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Abstract 
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189-196. 

We construct a set of n points (i) on the unit sphere S dm 1 (d>4) so that they determine o(n) distinct 

distances and (ii) in the plane, in general position, so that they determine o(n’+‘) distinct distances 

for any E > 0. We also prove that if P is a set of n points in a disk of radius n such that the minimum 

distance between them is 1, and lPj/ n-cc, then the set of angles determined by these points is 

everywhere dense in [0,2x]. 

1. Introduction 

There are many extremal problems in discrete and combinatorial geometry whose 

optimal solution is provided by a grid, i.e., by a piece of 

n={n,u,+nz2)2+... +nJuJ: nl,n2,...,ndeZ}, 

where v1,u2, . . . . uJ is a system of d linearly independent vectors in Euclidean d-space. 

Perhaps the most famous example is the problem of densest packing of disks. 

According to an old theorem of Thue [21,22], the density of any packing of nonover- 

lapping unit disks in the plane is at most ~/a, and this bound is attained for 

a system of disks whose centers form a hexagonal lattice, i.e., a grid /i with u1 =(l, 0) 

and v2 = (l/2, $12). Th’ IS result was generalized by Rogers [lS] and Fejes T6th [S, 91 

to packings of translates of any centrally symmetric convex set in the plane, and the 

optimum is always attained for a suitable lattice packing. The corresponding prob- 

lems in higher dimensions are under persistent attack. (See, e.g., [5,7,16] for recent 

surveys on the subject, and Wu-Yi Hsiang [14] for a new attempt.) We recall another 

related problem of Fejes T6th [S, 91, for which the optimal configuration is. conjec- 

tured to be a piece of the hexagonal lattice: pl, p2, . . . , p,, be n points in the plane whose 
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minimum distance is 1. Minimize 

where d(pi,pj) denotes the distance between pi and pj. 

Some 45 years ago, Erdos [3] initiated the investigation of a branch of problems of 

a completely different kind. In particular, he asked: 

(i) What is the maximum number of times that the same distance can occur among 

n points in a fixed metric space M? 

(ii) What is the minimum number of distinct distances determined by n points of 

M? In other words, determine or estimate 

g”(n)=minJ{d(p,,pj): ldi<j<n}I, (2) 

where the max and min are taken over all n-element point sets {pi, pz, . . . , p,,} c M. If 

M = Rd, the Euclidean d-space, then we shall write fd(n) and gd(n) for f”(n) and g”(n), 

respectively. Spencer et al. [20] and (with a more elegant proof and with a better 

constant C>O) Clarkson et al. [2] showed that f2(y1)< Cn4i3. However, according to 

Erdiis’ conjecture, the maximum is attained for some piece of a grid; hence, 

.L(n)dn ’ +C/‘ogiogn. In the same spirit, Erdiis conjectured that the extremal configura- 

tion { p1 , pz, . . , pn} c lR2 realizing the least number of distinct distances has grid-like 

structure and gz(n) >, ca/& for some c > 0. The best result in this direction is due 

to Chung et al. [ 11. A similar phenomenon appears to occur in higher dimensions. For 

instance, in 3-dimensional space the conjectured bounds are f3 (n) d C’n4j3 log log y1 

and g3(n) 3c’n213. 

A related result of Path and Sharir [17] states that the maximum number of 

right-angle triangles spanned by II points in the plane is O(n2 log n), and this bound is 

asymptotically tight, as is shown by the example of a & by & piece of the integer 

lattice. 

In the following two sections we are going to discuss two very similar extremal 

problems. In both cases we shall present a construction which is probably close to 

being optimal. The first construction can be obtained from a grid by choosing 

a suitable small subset of its vertices, while the second one can be derived from such 

a subset by orthogonal projection into a plane in general position. In the last section 

we shall consider a somewhat different question whose solution also requires a grid. 

The theorem in the last section has also been proved independently by Noga Alon. 

2. Distinct distances among points on a sphere 

Moser [15] conjectured that there exists a constant c such that, given any set of 

n points on the unit sphere S2 in Euclidean 3-space, no distance can occur among 
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them more than cn times. This has been disproved by Erdiis et al. [6]. However, it 

seems plausible that the following weaker version of Moser’s conjecture is still true. 

There is a positive constant c’ such that any set of n points on S2 determines at least 

c’n distinct distances. Our next theorem shows that the same result cannot hold in 

higher dimensions. 

Let Sd-’ denote the unit sphere in Euclidean d-space. For any finite subset 

P c Sd-‘, let g(P) be the number of distinct distances determined by P, i.e., the 

number of those reals r > 0 for which one can find two elements pi, p2 EP at a distance 

x from each other. 

Theorem 2.1. Let d>4. Then there exists a constant cd with the property that, for any 

n > 2, one can find an n-element point set P G Sd- ’ determining 

i 

n 

C410glogn 
if d=4, 

g(P)< 
Cdn2/(d - 2) if d>4 

distinct distances. 

Proof. Let d 2 4, n = md ‘/d, and consider the set L of all lattice points (xi, . , xd), 

with integer coordinates 0 Q Xi <m. The number of distinct distances determined by 

L is at most dm2, because there are at most that many numbers of the form 

(If= ~(x~-x:)~)~‘~. In particular, there is a sphere around the origin which contains at 

least 1 Lj/dm2 = mdp2 /d = n elements of L. Letting P denote the set of these points, 

g(p)bdm2=dd”d-2)n2/(d-2), 

which proves the theorem for d>4. 

If d=4, then we have to use a little more delicate number-theoretic argument. 

A well known theorem of Fermat and Lagrange states that any natural number k can 

be expressed as the sum of four squares, i.e., 

k=x:+xZ+x;+x,2, 

where every Xi is an integer. Jacobi obtained a far-reaching generalization of this result 

(see, e.g., [13]). He proved that there exists a constant c>O such that the number of 

different solutions of Eq. (1) is at least co(k), where 

44 = Cd, 
d/k 

i.e., the sum of all positive divisors of k. On the other hand, it is well known that there 

is a constant c’>O such that o(k)>c’kloglog k for infinitely many integers k. 

Let k be such an integer, and set m= rfil Then there are at least 

co(k)>,cc’kloglog k>c”m2 log log m points of L on the sphere of radius 3 around 
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the origin. Let P denote the set of these lattice points, 1 PI = n =rd’d log log ml . Now 

we obtain, as before, that 

g(P)d4mZdc4~ 
log log n 

for a suitable cq > 0. 

Note that, strictly speaking, we have proved only that our theorem is true for 

infinitely many values n, but our argument easily extends to the general case. 0 

3. Distinct distances among points in the plane in general position 

We say that a set P of n points in the plane is in general position, if no 3 points are on 

a line and no 4 on a circle. Obviously, this implies that g(P), the number of distinct 

distances determined by P, is at least (n- 1)/3. Erdiis [4] posed the following question: 

Is it true that 

lim min m=m, 
n-mIPI=n n 

(3) 

where the min is taken over all n-element point sets in the plane in general position? 

This problem is still open. On the other hand, a construction of ErdGs et al. [6] shows 

that 

min g(P) < ~n”~~“‘~‘. 
[PI=n 

Our next theorem improves this upper bound to be O(n’+‘) for any E>O. 

Theorem 3.1. There exists a constant c such that, for any natural number n, one can find 
an n-element point set P in the plane in general position such that the number of distinct 
distances determined by P, 

g(P) < n2’G. 

Proof. Assume for the sake of simplicity that n = L2 d(d-2)/d J for some natural number 

d >4. Consider the set L of all lattice points (x1, . . . , xd) with integer coordinates 

0 <xi < m, where m = 2d. Then we can show in exactly the same way as in the proof of 

Theorem 2.1 that there is a sphere in Rd around the origin, which contains at least 

JL[ldm2=mdW2 /d 2 n elements of L. Let Q denote the set of these points. 

Let Q-Q= (pl -p2: pl,p2~Q}, i.e., the set of all vectors determined by Q. Similarly, 

Q+Q={pl +p2: p1,p2eQ}, the Minkowski sum of Q with itself. Observe that every 

element of Q-Q is a vector (x1, . . . . xd) with integer coordinates - m < Xi < m; hence, 

IQ-QI<(2m)d=2 (d+l)d<n24+,28&. 
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Fix a 2-dimensional plane l7 in [Wd, and, for any peQ, let p’ denote the orthogonal 

projection of p into 17. Evidently, we can choose II so as to satisfy the following two 

conditions: 

(i) pi =p; if and only if pi =p2; 

(ii) the point set P = {p’: ~EQ} E I7 is in general position. 

Furthermore, in view of the fact that pl-p2=p3-p4 implies d(p;,p;)=d(p;,pk), 

we have 

as required. Dropping the assumption that IZ is of some special form affects only the 

constant factor in the exponent. 0 

Distinct distances in the 3-dimensional space. If we project the above example Q to 

a 3-dimensional subspace in general position, then the obtained set P3 has n points, 

g(P)<nexp(8&), no three on a line, and no more than exp(log n/loglog n) on 

a plane. Starting with this construction, and selecting elements randomly, indepen- 

dently, and with uniform distribution, we obtain the following. There exists a C > 0 

such that for all n and t < a, one can find an n-element point set P3(n, t) c R3, 
with no three on a line, no t on a plane and g( P3 (n, t)) < n1 +‘jt. 

There are other obvious extensions to higher dimensions, and for other indepen- 

dence properties (e.g., no four on a circle), but we were unable to prove the following. 

Conjecture. There exists a to > 0 such that, for every E > 0, there exists an n-element 

point set P c R3, with no three on a line, no to on a plane, and g(P)=O(n’+‘). 

Distinct vectors in the plane. Given a set P of n points in the plane, let 

g*(P)=IP-PI, i.e., the number of vectors determined by P. Clearly, g*(P)ag(P). In 

fact, we have proved above a slightly stronger result than Theorem 3.1. We have 

shown the existence of an n-element point set in the plane in general position with 

g*(P)<n2’&. 
However, replacing g by g*, the validity of (3) follows from some deep results in 

additive set theory. 

Theorem 3.2. For any C > 0, there exists an integer no = no(C) such that every n-element 
point set P in the plane in general position determines at least Cn vectors, provided that 
n>,no. 

Proof. Assume that g*(P) = 1 P-PI < Cn for some P. Then, by a result of Ruzsa [19], 
we have 1 P + P I< C’n, with a suitable constant C’ depending only on C. A well-known 

result of Freiman [10P12] states that, for any C’, there exists a constant C” with the 
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property that any n-element set P in the plane with 1 P + PI < C’n can be covered by the 

projection of a grid of dimension C’ and size C”n. That is, 

PC (vo+nlvl+n2v2+...+nc,vc,: 1 <ni<ki} 

for suitable vectors ViE R * and natural numbers ki satisfying n:l 1 ki < C”n. 

Suppose, without loss of generality, that k, >n”C’. Obviously, we can fix some 

values I&, . , tic, so that 

for at least n/(k, . ..kc.)>k,/C”3n ‘/“/C” different integers nl. However, the corre- 

sponding points of P are all on a line, contradicting our assumption that P is in 

general position. 0 

4. Distinct angles determined by a point set 

Let P be a set of points in a disk of radius n so that the minimum distance between 

them is at least 1. If all elements of P are on a line, then every triple determines angle 

0 or 7~. Clearly, IPI >2n+ 1 implies that some other angles must also occur. Our 

following result shows that, if I PI / n+ a, then the set of angles determined by triples of 

P is everywhere dense in [0,27c]. 

Theorem 3.3. For any E > 0, there exists C = C(E) with the following property. Let P be 
any set of at least Cn points in a disk of radius n such that no two points are closer than 1. 

Then, for any 0 d u < 277, we can jind three elements of P so that the angle determined by 
them difers from a by at most E. 

Proof. Suppose that, for some 06 SI d 271, no triple of P determines an angle which 

differs from u by at most E. 

Set k=r2n/(E/2)1, and let vi, I;:, . . . . v: be vectors of length l/2 such that vi+ ’ can be 

obtained from v’; by counterclockwise rotation through angle 27c/k. Further, let v; be 

a vector of length l/2 orthogonal to vi. Consider the square grids 

Ai={n,v’;+n2v~: n,,nzEZ}, l<idk. 

Joining two vertices of ni by a straight-line segment if their distance is l/2, we obtain 

a decomposition of the plane into squares (cells). Suppose, without loss of generality, 

that no point of P is on the boundary of any cell of /1’ (1~ i < k). A cell of /1’ is called 

nontrivial if it contains an element of P. (Obviously, no cell can contain more than one 

point of P.) 
Given any PEP, 1 <i < k, let r’(p) denote the ray starting from p and pointing in the 

direction of vi. We shall say that p is of type i if r’(p) intersects at most 10/s nontrivial 

cells of /1’. Obviously, p can have more than one type. 
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Choose any two (not necessarily distinct) indices i and j so that the angle between 

u’; and vi differs from M by at most s/2. We claim that any PEP is either of type i or of 

type j. Suppose the contrary. Then, letting pi, pjcP be chosen from the last nontrivial 

cells of A’ and A’ which are crossed by r’(p) and rj(p), respectively, we would obtain by 

an easy calculation that 

a contradiction. 

Clearly, the total number of points in P having type i is at most 211(10/s) (because A’ 

consists of 2n ‘rows’ of cells, and in each ‘row’ there are at most lo/& such points). On 

the other hand, every point of P has at least k/2 different types (because there are no 

two consecutive elements missing from the set of types of PEP in the circular sequence 

i+t(j-i), t=O, 1,2, . ..). Thus, 

and I PI ,<(40/~)n. Hence, the theorem is true with C(E) =~O/E. 0 
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