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Abstract 

We investigate l-designs (regular intersecting families) and graphs of diameter 2. The optimal 

configurations are either projective planes or design-like structures closely related to finite geomet- 

ries. The new results presented here are corollaries of a recent improvement about uniform 

hypergraphs with maximal fractional matchings. We propose several open problems. 

1. Introduction 

The purpose of this paper is to survey some extremal combinatorial problems 

where the solution naturally leads to a linear programming problem on an inter- 

secting hypergraph. There are deep connections between combinatorial designs 

and different branches of algebra. Here we obtain designs as solutions of extremal 

problems in hypergraph theory, and the defining relations are linear inequalities 

(i.e. a linear program). In this way we usually have a more relaxed structure, and 

there is plenty of room for further research. We propose several problems and 

conjectures. 

This paper is organized as follows. In the next section we recall some definitions and 

introduce notations. Then we investigate the maximum size of an r-uniform l-design. 

In Section 4 we review recent results and problems concerning fractional matchings of 

intersecting hypergraphs. The second part of the paper is devoted to graphs of 

diameter two. We determine e2(n, D), the minimum number of edges of a graph of 

diameter 2 with n vertices and with maximum degree at most D, for infinitely many 

small intervals. The proof is contained in Section 6. 
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2. Definitions concerning hypergraphs 

A multihypergraph H is a pair (V,8) where V is a (finite) set, the vertex set, and 

8 is a collection of subsets of V, the edge set. If d does not contain multiple edges 

then H is called a hypergraph. For brevity we use the word ‘hypergraph’ instead 

of ‘multihypergraph’ if it does not cause ambiguity. A hypergraph is an r-graph, or 

an r-uniform hypergraph if all edges have r elements. The rank of H is r if max { 1 E 1: 

EeI(H)) =r. G is a subhypergraph of H if V(G)c V(H) and &(G)c&(H). The 

number of edges containing UE V is the degree of the vertex u and it is denoted by 

deg,(u), or briefly by deg(v). The maximum of degH(u) for UE V is denoted by D(H). 

If every vertex has the same degree D, then His called D-regular, or a l-design. 

A hypergraph is t-wise s-intersecting if any t edges have at least s common elements. 

Instead of t-wise l-intersecting we simply say t-wise intersecting, instead of pairwise 

s-intersecting we say s-intersecting and the case of pairwise l-intersecting is ab- 

breviated to intersecting. To distinguish these two notions easily, we will write f-wise 

intersecting instead of a simple t. An r-graph H is r-partite if the vertex set has 

a partition V(H) = X 1 u . . . uX, such that IX,& = 1 holds for all EEL, 1 bi<r. 
We use the notations LxJ and [xl for the lower and upper integer part of x, 

respectively. 

3. Intersecting l-designs 

An r-uniform hypergraph over r 2 - r + 1 vertices is called ajinite projective plane of 

order r - 1, denoted by PG(2, r - l), if it is an S(r2 -r + 1, r, 2) Steiner system. Such 

planes are known to exist if r - 1 is a prime power or r = 1,2. Every two edges intersect 

in exactly one element, so it is a regular, intersecting, r-uniform hypergraph (a 

l-design). Bollobis [3] and Erdiis [ 1 l] conjectured that such an intersecting family 

can have at most r2-r + 1 vertices; Lo&z [33] proved this to be so. In [21] it was 

proved that the only extremal configuration is the finite plane. A new proof using 

association schemes was given by Calderbank [7]. The following two intersecting 

l-designs have only r 2 -r vertices. 

An r-graph is called a truncated projective plane of order r- 1 if it is obtained from 

a PG(2, r - 1) by deleting a vertex u and the r edges through u. 

The l-design G is a twisted plane if 1 V(C) I= (E(G) I = r2 -r, it is r-uniform, every 

degree is r and the edges cover all pairs. Such a hypergraph is known to exist only for 

r <4 (see Fig. 1). 

Theorem 3.1. Suppose that H is a regular, intersecting hypergruph of rank r. Then 
either 

(i) His a PG(2,r-1), and then I V(H)I=r2-r+ 1, or 
(ii) H is a truncated projective plane, and then I V(H)) = r2 -r, or 

(iii) H is a twisted plane, and then again I V(H)1 =r2 -r, or 
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Fig. 1. Incidence matrices of the 3- and the 4-uniform twisted planes. 
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Fig. 2. Incidence matrix of a 3-uniform intersecting l-design with 6 vertices. 

(iii/a) r = 3, H contains a twisted plane, d(H)= (123,124,345,346,156,256,135,146, 

236,245) (see Fig. 2), and again V(H) = r* -r, or 

(iv) 1 V(H)/<r’-r. 

The above theorem easily follows from a recent result on fractional matchings of 

hypergraphs. The proof is postponed to the next section. Here we mention some open 

problems concerning l-designs. 

Problem 3.2. Are there twisted planes for r>4? 

It is easy to see that a twisted plane is a group divisible design, every pair of vertices 

is covered once except (r’ -r)/2 of them which form a perfect matching. As with other 

symmetric designs, their existence is not clear. Considering the determinant of the 

incidence matrix it follows that r or r-2 is a square. Further constraints about the 

existence of twisted planes can be found in [32]. 
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Let h(r):=max{IV(H)I: H is an r-uniform, intersecting l-design}. Replacing each 

edge by (I + 1)-element sets containing it, we get h(r) d h+(r + l), where h+ is defined as 

h but multiple edges are allowed. This monotonicity is not obvious for the function 

h(r). In general, let dkH be the (multi) hypergraph defined by {KC V: 1 K I= k, there 

exists an edge E&(H) with E c K >. Theorem 3.1 and the example PPG(2,q) (with 

r > q 3 r/2) give that both h+(r) and h(r) are at least qz + q + 1 for r > q, and hence they 

are both equal to r2+O(r2-‘). 

Problem 3.3. Find sharper bounds for h(r). How large is h(7), the first unsolved 

case? 

We have 31~ h(7)641 by the above arguments. 

We can consider the number of edges instead of the vertices of a l-design. Let 

h(n, r) := max { 1 b(H) 1: H is an r-uniform, intersecting l-design on n vertices} (with no 

repeated edges). Frank1 [ 171 proved that rr-“@) d max, h(n, r) < r’e’ holds for all r. The 

example ZPG(2, q) with q w (1 - .s)r shows that h(n, r) could be as large as rr(l-o(E)) (for 

all E>O). The upper bound follows from the trivial inequality h(n, r)$ (f), (here 

equality holds for n < 2r), and from the fact n<r2-r+l. 

Problem 3.4. Estimate h(n,r). Is it true that h(n, r) < r* for all r and n? 

Problem 3.5. Determine the maximum 

hypergraph on n vertices. 

cardinality of a f-wise s-intersecting regular 

Let R(n, f, s) be the quantity defined in the problem above. Answering a question of 

Daykin, Frank1 [lS] showed that R(n,f, 1)>2”/22’+‘-‘-’ (a positive fraction of 2” !). 

He conjectures that this lower bound is the exact value of R(n, f, 1). On the other hand 

heprovedR(n,f,1)<2”-1b-2’-3 where b = (&- 1)/2. His results (and methods) in all 

probability can be applied for f-wise s-intersecting families too. 

Problem 3.6. Determine the maximum cardinality of a f-wise s-intersecting hyper- 

graph on n vertices with a vertex-transitive automorphism group. 

Let r(n, Ls) be the quantity defined in the problem above. Of course, T<R. 
Frank1 Cl83 proved that its order of magnitude indeed is much less, T(n, f, l)= o(2”) 

as n tends to infinity and t 24 fixed. He also conjectures that T(n, 3,l) is only o(2”). 

He obtained in [17] that T(n, t*, 5)2-“<exp(--c$&) for some c>O, and in general 

for t>6. 

Js- 1 (1+0(1))2-““-‘“‘<T(n,~, 1)2-Y 2 
( > 

-n(f-3”t 

Here the lower bound holds for all t > 3. There are some improved bounds in [8]. 



Intersecting designs from linear programming and graphs of diameter two 191 

4. Fractional matchings of intersecting hypergraphs 

A set TC V(H) is a transversal of H if TnE #8 for each edge EEB(H). The minimum 

cardinality of a transversal of H is z(H), the transversal number of H, A fractional 
transversal of H=(V,B) is a nonnegative function t: V-R+ such that t(E) := 

c xsE t(x)> 1 for all EEH. The value oft is defined as 

ItI= 1 t(x). 
XSV 

The fractional transversal number, T*(H), is the infimum of ) tI over all fractional 

transversals. 

A matching is a subfamily of pairwise disjoint edges, the matching number v(H) is the 

maximum number of edges in a matching in H. A fractional matching of H= (V, 8) is 

a function w:&+l?+ such that 

zPw(E)<l for all PIZV. 

The value of w is defined as 1 WI = CEEH w(E). Thefractional matching number v*(H) is 

the supremum of 1 w/ over all fractional matchings of H. 

The duality theorem of linear programming implies that there is an optimal 

fractional transversal t, and an optimal fractional matching w with ) tJ = ) WI = v *(H). 

Observe that w(E)- l/D(H) is always a fractional matching of H. Its value is 

Ib(H)I/D(H); therefore, v*(H)>l&(H)I/D(H), i.e. 

WC++. (4.1) 

It is easy to see that v*(PG(2, r- l))=r- 1 + l/r. Lov&z [33] proved that for an 

intersecting r-graph H v*(H) < r - 1 + 2/(r + 1) and conjectured v* (H) Q r - 1 + l/r. In 

[18] this conjecture was settled, and recently it was sharpened as follows. 

Theorem 4.1 (Fiiredi [25]). Suppose that H is an intersecting hypergraph of rank r. 
Then either 

(i) His u PG(2,r-l), and then v*(H)=r-1+1/r, or 

(ii) Q(H) contains a truncated projective plane, and then v*(H) =r - 1, or 
(iii) H is a twisted plane, and then v*(H)=r- 1, or 

(iii/a) r = 3, H contains a twisted plane, and then v*(H) = r - 1, or 
(iv) v*(H)<r-l-l/(r’-r-1). 

Proof of Theorem 3.1. Regularity implies 18 1 r 2 D I VI. Multiplying this with (4.1) we 

get r*(H)> I VI. Then Theorem 3.1 follows from the upper bounds for the fractional 

matching number in Theorem 4.1. 

Conjecture 4.2. Suppose that H is an interesecting hypergraph of rank r 24 with 

v*(H)<r-1. Then v*(H)<r-1-1/(2r-3). 
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For Y= 3 we have that max(v*(H): H is 3-uniform, intersecting with v* < 2) =9/5 

(see [9]). Conjecture 4.2 is probably not too difficult for r = 4. Delete three nonconcur- 

rent lines of a PG(2, r - 1). The obtained hypergraph shows that (if it is true) the above 

conjecture is the best possible. 

Problem 4.3. Determine v *(r, f, s) := sup ( v*(H): His r-uniform, f-wise s-intersecting}. 

It easily follows [23, p. 1651 that in the above definition the supremum can 

be replaced by the maximum. This value is known for s > r - dm [19], and in 

the case s=l if r<3t/2 [22]. Using the notation q[“]=q”+q”-‘+...+q+l, 

qrol=l we have [19] v*(q[f’S-ll,~,qtsl)=q[f’S1/q[ffS-ll. Here equality holds 

for PG(t+s,q). 

Conjecture 4.4. Suppose that H is a f-wise q ‘“l-intersecting family of rank q[t+s-ll 

other than the hyperplanes of PG(t +s, q). Then v*(H)<q. 

The most general result here (proved in [19]), which implies the above mentioned 

results, is as follows. If H is s-intersecting of rank r, then either H is a symmetric 

(r,s)-design (an S,((r’-r+s)/s,r,2) block design), and then v* =(r- 1)/s+ l/r, or 

v*<(r-l)/s+l/r-(r-s)/r(r-1)s. 

Conjecture 4.5. If H is s-intersecting of rank r other than a symmetric (r,s)-design, 

then v*(H)<(r- 1)/s. 

For r-partite hypergraphs Conjecture 4.2 holds [24]. If H is an r-partite, intersect- 

ing hypergraph, then either v*(H) $ r - 1 - l/(r - l), or H is a truncated projective 

plane of order r- 1 (and then v*(H)=r- 1). Deleting a line of a truncated projective 

plane, we obtain an r-partite hypergraph with v* = r- 1 - l/(r - 1). 

Problem 4.6. Find max v *(H) for intersecting 7-partite hypergraphs. 

For r-partite hypergraphs Conjectures 4.4 and 4.5 were proved in [26]. (Note that 

a symmetric (r, s)-design, including projective spaces, is not r-partite.) 

Problem 4.7. Determine v,* (& s) := sup { v *(H): H is r-partite, f-wise s-intersecting}. 

It seems interesting to determine the maximum of v* for other classes of hyper- 

graphs. For example the following. 

Problem 4.8. Determine p( t, s, p) = max {v*(H): H is f-wise s-intersecting, and 

I fW)I GP>. 
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Denote ~(2, 1, p) by p(p). It is easy to see that ~(4 * + q + 1) <q + l/(q + l), and here 

equality holds if a PG(2, q) exists [l, 361. As a corollary of Theorem 4.1 we have the 

following: if H is an intersecting hypergraph over q2 + q + 1 elements, then either 

H contains a PG(2,q) as a subhypergraph, and then v*(H)=q+ l/(q + l), or 

v*(H)bq+ 
q-1 

q2+q-1. 
(4.2) 

If we replace a line L of a PG(2, q) by a superset Lu {x}, where XE V(PG(2, q))- L, 

then for the intersecting hypergraph obtained equality holds in (4.2). So the upper 

bound in (4.2) could not be improved in general, but seems interesting to find, for 

example, the value p(7). 

Obviously, p(q2 + q) d q. Theorem 4.1 implies the following improvement [25]. Let 

H be an intersecting hypergraph over q2 + q elements; then either H contains a trun- 

cated plane, or it contains a twisted plane, or v*(H)dq-[1/3(q+1)3]. Mills [34] 

determined the value of p(r) for r d 13 (also see [40] for r ~7). It seems hopeful to 

determine p(q2 + q + 1 + a) if Ial is small and a PG(2, q) exists. 

Conjecture 4.9. p(q2 +q+ 2)9q+2/(2q+ l), and here equality holds if a PG(2, q) 

exists. 

We can consider larger classes of hypergraphs. In [21] the following theorem was 

proved: if the (multi)hypergraph H of rank r (where r>,3) does not contain p+ 1 

(pointwise) disjoint copies of PG(2, r - l), then 

v*(H)<v(r- l)+p/r. (4.3) 

This is a slight improvement on the trivial inequality v* dz Qrv. For r-partite 

hypergraphs(4.3) was proved by Gyarfas [29]. Let ~*(r, v)=sup{ v*(H): r(H)dr, with 

matching number v(H)bv}. By the above result we have that r*(r, v)=(r- 1+ l/r)v if 

and only if a PG(2, r - 1) exists. Otherwise r * (r, v) d (r - 1)~. 

Conjecture 4.10. z * (r, v) = VT * (r, 1) for all r. 

In the same way that Theorem 3.1 implies Theorem 3.1 via the inequality (4.1), all of 

the above results have a consequence for the maximum degree of the corresponding 

class of regular intersecting families. 

The most general conjecture concerning fractional matchings can be found in [27], 

and is as follows. 

Conjecture 4.11. For a hypergraph H, for a fractional matching w : &(H)-tR+ and for 

an arbitrary function b : d(H)-tR+, one can find a matching .N c 8 with 
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For uniform H and b constant this is the weak version of (4.3). In [27] the 

conjecture is proved if H is either uniform, or intersecting, or if b is constant. 

A consequence of these results is the following inequality. For any r-uniform intersect- 

ing hypergraph with n b(H) = 8 

Conjecture 4.11 is related to the ratio of the matching and fractional matching 

polptopes. In [27] we formulate an even stronger version of it which includes 

a number of other conjetures, e.g. a possible generalization of Shannon’s theorem [39] 

for r-graphs proposed by Faber and Lo&z [16]. 

5. Graphs of diameter 2 with a given maximum degree 

The graph G has diameter two if the distance between any two vertices is at most 

two. Let e2(rz, D) denote the minimum number of edges in a (simple) graph of diameter 

2 with n vertices and maximum degree at most D. ErdGs and RCnyi [14] proposed the 

problem of determining e2(n, D). An excellent survey can be found in Bollob6s’ book 

[4, Ch. 41. The smallest graph of diameter 2 is the star, it has n- 1 edges and its 

maximum degree is n- 1. In [14] it was proved that for any other graph (i.e. for any 

graph of diameter 2 with D(G) < n - 1) we have 1 b(G)1 3 2n - 5. For example, a graph 

obtained from the five cycle C5 by replacing a vertex by an independent set of size 

n -4 has 2n - 5 edges and maximum degree n - 3. Erd8s et al. [ 151 determined the 

exact value of ez(n, D) for D > n/2. Some of their statements, especially those without 

proofs, were corrected by Vrto and Z&m [41]. The following construction shows that 

e2(n,D)=2n-4 for *n-l <D<n-5. 

For simplicity we define G only in the case n/3 is an integer. Let V(G) = (X 1, x2, x3} u 

Vlu V2u V3 be a disjoint union of these four sets with I VI =(n/3)- 1. Let Ei := 

{x1 ,x2,x3}\(xi>. To obtain 8(G), join all vertices of K to both vertices of Ei and 

finally join x1 to x2 and x3. Then D(G)=2n/3. 

Bollobis [2] proved that 

1 _ 
c 

n<e2(n,cn)<(f+(~~“) n, 

i.e., nc- ’ is in fact the correct order of magnitude of e2(n, cn). The construction giving 

(q + 1)n + O(1) edges for (q + l)/(q* + q + 1) <c < l/q (and n > no(c)) is as follows. Let 

A c V(G) be a (q * + q + 1)-element set, and let 2 consist of the q * + q + 1 lines of 

a finite projective plane of order q on the set A. We divide the remaining vertices of 

G into q * + q + 1 approximately equal classes and we join each vertex of a class to all 

vertices belonging to a corresponding line LET. Finally, the set A will span a com- 

plete subgraph in G. Path and Suranyi [36] proved that, indeed, in this range (c is 
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fixed rt > no(c)) if there exists a finite plane of order q, then ez(n, cn) = (q + 1)n + O(1). 

They also proved [35] that there exists a sequence 1 =cl >c2 > ... tending to zero 

such that for c$(ck} 

a(c) := !-mm ez(n, 01)/n 

exists for every 0 CC < 1. Moreover, the function a(c) is linear in the intervals (ci, ci _ i) 

but may jump at the exceptional points ci. With this terminology the above-men- 

tioned results imply that 

a(c)= 5-k for 3/5>c>5/9, 

I 

2 for 1 >c>2/3, 

3-c for 2/3>c>3/5, 

4-2~ for 5/9>c> l/2, 

3 for 1/2>c>3/7. 

The last case was proved in [36]. This was improved by Znam [43] as follows. For 

(3/7)n<D<n/2-fi we have e2(n,D)=3n-12. 

To obtain a(c) Path and Suranyi [35] developed the following method. For any 

hypergraph H with F(H)=(E,,E2, . . . . E,} and positive real c define a(H,c) as the 

minimum of 11 Eilyi, where each yi is a nonnegative weight under the following 

restrictions: 

(1) the sum of weights of the edges through every point is at most c, and 

(2) the total sum of the weights is equal to 1. 

Then a(c) := inf u(H, c) over all intersecting hypergraphs. The determination of u(c) 

(theoretically) is a finite process for any given c, as in the above infimum we can 

consider only intersecting hypergraphs with at most 3/c’ edges and vertices, i.e. 

u(c)=min{ u(H, c): H intersecting, 1 VI, 161 <3/c2}. (5.1) 

An intersecting hypergraph H is called u(c)-extremul if u(H, c) = u(c). Reformulating 

the earlier results we have that for (q + 1)/(q2 + q + 1) < c < l/q, the only u(c)-extremal 

hypergraph is a PG(2,q) (if it exists). The only u(c)-extremal hypergraphs for 

317 CC < 1 are shown in Fig. 3. 

If G is an extremal graph (i.e. 18(G) I = e2(n, cn) with D(G) < cn), n sufficiently large, 

n>n,(c), and c not an exceptional value, then there exists an u(c)-extremal hyper- 

graph H={E,, . . ..E.j with V(H)c V(G) of size m, 

I UH)I=o(n) (5.2) 

and a partition Vi, . . . , V, of the remaining vertices V(G)\V(H) such that for all i and 

xEEi> ye Vi the edge (x, y> is in B(G). So the determination of e2(n, cn) is more or less 

equivalent to the search for u(c)-extremal hypergraphs. 

It is obvious that an a(c)-extremal His v-critical. (This means that it has no multiple 

edges, and substituting any edge EE& by a smaller nonempty edge E’c E the obtained 

family (&‘\{E})u(E’} . 1s not intersecting anymore.) Other properties are given in 

Section 6. 



196 Z. FSredi 
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Fig. 3. The a(c)-extremal minimal designs for c> 3/7 

Apparently, the a(c)-extermal designs are finite projective planes, or small intersect- 

ing structures obtained from these planes, at least for c > 3/7. Now we are ready to 

state our main result of this paper, which makes precise the previous impression at 

least in infinitely many short intervals. 

Theorem 5.1. Suppsoe that there exists a jinite projective plane PG(2,q), and let 
(l\q)<c<(l/q)+1/(2q4+2q3). Then a(c)=[q*(q-l)]-[q/(q-l)]c, and an a(c)- 
extremal design is an extended punctured plane of order q, EPP(q). 

The proof makes use of Theorem 4.1 and it is postponed to the next section. 

A punctured plane of order q, denoted by PP(q), is obtained from a PG(2, q) by deleting 

a vertex x and the q + 1 edges through x, and adding a new edge EO := L\ ( p}, where 

PELECY( PG(2, q)). (See Fig. 4 for q = 3.) The q-element edge EO is called the special 
edge of PP(q). The extended punctured plane EPP(q) is obtained from a PP(q) by 

adding new edges of size at most q + 1 so that they must not contain each other, but, of 

course, keep the intersection property. It follows (see after (6.11)) that the only two 

ways to do this extension are as follows. All new edges will be containd in the original 

V(PP(q)) and have q+ 1 elements. Let us denote the traces of the deleted lines of 
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(qc - wq - 1) 
(1 - cvw - q) 
(1 - c)/W - q) 
(1 - 4/(q2 - q) 

(1 - cm’ - cr> 
(1 - WI2 - q> 
(1 - cw?* - !7) 
(1 - c>/(q” - q) 
(1 - WI* - d 
(1 - 4Aq’ - !7> 

11 1 . . . . . . . . . 

] . . . . . . 1 . . 1 1 

1 . ..I . . . . 1. 1 

1 . . ..I . . . . 1 1 

. 1 .1 . . . . 1.1. 

.1 ..I. 1 . . . . 1 

. 1 . ..I. 1.1 . . 

* . 11...1...1 

. . 1 1 1 1 * . . . * . 

. . 1 .11...1. * 

Fig. 4. The a(c)-extremal minimal design obtained from X(2, q) (here q =3). 

PG(2,q) on V(PP(q)) by Lo, L,, . . . . L,. Then, EPP(q) is obtained either by joining 

some edges of the form 

Li”{X}, (5.3) 

where xgLO is fixed and 1 < i<q, or by joining some edges of the same form with 

Li fixed and x allowed to vary. 

To compute the value a(EPP(q), c), define the weight function y : &(EPP(q))+R+ 

as follows. Let y(E,) :=(qc- l)/(q- l), y(E) :=(l -c)/q(q- 1) for all other edges of 

PP(q) and 0 for the edges from G(EPP(q))\&(PP(q)). We obtain that a(EPP(q), c) is 

at most q2/(q- 1)-cq/(q- 1). On the other hand, a solution, t: V(PP(q))u{ *}-+R+, 

of the dual linear program defined by t( *) :=q2/(q- l), r(x) := l/(q- 1) for XEE~, and 

r(x) :=0 for XE V\E, shows that a(EPP(q),c) is indeed equal to the claimed value 

(in the range l/q<c < 1). (t( *) is the variable corresponding to the constraint 

C-y(E)< - 1.) 
Returning to the original problem about graphs of diameter 2, we sharpen the basic 

theorem of [36] as follows. We can replace the upper bounds in (5.2) by an absolute 

constant depending only on i (ci_ 1 > c > ci). As a consequence of this we get a sharper 

bound for e2(n, D). 

Theorem 5.2. There exists a sequence I = c0 > c 1 > ... (tending to 0), and constants Mi, 

such thatfor tin-Mi>D>ci_,n+Mi we have 

lez(n,D)--(c)nl<Mi 
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Proof. (Sketch.) It is rather technical, and copies an argument dealing with a 

similar problem in [20], so we give only a sketch. First we prove that a(c) is linear 

in the segment (ci,ci_ 1), so it has the Lipschitz property. Using this and an 

argument similar to Lemma 15 in [20], we sharpen the main lemma (Lemma 2.4) 

from [36]. Applying this to the sets X, Y,Z, U, defined in the course of the proof 

in [36] we show that the size of each of them is bounded. The main difference 

from [36] is that we separate the degrees larger than 0(1/c) instead of splitting 

at O(loglogn). We repeatedly have to use the trivial inequality e,(n, cn) 

<a(c)n+O(l/c*). q 

Build a graph G of diameter 2 using the core EPP(q) as follows. Suppose that 

n>2q2 +2q and n-(2q* -q)>D a(n/q)+ q-2. Let E0 be the special edge of 

PP(q), Eo :=(x1, . ..) x,}. Denote the edges of PP(q) through xi by Eci- iJq+ 1, . . , Eiq. 

Let V(EPP(G)) := LOuLlu ‘.. uL,, where the q-element Li is the trace of a deleted 

line of the PG(2,q), which the punctured plane derived from, Lo =Eo. By (5.3), 

EPP(q) can have at most q additional edges of the form L,u{xp}; denote them 

by E q2+1, ...” E q2+k (06 kdq). Let V(G) be an n-element set containing 

V(PP(G)) such that the remaining vertices partition into 1 +q* + k sets VO, Vi, . . . 

with cardinalities Iv,I=L(qD-n+q)/(q-l)J, and C{lvjl: xiEEj,j>O} 
=D-_IV,(-q for XieE,. (This q uantity equals [(n-D-q*)/(q- l)].) Also 

suppose that the sets Vj are nonempty for j<q*. Finally, suppose that 

holds for every XE V(PP(q)). (For the points of E0 equality hold.) There are several 

ways to partite V(G) in this way, for example, whenever all the ) Vjl’s are almost equal 

for 1 bj<q* and Vj=8 for j>q*. 

Define the edge set of G as follows. Put a complete graph for each (q + 1)-element set 

of the form Liu{ xi} (1 <i < q). Join each XE Ej to each YE Vj for all j. Denote the class 

of graphs obtained in this way by 9&n,D). Then each graph GMg(n,D) of this type 

has maximum degree D, has diameter 2 and 

Id(G),=5 

Here {x} stands for the fractional part of xeR, i.e. {x} :=x--Lx J. 

(5.4) 

Theorem 5.3. Suppose that there exists a jinite plane PG(2,q). There exists a 

constant M, such that if nq-‘+M,<D<n(q-1+(2q4+2q3)-‘)-M, and the 

graph G with n vertices and maximum degree at most D has diameter 2, then 

the right-hand side of (5.4) is a lower bound for I&(G)(. Moreover, equality holds only 
for the members of C!Sq(n,D). 
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Problem 5.4. Describe the a(c)-extremal hypergraphs. 

The range ‘close’ to a PG(2,q) looks especially promising, for example, when 

(q+ l)/(q’+q+ l)-~(q)<c<(q+ l)/(q’+q+ 1). To fill the first gap (between 3/7 and 

l/3) Zn6m has the following conjecture. 

Conjecture 5.5 (Znim [42]). 

s(c)= “-SC 

: 

5-4c for +>c>&, 

8-11~ for &>c>$, 

6-6c for i>c>$, 

f-3c 

for s>c>L1 

for b>c:x, 

$-5c for &>c>+, 

Theorem 5.1 established the range l/3 + 1/216>c > l/3. If Conjecture 4.2 is true, 

then our proof works without any change for the range (l/q) + (1/5q 3, > c > l/q as well. 

5.1. Further problems concerning graphs of diumeter 2 

Problem 5.6. Determine e2(n, D, d), where this denotes the minimum number of edges 

in a (simple) graph of diameter 2 with n vertices, maximum degree at most D and 

minimum degree at least d. 

The investigation of e2(n, n- l,d), i.e. when only a lower restriction is put on the 

valencies, was started by Bondy and Murty [6]. Their result was generalized by 

Bollob& and Harary [S], who showed that ez(n,n- l,d)=r(n-l)(d+1)/21 for 

d < Jn/3. Path and Sur6nyi [36] extended most of the above results for e2(n, cn, d), 

where c and d are fixed. 

Concerning minimum degrees the following result is due to Duffus and Hanson 

[lo]: If G is a maximal triangle-free graph on n vertices with minimum degree 3, then 

IE(G)I 33n- 15. (Note that such a graph has diameter two.) They investigated the 

following more general problem. 

Problem 5.7. Determine E(n, k,6), the minimum number of edges of a maximal 

K,-free graph on n vertices with minimum degree 6. 

Hajnal (see [38]) proposed the following problem. 

Problem 5.8. At least how many edges must a maximal triangle-free graph have if the 

maximal degree of vertices is at most D for some D < n - l? 
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Denote the minimal number of edges of a maximal triangle-free graph with 

maximal valency at most D by F(n, D). Clearly, G is a maximal triangle-free graph if 

and only if it is triangle-free and has diameter 2. Hence e2 (n, D) < F(n, D). For D z n/2, 
the complete bipartite graph K D, ,, _D provides an example of a maximal triangle-free 

graph with maximal valency bD. However, there are maximal triangle-free graphs 

with much less edges. 

Let (n-2)/2<D<n-3 and let I’= V1uV~u{x,}u~~u{x5} be a partition of a set 

V of cardinality n into parts of size 1 VI I= 1 V2 I= n - 2 -D and I V4 I= 20 -(n - 2). Let 

the graph G(C,) have the following set of edges. xj is connected to each vertex in 

V2u V,; xg is connected to each vertex in I’,uV,; finally, each ZE V, is connected to 

each WE V,. Then G(C,) is a maximal triangle-free graph with maximal valency D and 

2n-5+(n-3-D)2 edges. 

Another example for a triangle-free graph of diameter 2 can be obtained from the 

Petersen graph. Let I’0={x1,x2,...,x10 } be the vertex set of the Petersen graph 

P such that x 1, x2, x3, x4 are pairwise nonadjacent. Note that the Petersen graph itself 

is a maximal triangle-free graph with 3 x 10 - 15 edges. Let n > 10 be given. Let V1, V2, 

V,, V4 be pairwise disjoint sets, also disjoint from VO, ofsize 1 F$l =L(n-6+(i- 1))/4 J. 

Then IF= 1 1 vi/ = n- 6. For 1 <i <4, replace Xi by the independent set K in P, 
connecting the vertices in vi to the original neighbours of xi in P. The resulting graph 

G(P) has n vertices, 3n - 1.5 edges, and maximal valency is D = n/2 - O(1). The 

vertex-duplication procedure described above maintains the maximal triangle-free 

property so G(P) is maximal triangle-free. 

In [28] it was proved that for n>2228 

2n-5 for D=n-2, 

2n-5+(n-3-D)’ for n-3-,/x<D<n-3, 

3n-15 for (n-2)/2<D<n-3-J=: 

The main tool of the proof is the result of Duffus and Hanson [lo] mentioned 

above, and a theorem analogous to the results of Path and Suranyi. A general 

example is the following. 

Let PG(2,q) be a projective plane on W1={xl,....xq~+q+l} with line set 

{L 1, ..., L,z+,+~}. We can suppose that the lines containing x~z+~+ 1 are Li for 

q2+lbi<q2+q+l. Let W2={y1,...,y42+4 } be a set disjoint from II’,. First, we 

defineasetsystemHandagraphGonthe2(q*+q)vertices V={xi,yi:l<i<q2+q}. 

H consists of q2 sets of size 2q; namely, let Hi=LiU{yj: XjELi) (l<i<q’}. G is 

a (q- l)-regular bipartite graph defined as follows. The sets I+‘,\ {x~~+~+ 1} and 

W, are independent in G. Xi and yj are connected if and only if i #j and {Xi, xj} c Lk 

for some q 2 + 1~ k < q2 + q + 1. Based on H and G, we can build a maximal triangle- 

free graph G”(n). Let n 2 3q 2 + 2q. For 1 < id q2, we choose sets vi disjoint from each 

other and from V such that 161 =L(n-2(q2 +q)+(i- 1))/q2] for all i. Then the sets 

I$ are nonempty and I VI +CTf 1 I Kl= n. We define G”(n) on the vertex set 
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Vu V,u...u I+. x,y~ V are adjacent in Gq(n) if and only if they are adjacent in G. The 

set V,u...u Vq2 is independent in G”(n). Finally, XE I/ and YE K are connected if and 

only if XEHi. 

This example implies that the upper bound in the following inequality for D 2 5 ,,h 

(the lower bound is trivial). 

n2 4n2 
20-n<F(n,D)<D+2n. 

Hence, the order of the magnitude of the function F(n, cn) is linear in n for a fixed c. 

The theorem analogous to the results of Path and Suranyi states that there exists 

a sequence 1 =cl >c2 > ... tending to zero such that for c${ck} 

.4(c) := Fit F(n, cn + B(c))/n 

exists for every O<c < 1. Here B(c) is a constant depending only on c. 

To obtain .4(c) in [28] the following method was developed. Certain hyper- 

graph-graph pairs are intimately related to maximal triangle-free graphs. Let 

H= (V, E(H)) be hypergraph and G= (V, 8) be a graph on some set V. The pair H, G is 

a core if it satisfies the following properties: 

(1) H is intersecting, 

(2) G is triangle-free, 

(3) for all eE& and HEI?( e$H, 

(4) for all XE V and HE&H), x$& there exists ~EH such that ‘}E&; 
(5) for all x, YE V, if (x,y} $ H for any HEE(H) then either {x, yj~b or there exists 

ZEV with {x,z}E& and (z,y}~&. 

Finally, the function A(c) is defined as A(c)=inf{ a(H, c)} where the infimum is 

taken over all hypergraphs H which occur in a core with an appropriate graph G and 

c> l/v*(H). 

Problem 5.9. Describe the A (c)-extremal hypergraphs. 

We do not have such a general result for infinitely many intervals as for e2(n, cn). 

Although it seems certain that the minimal size of an A(c)-extremal hypergraph His 

relatively small (we can prove I b(H)\ < 5/c2), we have only the following bound for 

I W4 I G WC). 

For c>O, we define a function B(c) the following way. If c> 1 then B(c) := 1. For 

O<c<l, let 

B,(c) := 2 (2/c2)+(2/c)+l 

Bk+l(C) :=2 (2/c2)+(2/c)+ 1 +z;=, B,(c) 
> 

B(c) :=Bt(z,,2)+(2,C~J(C). 
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Conjecture 5.10. For (q+ l)/(q’+q+ l)<c< l/q we have A(c)=q+2 if a PG(2, q) 

exists. 

A construction can be given as follows. Define a core on a set V= V,u V2 of 

cardinality 2(q2+q+ 1). Let E,, ...,Eq2+q+l be the line set of the projective plane on 

a set V1,1V11=q2+q+1. Let V2={x1,...,xq~+q+l}. We define E(H)={E~u{x~}: 

1 Q i < q2 + q + 1 }. The graph G is bipartite with classes V, and V,; we connect xi to all 

points in I’, \ Ei. It is clear that the pair (H, G) is a core. Also, the weight function 

y(Hi) := l/(q’ + q + 1) gives a feasible solution of the required linear program and 

CY(Hi)lHil=q+2* 

Problem 5.11. Determine the minimum D=D,(n) such that there exists a triangle- 

free graph of diameter 2 over n vertices and maximum degree D. 

This problem was proposed by Erdds and Fajtlowicz [12]. They pointed out that 

the random method gives only D2(n)bO(&log n). This upper bound was lowered 

by an example due to Hanson and Seyffarth [30] showing that for some circular 

graphs D2(n)6(2+o(l)),,&. Other circular graphs were found by Hanson and 

Strayer [31]. The example Gq(3q2 +2q) of the previous section indicates that their 

upper bound in fact can be improved to DZ (n) d (2/G + o( l))& (for all n). 

Further generalizations were investigated by Erdds and Path [ 131, who considered 

graphs with property Ik, i.e. graphs in which every independent set of size k has 

a common neighbour. 

6. Proof of Theorem 5.1 

Let c be fixed and let H be an a(c)-extremal hypergraph with optimal weight 

function y: b+R+ (this means that 1 y(E)IE =a(~)). Suppose that H has minimal 

number of edges (among the a(c)-extremal designs contained in 6(H)). Call a vertex 

x saturated if C {y(E): x~Ec&} = c. The set of saturated vertices is S. Of course 1SI is 

not larger than a(c)/c. Suppose that y has maximal number of saturated vertices 

(among the optimal weights of H saturated at S). Then 

I~(H)I~ISJ+~~L~(C)/C~ $1. (6.1) 

This follows from the fact that a(H, c) is a solution of a linear program with 161 

variables and 1 V(H)1 constraints corresponding to the vertices with one additional 

constraint 2 y(E) = 1. The complementary slackness theorem of linear programming 

implies that the minimal number of nonzero variables in an optimal solution is not 

more than the maximal number of constraints fulfilled with equality. Applying this to 

our case, the minimality of b(H) implies that all edges have nonzero weights, and 

hence their number is not more than ISI + 1. 
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The function y/c is a fractional matching of H; hence 

v*(H)>1 y(E)/c= l/c. 
E 

(6.2) 

As 1 E 12 v* for all edges, we obtain 

lEl3 l/c. (6.3) 

From now on, we suppose that c =( l/q) + 6 with 0 < 6 < 1/(2q4 + 2q3), and H is an 

a(c)-extremal design. The existence of a punctured plane, PP(q), gives 

q2 4 a(Ei,c)<--- c. 
q-l q-l 

(6.4) 

So we have to give a proof only for the lower bound for a(c). Let H be an a(c)-extremal 

subfamily of H with minimal number of edges, and let y be an optimal weight function 

with maximal number of saturated vertices. Then (6.1) can be applied, and, of course, 

(6.2) and (6.3), too. We get 

IQlGq2+q, 

I&l>q for all EEL. 

(6.5) 

(6.6) 

Split 6(H) into three parts, ~=&,u~,+~u&,,+~, where the index indicates edge 

sizes, &, := {EE&: I E I =x >. Then (6.4) gives a(c) < q + 1, implying 8, # 8. Consider any 

edge E,&. We obtain 

=; Y(E)+; (lEnEd- l)y(E) 

The comparison of the extreme sides of this inequality gives 

4 6>y(E) for EE&,, 
q-l 

(6.7) 

‘+ q+l ---s>y(E) 
q2 4 

for EEF,+~. 

Denote the sum of y(E) over 8x by Y,, for example, Y, :=I {y(E): EEL,}. We have 

Y, + Y4+ 1 + Y,,, 1 = 1. Equation (6.4) implies that 

q+l-- 
q-1 

s~u(H,c)3qY,+(q+l)Y,+,+(q+2)Y>,+,. 
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We obtain 

(6.9) 

yq+1>1+- q 6-2Y,. 
q-l 

(6.10) 

The proof of Theorem 5.2 consists of two parts. First, we consider the case when the 

fractional matching number satisfies the following condition. 

(i) v*(bQ+ 1 )>4--/(q*+q-l). 

Then Theorem 4.1 implies that 6,+ I is either a projective plane or it contains 

a twisted plane or a truncated plane. The transversal number of a projective plane is 

q+ 1, z(PG(2,q))=q+ 1. Even more, if T is a q+ l-element transversal then 

Teb(PG(2,q)). (6.11) 

So the gG4+i cannot contain both a PG(2,q) and a q-element set. The transversal 

number of a q+ l-uniform twisted plane is q+ 1 (see, e.g. [25, p. 259]), so the above 

argument implies that the only possibility is that 8 G4+ 1 contains a truncated plane. 

Denote this truncated plane by P, i.e. &(P)cb. Let V(P)=LIu...uL,+ 1, where 

Li is the trace of a deleted line of the PG(2, q), the P obtained from. Then (6.11) implies 

that the sets Li are the only q-element transversals of P. Only one of them, say L 1, can 

be a member of d(H). Hence, a PP(q) := Pu( L1 } is a subfamily of H. It follows from 

(6.7) and (6.9) that the weight of L1 is exactly 6q/(q- l), and then the weights of all 

large edges are 0, implying 8, 4 + 1 = 8. Equality holds in (6.9), and therefore in (6.4) too. 

This implies that a(H, c) = a(PP(q), c). Then, the minimality of the edge set of H im- 

plies Pu{L,} =H. 

Considering & we claim that it is an EPP(q). First, it is easy to see that L1 is the 

only q-element member of &(A). It follows that j(L 1) = 6q/(q - 1) in any u(c)-optimal 

weight function j over a(@. Then, the weights of all large edges are 0, implying 

d >‘4+1(fl)=0. 
As PP(q) is a subfamily of Z?, every additional edge FE&(@\&(H) is a transversal 

of PP(q). Moreover, F has exactly q+ 1 elements. Then, for q>3, we finish the proof 

by using the following sharpening of (6.1 l), due to Pelikan [37]. If T is a transversal of 

PG(q, 2) and it does not contain any line, then for q b 3 its size 1 TI 2 q + 2. This implies, 

as F does not contain an edge of PP(q), that it has the form L,u(x) (i> l), as desired. 

The case q = 2 can be finished easily by hand. Secondly, we consider the case when the 

fractional matching number satisfies the following condition. 

(ii) v*(& )< 
1 

<q+1 --.4- 2 
q +q-1’ 

As the function y/c is a fractional matching of H<,+ 1 we get that 

Yq+ Yq+l<cv*(H<q+l)<c q- 
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Comparing this with (6.10) we obtain 

Ls- t+s 
q-l ( I( 

1 
Y,>l+ q- 

qz+q-1 > 

1 

=q(qZ+q-l)-6 q-q2+q-1 ( 

1 4 __ 
q-l 1 . 

(6.12) 

The right-hand side of (ii) is less than l/c (for 6 < l/(q 4 + q 3 - qz -q)), SO (6.2) implies 

that & ,q+ 1 = 8. Then (6.5) gives 

I~,I+l~,+~l=I~~~~I-l~~q+~l~~2+4-~. (6.13) 

Now apply (6.7) and (6.8) to get a lower bound for (6,( and I&,+ 1 (, respectively. 

Apply, the lower bound from (6.10) to Y,+,. We get 

l~ql+16q+11~L+ 
l+ q ---&2Y, 

cl-1 

64 q+l 
q-1 

$+a- 
4 

q2+p q3 6 
q-l 

=l+dq(q+l) 

Here the coefficient of Y, is positive (for O< 6 <(q - 1)/(q3 + q)). We can apply the 

lower bound of (6.12) for Y,. The lower bound obtained for I &, j + Id,, 1 1 contradicts 

(6.13) if 6 < 1/(2q4+2q3). This completes the proof for the case (ii). Cl 

Note added in proof. Erdiis and Holzman [44] recently solved Problem 5.9 for 

215 <c < l/2, and thus disproved Conjecture 5.10 in case q = 2. 
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