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ABSTRACT 

Consider the hypercube [0, 13" in R". This has 2" vertices and volume 1. Pick N = N ( n )  
vertices independently at random, form their convex hull, and let V, be its expected 
volume. How large should N(n) be to pick up significant volume? Let K = 2/* = 1.213, 
and let E > O .  We shall show that, as n+m, Vn+O if N ( n )  5 ( K  - E ) ~ ,  and V,,+ 1 if 
N ( n )  2 ( K  + E)" .  A similar result holds for sampling uniformly from within the hypercube, 
with constant h = exp{l[(l/u - l/(e" - 1))' du}  ~ 2 . 1 3 6 .  

1. RESULTS 

We are interested in the hypercube Q, = [0, 11" in n-dimensional real space R". 
This polytope has the set (0, l}" of 2" vertices and has volume 1. Let N = N ( n ) ,  
and let Z,, Z,, . . . , 2, be independent random variables, each uniformly distrib- 
uted over (0, l}". Form the convex hull S, of these random points, and let V,, be 
its expected volume, that is V, = E[vol(S,)]. How large should N(n)  be to pick up 
significant volume? The answer is surprisingly (?) small. 

Theorem 1.1. Let K = 2 / ~ ' 7 = 1 . 2 1 3 ,  and let E > O .  Then, as n-w,  
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0 if N(n)  5 ( K  - € ) I z  , 
1 if N(n)  > ( K  + . 
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What happens if we pick points within the n-cube? Suppose now that we sample 
N times uniformly from [0, l]“, and let V, be the expected volume of the points 
picked. 

Theorem 1.2. 
as n - x ,  

Let A = exp{ J:( 1 / u  - 1 /(e’ - 1))’ du} = 2.136 and let E > O .  Then 

0 i fN(n )5 (A-E)n ,  
1 if N ( n )  2 ( A + E ) ”  . 

This article is devoted to proving these two results. For some related material and 
discussion, see [3]. 

2. THE CENTRAL LEMMA 

In this section we present and prove the central lemma on which the proofs of our 
two thcorems rest. 

Let 2 be a nondegenerate random variable taking values in [O, I]. Let Z, ,  
Z,, . . . , 2, be independent random variables, each distributed like 2, and let 
Z = ( Z , ,  Z,, . . . , 2,). We shall be interested in the cases where 2 is uniformly 
distributed either over (0, 1) or over [0, 11, so that Z is uniformly distributed 
either over the set ( 0 , l ) “  of vertices or over the whole of the hypercube 
Q ,  = [ O , l ] ” .  We will call these the “vertex case” and the “solid case”, respec- 
tively. 

Which points x of Q, are not likely to be included in S,,? This will happen if 
some halfspace H contains x but P(Z E H )  is small. Given x in Q,, let q ( x )  be the 
infinum, over all halfspaces H containing x, of the quantity P(Z E H ) .  Clearly, if x 
is in H ,  but none of Z , ,  Z , ,  . . . , Z,v is, then XJZS,. Thus 

P(x E S,) 5 N,(x)  . 

For a > 0, let the a-center Q: be the convex subset of Q, defined by 

0; = {X E Q, : q ( x )  2 e-“”} . 

Lemma 2.1 (Central Lemma). Let a > 0. 

(a )  I f  vol( Q:) = o(1) and N ( n )  = o(ean), then E[vol(S,)] = o(1). 
( b )  Zf vol(Q:) = 1 - o(1) and N ( n )  2 pn2ean where p > a. then E[vol(S,)] = 

1 - o(1). 

Once we have proved this lemma, in order to prove the two theorems it will 
remain to show that vol(Qz) “flips from 0 to 1” at the appropriate value of a. 
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Proof. 
(a) Suppose that N = o(e""). Let R = Q,\QZ. We wish to show that E[vol(S, n 
R ) ]  = u(1). Observe that 

Elvol(S, n R)1 = E[ 1- 1 (rEs,r) 4 
= J- P(x E S , )  dx . 

But P(x E S,) 5 Nq(x)  < Ne-"" for each x E R and vol(R) 5 vol( Q,,) = 1.  Hence 

E[vol(S, r l  R ) ]  < Ne?,+= 0 as n+ . 

(b) Suppose now that N(n)  = (1 + o(l"pn'e"'', where p > a.  Observe that 

so it suffices to show that P( Q: C S,,) = 1 - ~ ( 1 ) .  
Let E be the event that dim S,, < n. It is easy to show that E is very unlikely to 

occur. Let 6 = sup{P(Z = x): x E [0, l]}, so that 6 < 1. Then, for any fixed set T 
of dimension less than n ,  P(Z E T )  5 6. So 

P ( E ) s (  N n)6N-"=o( l )  

For each set J L {1,2, . . . , N }  with IJI = n ,  we define a more interesting event 

E,,: The points in {Z, : j E J }  determine a hyperplane such that, for one of the 
two corresponding (closed) half-spaces H ,  both P(Zg H )  2 Can and the 
event {Z, : j F J }  c H occurs. 

Thus if EJ occurs, there is a reasonable chance that a random point Z "misses" H ,  
but still all the points 2, lie in H .  

The key observation now is that 

For, suppose that S, is a full-dimensional polyhedron, and x E Q:\S,. Thcn some 
set of J of y1 vertices of S,, determines a hyperplane such that one corresponding 
half-space contains S,  but excludes x. But q ( x )  2 e-"'I, so P(ZgH) 2 e It 
follows that 

p ( Q z g S n )  P(E) + c p(EJ) Of1) + ( 7 

J 

where D = {l ,  2, . . . , n } .  

and hence determine two half-spaces H , ,  H,. If P(ZgH,)  2 e C n ,  then 
Next we bound P(E,). Suppose that Z,, Z,, . . . , 2, are affinely independent, 
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P(Z, E ~ , ( j  = n + I , .  . . , N ) )  5 (1 - epa" lN-"  , 

and similarly for H,.  Hence 

Now we may remove the conditioning to obtain the same bound on P(E,). Hence 
finally, 

(All logarithms are natural.) 

3. APPROXIMATING THE CX-CENTER 

For convenience here we shall switch from the n-cube Q,? = [O, 11" to the n-cube 
C,, = [ - 1, l]", which has volume 2". Thus Z is now assumed to have a nondegen- 
erate distribution with values in [-I, 11, and the a-center C: is now defined as a 
subset of C,,.  

By the central lemma 2.1, what we want to do (at least for the vertex case and 
the solid case) is to find a constant Y such that 

To do this, we shall approximate C: by a more easily handled body. We would 
like to find a "penalty function" F(x) such that, if we set 

FZ = {x E (-1,l)" : F(x)  5 a }  , 

then Fz  approximates Cz in an appropriate manner. Indeed, we would like our 
penalty function F to be of the form 

for x = ( x , ,  x2, . . . , x t l )  E (-1, 1)", where f ( x )  is a suitable function defined on 
(-1, l), with say f ( 0 )  = 0 and f non-negative, differentiable and convex. 

For such a "separable" penalty function F,  the body F ;  is easy to handle. Let 
XI, X,, . . . , X,, be independent random variables, with each uniform on ( -1 , l ) .  
Then, by the weak law of large numbers, 
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2-" vol(F::) = P((X,, x,, . . . , X,) E F::) 

as n + 30. Thus, if we can find a suitable function f such that F: approximates C:, 
then we are well on the way to establishing (1) and thus completing our proof. 

Let us now assume that the random variable Z, taking values in [ -1 ,1] ,  also 
satisfies E [ Z ]  = 0, and that, for any 6 > 0, both P(Z > 1 - 6 )  and P(Z< - 1 + 6 )  
are both strictly positive. 

It is shown in Appendix A that, for any x E (-1, l), there is a unique t = h(x), 
say, such that K'( t )  = x. Here K( t )  is the cumulunt generating function K ( t )  = 
log E[erZ]. We define the function f on (-1, 1) by setting 

f(x) = -K(h(x) )  + xh(x)  . 

It then follows (see Appendix A) that f(0) = 0, f (x )  > 0 for x # 0, F is strictly 
convex and f ' (x )  = h(x). (See Appendix B for the function f corresponding to the 
vertex case.) 

The function f does the trick for us. The key inequality which we use below is 
the Bernstein (or Markov) inequality P(X 2 0) 5 E [ e X ] .  The function f is chosen 
so that the inequality is tight when we use it-see also subsection 4B below. 

Consider a (fixed) point x E (-1, 1)"\{0} with 

Think of x as being on the boundary of the convex body F f .  We want to estimate 
q(x), so we must find a half-space H of the form t.(z - x) 2 0 with P(Z E H) as 
small as possible. It is natural to consider the half-space H(x)  which is bounded by 
the tangent hyperplane at x (and which does not contain 0); so let us set 
t; =f'(xj) = h(x j )  for each j = 1,2,  . . . , n .  Then 

= exp{-n F(x) }  . 

Hence, if F(x)  > (Y, then q(x )  < e - O n  and so C: n(-l ,  1)" C F:. 
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Now let v = E [ f ( X , ) ]  (where X ,  is uniform on (-1, l ) ) .  We saw above 
that if a <  v then 2 ~ " v o l ( F ~ ) = u ( l ) ,  and so since C ~ f l - l , l ) " ~  F," also 
2-" vol(C,") = o( 1) .  This corresponds to half our target (l), and yields the "lower 
bound" half of Theorems 1.1 and 1.2, once we have evaluated the two corre- 
sponding constants v. This is done in Appendix B. 

4. UPPER BOUNDS 

A. Overview 

In the last scction we approximated the a-center CE by the "penalty function" 
body Fz . To cstablish the lower bounds in Theorems 1.1 and 1.2 we showed that 

q ( x )  5 P(Z E H(x) )  I exp{ - n F ( x ) )  

for each x E (-1, l)"\{O}: and it followed that C,U f' (-1,l)" F,". To prove the 
upper bounds in these theorem, we must show that the approximation of C: by 
F: is sufficiently good. Let us now restrict our attention to the two special cases of 
interest, namely the vertex case and the solid case. 

Lemma 4.1. Fur 0 < P < a ,  FZ C Cz for n sufficiently large. 

Once this lemma is proved, we are home. For then if v<P<cw, we have 
2-" vol(Ff) = 1 - o(1) and so also 2 " vol(Cf) = 1 - o( l ) ,  the missing half of the 
target (1). To prove Lemma 4.1. it will suffice to prove thc next lemma. 

Lemma 4.2. Let t > 0. Then for n sufficiently large, 

P(Z E H ( x ) )  2 cxp{ -n (F(x )  + E ) }  

f o r  all x E [0, l)", x # 0. 

For, suppose that Lemma 4.2 holds, and let us deduce Lemma 4.1. By symmetry, 
we may replace the condition x E [O, 1)" above by x E (-1, 1)". Let x E Ff, x f 0. 
By the convexity of F! we see that 

q(x) 2 inf{P(Z E H ( y ) )  : y E F &  , y # O} 

zexp{-n(P  + E)) I 

and so x E Cf+'. Thus Ff C Cff ' .  
Our aim now is to prove Lemma 4.2. We shall consider the vertex case first; 

the solid case is vcry similar. The main tool that we shall use is "exponential 
centering" [2], together with a uniform version of the central limit theorem-see, 
e.g., 1.51. Unfortunately, we must handle "small" and "large" coefficicnts t, = 
h ( x , )  (in the definition of H ( x ) )  separately. 



VOLUMES SPANNED BY RANDOM POINTS IN TtiE t-IYPEKCUBE 97 

B. Exponential Centering 

This subsection is the heart of the upper bound proof. We first state a lemma that 
follows immediately from a uniform version of the central limit theorem. See, for 
example, the Berry-Esseen theorem in Feller [ 5 ,  p. 5441. 

Lemma 4.3. 
f o r  any n 2 no and for  any independent random variables Y l ,  Y,, . . . , Y, with 

Given a ,  b > 0,  there exist nu,  r ]  > 0 such that the following holds: 

2 2 
E[ Y,] = 0 , u, = E[ Y , ]  2 a and E [ (  Y,)'] 5 b , 

we have 
n 

P ( 0 ' : X  Y,':u)>q, where u2=c u: 

Now we use exponential centering to handle the case where the t, are uniformly 
bounded. Recall that we are considering the vertex case here. 

1 - 1  ] = I  

Lemma 4.4. Let E > 0 and O<a < b. Then there exists n(, such that for n L n,,, 

f o r  all x E (0, 1)" with a s t ,  5 b for  each j .  (Here t, = h(x,) . )  

Proof. Let X , ,  X,, . . . , X,, be independent discrete random variables and 
consider X =  C'f=lXl. In order to estimate P ( X 2 x )  it is useful to introduce 
independent random variables W, with distribution 

P( \? = y )  = e'P(X, = y )  /E[eX , ]  

(assuming that the denominator is finite). Let W =  Cl=lW,, and observe that 

n 

p ( w = y ) =  n { e Y j P ( X , = y j ) I E [ e x j ]  
y j : C y , = y  j = l  

Thus 

Now let us apply this to the case X, = tiZi (where the Z, are uniform on { -1,l)). 
We find 
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Now (see Appendix C) 

E[ W,] = tjMh(tj) lMz(tj) = ti tanh ti = fixj . 

Let Y = W- E[W] = W- Cq=lt ixj .  Then 

It remains to show that the factor Cy,oe-YP(Y=y) is not too small. Let 
yi = W, - E[Wj], so that Y = Cq=, Y,. Of course E[ Yj]  = 0. Also (see Appendix C) 

CT: = E[ Yf] = t;/cosh2 t, 

and 

E[IY,13]=(2coshtj-sechtj)rrj. 3 

By our assumption that all f, satisfy a I fj  I 6, it follows that for some c l ,  cq ,  
c,>o 

Hence, by Lemma 4.3, there are no and 17 > 0 such that the following holds. For 
n 2 no and any x E (0,l)" with a 5 tj 5 6, 

C. Handling Troublesome fj 

In Lemma 4.4 above, we dealt with the case when the ti were uniformly bounded. 
Here we shall handle the "small" and ''large'' ti for the vertex case. In the first 
lemma below, we consider the case when there is some slack in the inequality, 
and in the second (the relaxation lemma) we show that we can introduce such 
slack. We can then complete the proof of Lemma 4.2 and hence of Theorem 1.1. 

Lemma 4.5. Let E > 0. Then there exists n1 such that for n 2 n,, 
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for all x E [0,1)". 

Proof. 
E, and if 1 - 6 < x,  < 1, then log 2 - f ( x , )  < E. Let x E [0,1)" and let 

J1 = { j :  x, > 1 - S} , 

These exists 6 > 0 such that, if 0 5 xl < 6, then f(xl) < E and t j ( l  + x i )  < 

J,  = { j :  xI < a } ,  J =  {1,2, .  . . , n} \ ( jo  u J 1 ) .  

Then 

and so 

Now consider J ,  . Clearly, 

Next consider J .  If IJI < en, then 

p( 2 t,(zi - xi> z o 2 2-151 z exp{-cn log2). 
;€ J ) 

Also if (JI I En and n 2 n,  = [n,/-E] (where n, is from Lemma 4.4) then 

Hence, if n I n ,  , 

where E'  = e( 1 + log 2). 
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Lemma 4.6 (Relaxation Lemma). 
exists P E [0, l)", f # 0 such that 

Let x E [0, l)", x # 0 and let E > 0. Then there 

(ii) 0 5 F(3)  - F(x)  5 € , 

where t ,  

Proof. For A 2  1 let x h  correspond to th = - A t .  Consider the continuous 
function d( A) = t . (x^  - x) - €/A,  defined for A 2 1. Clearly d(1) = --E < 0. Also, 
observe that t 2 0, t, > 0 if x, > 0 and x h  2 0, x: + 1 as A+ x if x, > 0. Hence 
d( A) > 0 for A sufficiently large. Thus there exists i > 1 such that d( i) = 0. 

Now put f = xi. If we subtract d ( i )  (=0) from - 2 t,(z/ - x,) we obtain 
1 1  
- { - t / ( z ,  - i l )  + E . Thus (for any z) - c t,(z, - x , ) 2 0  if and only 

if - 

correspond to x, P as usual. 

1 
n 

1 
n 1 I n i 

f , ( z ,  - i,) P - E ,  which establishes ( i ) .  
n 1 
In order to prove (ii) write u( A) = F ( x ^ )  and k( A) = - t a x h  for A 2 1. Thus n 

u( A) = - c { At,K'( A t l )  - K(  At , ) }  , 

k( A) = - c t,K'( At,)  , 

1 "  
n / = 1  

1 "  
r = l  

and so 

Hence 

E 
- = k( i) - k( 1) 1 

I 
= k'( A) d A  

1 
= - (v( i) - u(1)) 

= - (F(P) - F(x)) . 

i 

i 
1 
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Thus F(f) - F(x)  5 E .  Finally observe that F ( i )  2 F(x) ,  since u’(  A) 2 0. 

Proof of Lemma 4.2. 
x # 0. By the relaxation lemma 4.6, there exists i E [0, 1)”, 2 f 0 such that 

Let n > n l ,  where n1 is from Lemma 4.5. Let x E [0, l)“, 

1 
n 

P(Z E H ( x ) )  = P(- c gz, - i,) 2 - €1 
and 

F(f) 5 F ( x )  + E 

Hence by Lemma 4.5 

P(Z E H(x) )  2 exp{-n(F(f) + E ) }  

2 exp{-n(F(i) + 2 ~ ) )  

D. Solid Case 

The proof for the solid case is very like that for the vertex case, except that the 
‘‘large’’ t, no longer cause trouble. 

In the exponential centering, the random variables W, now have have the 
density function 

e”I2 sinh t, ( - t i  5 w 5 t ) . 

As before we find that 

Now m: = E[Y:]  = 1 - t;/sinh* t,, and 

Hence the result corresponding to Lemma 4.4 holds, without the upper bound b. 
The result corresponding to Lemma 4.5 is now a little easier to prove-we do not 
introduce the set J , .  Finally we complete the proof as before. 

APPENDIX A: PROPERTIES OF K(f) 

Let the random variable 2 be nondegeneratc and such that the moment generat- 
ing function M ( t )  = E[e“] exists for all t. Then the cumulant generating function 
K ( t )  = log M ( t )  is strictly for all t. For we have 
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K'( t )  = E[Ze"] l M ( t )  , 

K"(t) = {E[ecZ]E[Z2ecZ] - E[Ze"I2} l M ( t ) 2  , 

and it follows from the Cauchy-Schwarz inequality that R'(t) > 0. 

Lemma A.1. Let a < b, let the random variable Z take values in [ a ,  61, and 
suppose that for any 6 > 0 both P(Z > 6 - S )  and P(Z < a + S )  are positive. Then 
the function r K ' ( t )  is an increasing bijection from R to ( a ,  6 ) .  

Proof. 
E[(Z  - x ) e f Z ]  = 0. But clearly for any t 

Since K'( t )  = E[ZefZ] /E[e tZ] ,  it follows that K' ( t )  = x if and only if 

aE[efZ] < E[ZerZ] < bE[erZ] . 

Thus E[(Z - a)erz] > 0 and so K'( t )  > a .  Similarly K'( t )  < 6. 
We now know that the function t -  K ' ( t )  is strictly increasing, with values 

contained in ( a ,  6). Let x E ( a ,  b) .  We must show that K' ( t )  = x for some t. 
Without loss of generality, suppose that x 2 E [ Z ] .  Consider 

g(t) = E[(Z - ~ ) e ' ( ~ - " ' ]  = e-"E[(Z - x)e"] . 

We want to show that g(t) = 0 for some t. Clearly g(0) = E [ Z ]  - x 5 0, and so it 
suffices to show that g( t )  > 0 for t sufficiently large. 

Put Y = Z - x ,  so that g(t) = E[ Ye']. Let 0 < 6 < b - x .  Note that P( Y > 8) > 
0. For t z 0 ,  

g ( t )  = E[YefY] 

2 E[Ye"IY r O ] P ( Y  2-0) + E[ YecyIY 2 S ] P ( Y  2 8 )  

I E [ Y I  Y 5 O]P(Y 5 0) + Se"P(Y 2 S )  . 

But the former term here is a finite constant, and the latter clearly tends to  03 as 
t+ 03. 

Now let us assume that Z is as in the lemma, and further that E [ Z ]  = 0. Thus 

By the lemma, there is a (unique) increasing bijection h :  ( a ,  6)+ R such that 
K' ( t )  = x if and only if h(x)  = t. Observe that h(0) = 0. We defined the function 
f :  ( a ,  6)+ R by 

K'(0)  = 0. 

f ( x )  = - K(h(x))  + xh(x) = - K ( t )  + tK'(t) , 

where f = h(x). Note that 

f ' ( ~ )  = -K'(h(x))h'(x) + xh'(x) + h(x) = h(x)  . 

It follows that f is strictly convex, since h is strictly increasing. Note also that 
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f(0) =f‘(0)=0,  and so f(x)>O for x f O .  Also, if the distribution of Z is 
symmetrical about 0,  then f is even. 

APPENDIX B: THE CONSTANTS v 

B.l. Vertex Case 

Let 

P(Z = 1) = P(Z = -1) = 1 . Then, for all t , 

M ( t )  = E[efZ] = cosh t , 

K(t )  = log M ( t )  = log cosh t , 
K’(t)  = tanh t . 

Hence, for x E  ( -1 ,  l), 

h(x) = tanh-’x = 

and 

1 
K(h(x)) = - - log( 1 - x’) , 2 

and so 

(K) 1 
2 2 
1 1 
2 

f(x) = - log( 1 - x ’ )  + - x iog - 

= -(1+ x )  log(1 + x )  + 2 (1 - x) log(1 - x) . 

Observe that f(x)-+log2 as x t l  or as xJ-1. 
We must work out I, = E [ f ( X ) ] ,  where X is uniform on [-1,1]. We have 

1 ’  
Y = E[f(X)] = 2 lo {( 1 + x) log( 1 + x )  + (1 - x) log( 1 - x)} dx 

=log2-  f 

2 
Thus IC = e ” =  - = 1.21306. . . ~ v-z 
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B.2. Solid Case 

Let 2 be uniform on [ -1, 11. Then, for all t > 0, 

1 

M ( t )  = E[e“] = I 1 elx dx = sinh t l t  2 - 1  

K ( t )  = log (sinh t i t )  , 

K ‘ ( t )  = Goth t - 1 / t  . 

We may consider X uniform on [0,1]. Then T = h ( X )  has density function 

for t E  (0, m> . 1 1 
- = K”(t) = - - 
dx 
dr t sinh2 t 

Hence 

I, = E[f(X)l 
= E [ - K ( h ( X ) )  + Xh(X)] 

=I0% ( - K ( t )  + K’(t)t)K’(t)  dt 

d 
dt 

= 6’ ( - K ( t )  + K’( t ) t )  - - (1 - K ‘ ( t ) )  dt 

= - [ ( - K ( t )  + K’( t ) t ) ( l  - K’( t ) ) ] i  + [ tK”(t)(l - K’(r) )2  dt 

= - [ t 2 dt 
(1 - K’(t))* d t  

- ’ { [ t ( l  - K’(t>)’]i - (1 - K’(t>)’ &J 1 2 0 

(1 - K’(t))’ dt 

( 1  - coth t + 1 It)’ dt 

l 2  = (: - -) du (U = 2t) 
eu - 1 

The integral can only be evaluated numerically, but this is not too difficult. The 
function ( l l u  - l / (e”  - 1)) is numerically well-behaved provided we are careful 
to cancel the poles at the origin (e.g., by expanding eu and simplifying the 
resulting expression). Also, for u > 40 (say), the integrand is very close to 1 /u2,  so 
1 .  
- is an accurate estimate of the tail of the integral from 40 onwards. Standard 40 
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quadrature methods can them be employed. We obtain 

v = 0.759007 . . . , and hence A = e y  = 2.13615 . . . 

APPENDIX C: EXPONENTIAL CENTERING 

C.l. Vertex Case 

Here 

e ‘1 e-‘I 
P(Wj = t i )  = - P(W, = - t , )= ~. 

2 cosh t, ’ 2 cosh ti 

so 

Hence 

Mwi(s) = E[e”y] = cosh((1 + s)t,)/cosh tJ . 

E[W,] = t, tanh f, , E[W:] = t: , 

and so 

2 u, = Var( W,) = tS/cosh2 t, . 

Also, if Y, = W, - E[W, 1, then it may be checked that 

E[IY,I3] = (2 cosh t, - sech t,)a: . 

C.2. Solid Case 

Here W, has density 

e”i2 sinh fl for -t, < w < t, . 

So, for s >  -1, 

K(s)  = K (s) = log sinh((s + l ) tJ)  - log(s + 1) - log sinh t, W I  

= K’(.s) = t, coth((s + l ) t , )  - 1 /(.Y + 1)  . 
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Hence 

pi = E[Wj] = K‘(0) = tJ coth tl - 1 . 
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Also 

DYER, FUREDI, AND MCDIARMID 

1 
2 -ti 

K”(s) = . +- 
sinh2((s + l )r j )  (s + 1)’ ’ 

and so 

2 f : ul =Var(Wl) = 1 - ~ . 
sinh’ t, 

Let Y, = W, - y, as before. Then 

p/ 

2 sinh t,E[lq[3] = I ( pl - w)’ew dw + ( w  - pJ)3ew dw 
- 5  1: 

= Ib’+wJy3ep/-’  d y  + j:i4y’ep/+v dy  

- - e+{ [+’I y3e-Y dy + Jo yieY d y ]  
‘/ - */ 

- e f ] - 1 { l  y3e-y dy + 6’ y3ey d y )  as t, + co , 

since then p, = tl - 1 + o( 1)  

Hence 
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