perfect matching in Z or they have a
common neighbour in (L;UL). If z; € Z;, z3 € Zj, (i # j) then they have a common
neighbour in (P U Pp) where pi is the intersection of the lines [;, [ in the projective
plane. z € Z;, z € (L; U L!) are either connected or z is connected to the pair of z in
the perfect matching. The same argument works for z € Z;, z € (P U 1) if pi € I;.
For the remaining points & of YUY, z and 2 have a common neighbour in (L; U LY).
Pairs of points in X (¥) have common neighbours in L} (L;), respectively, for some
appropriate j. Finally, the definition of G on X UY clearly implies that z € X,y € ¥
are either connected or they have some common neighbour z € Z. Also, it is easy to
sce that there is a perfect matching in the restriction of G to X UY.

If we choose ¢ in the interval (1/2¢,1/c) then p = O(1) and I = (logn)/2 +
(loglogn)/4 4+ O(1). Hence |X| = |Y| = o(n) and the number of edges in G is
< n(l4p(g+1))+o(n) = (nlogn}/2+(nloglog n)/’4+0(n), as required. The valencies
of points in Z are of o(n). Vertices in the (L;UL})’s are of degree n/2(2 +q+1)+o(n)
and vertices in the (P U P!)'s have degree (¢ + 1)n/2(q> + ¢ +1) +o(n) < n/2qif n

is large enough. Hence the maximal valeucy in G is < en.
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