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Spanning  Subgraphs  of  R a n d o m  Graphs  

Abstract. We propose a problem concerning the determination of the threshold function for the 
edge probability that guarantees, almost surely, the existence of various sparse spanning subgraphs 
in random graphs. We prove some bounds and demonstrate them in the cases of a d-cube and a 
two dimensional lattice. 

B. Bollobhs (cf. e.g, [3-1) raised the following problem: 
Let G be a r andom graph with n = 2 ~ vertices, in which each edge is taken 

randomly  and independently with probabil i ty p = 1 - e, where e is a positive small 
constant.  Is it true that  for d > d(0  almost  surely G contains a copy of  the d-cube, 
Qd? Note  that  Q~ has 2d-ld = O(n log n) edges, and is thus a relatively sparse graph. 

Here we show that  the answer is "yes" for every fixed p > 1/2 and observe that  
it is "no" for p < 1/4. This is a special case of  the following general theorem. 

Theorem 1. Let G = G(n, p) be a random graph on a set V of n labelled vertices 
obtained by choosing each pair of vertices to be an edge randomly and independently, 
with probability p. Let H = (U, F) be a fixed simple graph on n vertices with maximum 
degree d, where (d 2 -t- 1) 2 < n. I f  

lOlog(I.n/(d 2 + 1)J) 
p ~ >  (1) (Ln/(d 2 + 1)J) ' 

then the probability that G does not contain a copy of H is smaller than 1/n. 
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Remark I. The number 10 can be easily improved. We make no attempt to optimize 
it. 

Remark 2. In case H is d-regular, the expected number of copies of H in G is at most 
n!p nd/2, which is 0(1) for p = n -2/d. Thus for such a p almost surely G has no copy 
of H, whereas the theorem gives that for p > c(log n/n) TM almost surely G does have 
a copy of H. 

The d-cube. In case H = Qd is the d-cube, the right hand side of (1) is 2-dO(d a) and 
hence the theorem implies that for every fixed p > 1/2, almost surely G(n, p) has a 
spanning d-cube. On the other hand, Remark 2 shows that for p < 1/4 almost surely 
G(n, p) does not contain a spanning d-cube. We strongly believe that the threshold 
probability, p(Qd), defined as the infimum value of the numbers p such that almost 
surely G(n, p) contains a spanning Qd is much closer to 1/4 than to 1/2. I.e., we suspect 
that as usual, the computation of the expectation gives the correct bound. 

The two dimensional lattice. Let L k denote the 2-dimensional lattice of size n = k 2, 
i.e. the graph with vertex set {(xl,x2): 1 < x l , x  2 < k} in which there is an edge 
between the vertices (xl ,x2) and (Y~,Y2) if and only if Ix1 - Y~I + Ix2 - Y21 = 1. 
Then the simple argument of Remark 2 gives that the threshold probability p(Lk) 
for the existence of a spanning Lk is at least f~((l/n)l/2). On the other hand, Theorem 
1 shows that p(Lk) < O((log n/n)~/4). The problem of estimating p(Lk) was raised by 
Levin and Venkatesan [5], who were motivated by the study of certain graph 
coloring problems which are computationally hard, even on random instances. 
They proved that p(Lk) = o(1). 

Proof of Theorem 1 (sketch). By applying a well known theorem of Hajnal and 
Szemer6di 1-4] to the square of H we obtain a partition of the vertex set U of H into 
D = d 2 + l pairwise disjoint sets U~ . . . . .  Uo so that each Uk is an independent set 
in H, no two vertices of U k have a common neighbor in H and the cardinality of 
each U k is either ln/DJ or In~D]. Now let us split, arbitrarily, the set of vertices V 
of G into pairwise disjoint sets VI . . . .  , Vo so that I Vkl = l u l l  for all k. 

We next show that with high probability there is a one to one function f :  U ~-~ V, 
which maps each Uk onto V k and which maps H into a copy of H in G. To do so we 
define f on each Uk in its turn. Start with an arbitrary one to one mapping of UI 
onto I/1. Assume, by induction, that we have already defined f :  U1 t_J... U Uk 
I/1 t J... t3 V k and that f maps the induced subgraph of H on U~ U...  U Uk into a copy 
of it in V~ U...  t3 Vk. We next show how to extend this f and define it on Uk+~. 
Suppose Uk§ ~ = {U~ . . . . .  Urn} and Vk§ ~ = {v~ . . . . .  Vm}. Construct a bipartite graph B 
with classes of vertices X = {x~ . . . . .  xm} and Y = {yl , . . .  ,Ym} by joining xl by an 
edge to yj if and only if we can define f(ui) = vj. More formally, xi is joined by an 
edge to yj if and only if in the graph G, the verte vj is joined by an edge to all the 
vertices f(u), where u is a neighbor ofui in H which belongs to U~ U.. .  U Uk. Observe 
that for each i and j, the probability that u~ is adjacent to vj is at least pd. The crucial 
fact is that all these probabilities are mutually independent, since they all depend 
on pairwise disjoint sets of edges of G. Thus we can apply the known results on the 
existence of perfect matchings in graphs (see, e.g., [1]) and conclude that in view of 



Research Problems 93 

(1) (and the fact that D 2 < n) the probability that there is no perfect matching in B 
is at most 1/(nD). We can now define f according to this perfect matching; if it 
matches x i to y~ we define f(ui) = o r. 

The probability that all these D - 1 matchings exist is at least 1 - l/n, com- 
pleting the proof. []  

Remark 3. As pointed out by J. Spencer, an indication for the belief that the lower 
bound is closer to the truth than the upper bound is the fact that an edge probability 
which is only slightly larger than the lower bound already implies, almost surely, 
the existence of a large piece of the required spanning subgraph. Here is a demon- 
stration of this fact for the grid L~. Suppose n = k 2 where k is even, and let 
p = cx/log n/n where c is a large positive constant. Let U1 and U2 be two arbitrarily 
chosen disjoint subsets of vertices of G(n, p), each having cardinality k2/2. Let A and 
B be the two vertex classes of the bipartite graph Lk and choose an arbitrary 
one to one mapping from A to UI. We can now extend this mapping by mapping 
vertices of B to suitable vertices of U 2. It is easy to see that with high probability 
this Markov-type process breaks down only after at least (1 - o ( 1 ) ) k  2 of the 
vertices are mapped. In other words, G(n, p) contains, almost surely, a large piece 
of L k. 

The difficult problem is of course the question if this process can be finished to 
give a full copy of L k. When L k is replaced by a cycle, the required last step has been 
established by P6sa, who proved a clever lemma that enabled him to conclude that 
edge probability O(Iog n/n) suffices (and is also necessary) for the existence, almost 
surely, of a Hamilton cycle (cf. l-l]). It would be interesting to decide if there exists 
an appropriate P6sa-type Lemma for the case of the grid too. 

Bandwidth. The generalized bandwidth problem is the following. Let H and G be two 
graphs with the same number of vertices. Given a bijection b from V(H) to V(G) let 
Ibl denote the maximum, over all edges xy of H, of the distance in G between b(x) 
and b(y). Finally, let B(H, G) be the minimum value of Ib] over all such b. Clearly, 
B(H, G) = 1 if and only if H is a spanning subgraph of G. 

When G is a path the parameter B(H, G) is known as the bandwidth B(H) of H. 
The case in which G is a multidimensional lattice and H is a random graph has 
been investigated by McDiarmid and Miller (see [2], and the references there). The 
cases in which G is a random graph (and H varies) also look interesting and difficult, 
but certainly there are interesting solvable special cases. 
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