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For a hypergraph g and b:3t~--*Ii~ + define 

u b = max b(A)w(A) : w a fractional matching of.~ . 

( Ae~ 
Conjecture. There is a matching~ o f ~  such that 

E (]AI - 1 + 1/IAI)b(A ) > ~,~. 
Aed~ 

For uniform ~ and b constant this is the main theorem of [4]. Here we prove the conjecture 
if ~ is uniform or intersecting, or b is constant. 

1. I n t r o d u c t i o n ,  r e s u l t s  

As usual,  a hypergraph ~ is a pair  (V(3g, E(~)) ,  where V(H) is a finite set, 
the set of vertices, and E ( ~ ) ,  the edge set, is a mul t ise t  of subsets  of V ( ~ ) .  Where  
no confusion will result  we abbrevia te  V ( ~ )  and E ( ~ )  to V and  ~ .  Note tha t  3g 
may conta in  the same set more t h a n  once. We say tha t  ~ is k-uniform if all its 
edges are of size k. The degree of a vertex v, denoted deg~(v) ,  or s imply deg(v), 
is ] { E : v C E E ~ } ] .  ~q~ is d-regular if deg3~(v) = d  for all v E  V. A subset  of edges 
50 C_ $r is called a subhypergraph. A subhypergraph  r C ~ is called a matching if 
every two of its members  are disjoint.  We write ] ( ~ ) ,  or jus t  ] , for the set of 
matchings  o f ~ .  The largest cardinal i ty  of a match ing  in 3g is the match ing  n u m b e r  
~ ( ~ ) .  If v ( ~ )  = 1, then  ~ is called intersecting. 

W i t h  each 5 e _ ~ we associate its characterist ic  vector X(5 e) C ~ ,  namely  

I X(be))E is 1 if E C J  and  0 otherwise. The  convex hull of the vectors {)/(rig):dAE 
} is called the matching polytope, M P ( ~ ) .  
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A fractional matching w of g is the real relaxation of a matching, that  is, a 

On the other hand, 

(1.1) FMP(~)  C A x MP(~q~), 

where A is an J"~ x J"~ diagonal matrix with (A)E,E = [El. This means that  the 
polytope obtained by blowing up the matching polytope in the direction xE by the 
factor IS[ contains FMP(~) .  See e.g. [1], [5], [6], [7] for more backround. 

To reformulate (1.1), let us introduce the following weighted versions of the 
matching and fractional matching numbers. For any non-negative vector b C NN 
(i.e. a non-negative function on the edges b :~(--+ N+), let 

~'b = max b(E)w(e) : w is a fractional matching of ,~ . 

( Ee~ 

(So u and u* correspond to b - 1 . )  For k-uniform hypergraphs, Lov~sz (see [5]) 
realized that  the trivial inequality u* _< ku never holds with equality. His conjecture 
concerning u*/u was proved in [4] in the following form. 

Theorem 1.1. If Ys is a k-uniform hypergraph, then 

(1.2) P*(g)<__ ( k - l + k )  U(g). 

Moreover, if there is no finite projective plane among the subhyphergraphs of Y(, 
and k>2, then ~*(~) < ( k -  1)v(g).  

Our work is motivated by 

function w : ~ -+ I~ + such that  

Z w(E)< 1 
E 2 v  

holds for each v E V. The fractional matching number of ~ is 

u * ( ~ ) : = m a x l ~ w ( E ) : w i s a f r a c t i o n a l m a t e h i n g o f ~  } �9 
( Ec~ 

The set of all fractional matchings forms a polytope in the positive orthant of ~ ,  
called th e fractional matching polytope, and denoted by FMP(Jqf~). Obviously, 

MP(~)  c_ FMP(~)  C ]~ .  
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Conjecture 1.1. For any hypergraph 2s and b:2s + there exists a matching J~ 
such that 

( 1 ) b ( E ) > u ~ .  
E [El - 1 + I-E- ~ - 

EE, AA 

This conjecture is equivalent to the statement 

FMP(2s C A • MP(2s 

where A is the 2s x 2s diagonal matrix with (fi)E,E = [ E l -  1 + 1/[E[. 
When 2s is k-uniform and b -  1, Conjecture 1.1 is just Theorem 1.1. So the 

conjecture generalizes Theorem 1.1 in two ways, namely by allowing nonuniform 
2s and by considering weights, rather than just sizes, of matchings. In fact, we can 
prove Conjecture 1.1 if either one, but not both, of these relaxations is in force, i.e. 

Theorem 1.2. Any hypergraph 2s has a matching J~ with 

( 1) 
E I E ] - I + ~ - [  >-~*(2s 

EE~ 

Note this is sharp for any disjoint union of projective planes. 

Theorem 1.3. For any k-uniform hypergraph 2s and b :2s  + 

( k - 1 + Vb ~ /]b" 

Conjecture 1.1 and Theorems 1.2 3 were announced in [5]. 
We also prove Conjecture 1.1 for intersecting g .  In this case M P ( g )  is an 

[2s simplex, so the statement reduces to 

Theorem 1.4. I f  w is a fractional matching of an intersecting hypergraph 2s then 

1 

E w(E) IE I _ x + l / [ E  I <-1 
EEg 

Theorem 1.4 depends mainly on establishing the following extremal property 
of projective planes, which is thought to be of independent interest. 

Theorem 1.5. I f  2s is k-uniform and intersecting, and N E=O,  then 
EEg 

1 ~ ~ k 2 
[2s 2_, 2_., [ANB[_> k 2 _ k + l ,  

A E g  B E g  

with equality iff 2s is (the line set of) a projective plane with each edge multiplied 
the same number of times. 

There is another form of our main Conjecture 1.1, which is rather pretty 
although not so amenable to linear programing, as follows. Let 2s be a hypergraph. 
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We denote by X~(g) the edge-chromatic number of 3g, that is, the minimum number 
of matchings of g with union g .  : (g )  is a fractional relaxation of this, the 
minimum of ~ q(M) over all q ]~+ satisfying ~ q(J~) > 1 for all 

�9 . ,h ie  f f ~  r 
E@~;  or equivalently, X'* (.~) is the minimum d >  0 such that the constant vector 
( I /d , . . . ,  1/d) belongs to the matching polytope. We define 

f~(,TC) = peV(.,~)max E~p ( I E I - 1 +  i@~). 

The following is equivalent to Conjecture 1.1. 

Conjecture 1.6. For any hypergraph ~, X'* (~)~_ ~(~). 
Indeed, as far as we can see, the stronger conjecture that X~(g) < ~ ( g )  may 

also be true. For graphs ~ this is just Shannon's theorem ([8], also see in [2]), that  
X'(~) _ 3A(~) ,  where A(~)  is the maximum degree of $; while for intersecting 

it is Theorem 1.4, since for such g X'* and X I agree. The problem of bounding 
X~(2~) for uniform g in terms of the edge size and maximum degree was raised by 
Faber and Lovs in [3] more than 20 years ago. 

To see the equivalence of Conjecture 1.6 and 1.1 we proceed as follows. Con- 
jecture 1.1 asserts that  for any b:2tf--~X +, if w:2g--*]~ + satisfies ~ w(E)< 1 for 

E g p  

all peV(2~) then 

Equivalently, for any b :~--~ ~ +  and w :~q~ -~ N +, 

~_~w(E)b(E)< ( max ~_.w(E)l max (E~ (IEI-I+ 1 ) ) 
E - -  p e V ( . , ~ )  E S p  / .,qe~ ~ b(E) . 

Substituting g ( E ) =  ( I E I -  1 + ~-T) b(E) and re(E)= w(E) 
IE]_I+I/IEI, w e  see that  an 

% 

equivalent conjecture is: for any ~ :,7~ -~ N+ and m : ~ - +  N +, 

Zg(E)m(E)< (max re(E)( +-~1)) . ~ ~  \pev(~) ~ I E I -  1 1 (max ~-~ l (E)) .  
E Egp 

This is true if and only if it is true for integral m; and (by replacing every edge E 
by re(E) copies) if and only if it is true all ~ when m -- 1. Thus, an equivalent 
conjecture is: for all 2~ and all ~ : ~ - - ~ + ,  

By Farkas' lemma, this is equivalent to 1.6. | 
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2. P r o o f  o f  T h e o r e m  1.2 

For a fractional matching w of ~ let S(w) be the set of w-saturated vertices, 

S(w) := {v E V : E w(E) : I } .  
Egv 

Suppose $Y is a minimal counterexample to Theorem 1.2. Then ~ is ~*-critical, 
that is, ~*(2~')<~*(~)  for all J ~ ' C ~ ,  so in particular 

(2.1) if w is an optimal fractional matching of ~ ,  then w(E) >0  for every E E l .  
The key observation here is similar to that in [4]: 

(2.2) There exists an optimal fractional matching w of g such that IS(w)[ > [g[. 

Proof  of (2.2) The linear program defining ~*(g) ,  that is, 

max E w(E) 

subject to w E ~ 

(2.3) 

(2.4) 

w(E) >_ 0 for E E 

E w ( E ) - <  1 f o r v e V  
Egv 

has an optimal solution w for which at least I ~ ]  of the inequalities (2.3), (2.4) are 
equalities. Since the inequalities (2.3) are strict (by (2.1)), we have IS(w)l ~ t~1. I 

To prove Theorem 1.2 it is enough to show that for some E 6 ~ ,  
1 

(2.5) I E r - l + ~ _ >  ~ w(F). 
FNE#O 

For then, setting ~ '  = {F  E 2~: g ( /E  = 0}, we have (inducting) 

F ~  -- -- max IFI - 1 + max tEl 1 + > IEI 1 + +~ te~ (N ' )  ~ e ~ ( ~ )  

> ~ w(F)  +.*(X') > , * ( ~ ) .  
FNE#O 

But for w as in (2.2), 

lm _< Is( )l _< Z Z w(E) : Z IEIw(E) 
v6V Egv EE~ 

In particular there is some E 6 ~  with w(E)> 1/IE ]. But for such an E we have 
(2.5), since 

E w(F) <_ w(E) + IEI(I - w(E)) 
FAE#O 

= lEt - (tEl - 1)w(E) _< IEI - 1 + 1/tE I. 
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3. P r o o f  o f  T h e o r e m  1.3 

We must show for k-uniform o3r that  

E b(E)w(E) <_ k -  1+ 1/k, 
EE2~ 

(3.2) 

and b : ~  --~ ]~+ satisfies 

(3.3) 

w is a fractional matching of 2~ 

E b(E) < 1 for all ,.,/A., e I ( .~). 
E e,.4X 

Suppose 2~ is a minimal counterexample. Then for any optimal pair, b, w (that 
is, b, w maximizing Eb(E)w(E) subject to (3.2), (3.3)) we have 

(3.4) b(E),w(E) > 0 for all E E Yr. 

Moreover, as in (2.2) we may choose, for any particular b, an optimal w for which 

(3.5) IS(~)l > I~1 
(where as before S ( w ) =  {v e V: E w(E) = 1}). 

E~v 
Fix b, w optimal satisfying (3.2), (3.3) and let I 0 be the set of b-saturated 

matchings: 

I 0 : : { ~ e I  : ~ b ( E ) = l ) .  
EEAt 

By linear programming duality, applied to the program 

max ~ b(E)~(E) 
b 

EE~ 

subject to 

there exists a :1 

(3.6) 

b(E)>O for E E ~ ,  

b(E) < 1 for." e l  , 
EE~ 

]i( + such that 

Z ~(")  -> ~(E) for all E c S~, 
EEJ~Eil)I 

(3.7) 
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By complementary slackness (using (3.4)) equality holds in (3.6) for each E E g ,  
and supp(a) c J~0  . 

Fix E E2~. Since each JAEJA0 contains a set' meeting E, 

(3.s) E E E w(.) 
~E93~0 FQE#O,2~2F FME#O 

<_ w(E) + k ( i ' -  w(E)) = k -  ( k -  1)w(E). 

We now finish as in the proof of Theorem 1.2. It follows from (3.5) that there 
exists E with w(E) >_ 1/k. Inserting such an E in (3.8) we have (summarizing): 

E b(E)w(E):  E a(..tt) <_ E w(F) 
EE~ ~EgY~o FME#O 

< k -  ( k -  1)w(E) < k -  1 +  1/k. 

As in Theorem 1.1 we have the following sharpening. 

Theorem 3.1. If ~ i s  a k-uniform hypergraph, k >_ 3, and there is no projective 
plane among the subhypergraphs of ~ ,  then for any b:gZ[--~ ~+ 

(k  - _> 

Proof. First, one can prove the following form of (2.2). 

(3.9). For any particular b, there exists an optimal fractional matching w such that 
the characteristic vectors of the edges E E g with w(E) > 0 restricted to S(w) are 
linearly independent. I 

For the proof of Theorem 3.1 follow the preceding proof as far as the inequality 
(3.8). To finish from this point it suffices to show the existence of an edge E E 
with w(E) > 1/(k - 1). 

Suppose instead that for every E,w(E)< 1 / ( k -  1) holds. Then for every v E 
S(w) we have deg(v)> k. This implies that  g is k-regular that IS(w)[ = Ig[. Thus 
by (3.9), there is only one optimal fractional matching, namely w ( E ) -  1/k. 

Since every edge is intersected by at most k2-k others, and 2~ does not contain 
k 2 -  k + l  pairwise intersecting edges (they would form a projective plane), Brooks' 
theorem (see [2]) implies that 2~ can be decomposed into k 2 -  k matching, H i ,  1 < 
i < k 2 - k, Thus 

1 1 k2-k 
E b(E)w(E)= --~ E b(E)= --~ E E b(E)< k(k 2 - k ) .  

EE~ EE~7~ i=1 EEJA~ 
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4. P r o o f  o f  T h e o r e m  1.4 

In this section we reduce Theorem 1.4 to Theorem 1.5, which we use in the 
form 

(4.1). I f  Ys is k-uniform and intersecting, and N E = 0 ,  then for any x :Y~---~+ 
EEYs 

with E x ( E )  = 1, 

k 2 
v-,2__, x-,2., IE n FIx(E)x(F) >_ k2 _ k + 1" (4.2) 

EE.-~ F E ~  

(This follows from Theorem 1.5 by rational approximation and clearing of 
denominators in (4.2).) 

By linear programming duality Theorem 1.4 is equivalent to 

Theorem 1.4'. For any intersecting Ys there exists t : V --~ I( + such that 

(a) ~ t (v )>  IEI for all EEYs 
v~E -IEI2-1EI+I 

(b) E t(v)<_l. 
vEV 

Proof  of Theorem 1.4'. We show that  an appropriate t may be obtained as follows. 
Let k=min{IB  I :B E ~ } ,  ovgk= {B Eo~ : IBI =k}.  

Suppose first that  there exists p E A { E : E E . . ~ k } .  Let E I \ { p } , . . .  , E l \ { p }  be a 
maximal matching in the family { E \ { p }  :EEYfk}. I f / > k + l ,  then IFI > k + l  for 
p ~ F  E Yf, and we may define t as follows. 

k for v = p  k --rZ-g~k+l 
t(v) = ~zZT~k-1 for v E E1 \ {p} 

0 for v ~ El .  

I f / < k + l ,  then let 

k 2 for v = p 

t(v) = k+l l(k2+k+l ) for v E (El U ' - -  U El) \ {p} 

0 for v r (El  U . . .  U El). 

Suppose now that  Vds k = ~. We construct t using another function f .  Suppose 
f :  Zr k --~ R + satisfies ~ f ( B )  = 1/k.  Define t = t f :  V --+ R + by t(v) = ~ f ( B ) .  

B3V 
Then for A EYs 

t(v) = ~ IA n Ulf(B). 
yEA BE~k 

Now 

E t(v)=k E f(B): l 
vEV BE~k 
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gives (b); and for IAI > k, (a) holds automatically since v(o3f)= 1 implies 

1 ~AI 
IA n B] f (B)  > E f ( B )  = -s > JAI 2 IAI + 1" 

B E g k  B E ~ k  

It is sufficient to show 

(4.~). I f  Js is an intersecting k-uniform hypergraph with 

exists f:,Tf---~iR + such that 
k (a) For a11 A E.~ one has ~ IA n B I f ( B )  > ~2-Z---~-+l , 

B 
1 (b) E I (B)<  ~. 

BEg 

Proof  of (4.3) Consider the quadratic programming problem 

(4.4) 

minimize E E I A m B ] x ( A ) x ( B )  
AEo~t ' BEo~ 

subject to x : o ~  --~ ~+  

E x(A) = 1. 
AEg 

f)  E = O, then there 
EEg 

Let x be an optimal solution to (4.4) and suppose there are A, AtE 2~ such 
that 

(4.5) E ]An BIx(.b') > ~ IA' n BIx(B) 
BE~ BE.,~ 

Define y E (N+) ~ by 

and x(A) > O. 

y(A) = x(A) - 

y(A') = x(A') + 

y(B) = x(B)  i f B # A , A ' .  

Then an easy calculation gives 

~ IB n Cl (x(B)x(C) - ~,(B)y(C)) 
BEN C E,,-~ 

= 2e ~ (IA n BI - I A '  n B I ) . ( B )  - O(~ 2) > o. 
BEg 

for small enough positive e, contrary to our choice of x. We conclud~ that (4.5) 
does not occur, that is, there is a number s such that 

>_=s i f x ( A ) > O  IA A B[x(B) 
- -  s i f x ( A ) = 0 .  

BEN 
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By (4.1) 

8 
]r 

~_, x(A)s = ~_, ~ IA N BIx(A)x(B ) > k2 k + 1" I 

Now set f (A)=x(A) /k  for A E ~ .  
Then (b) of Theorem 1.4' is automatic, and we have just shown (a), since for 

any A E ~ ,  

E IA N B]f(B) = E JAN BIx(B ) > 1" + 
BE.,~ Br 

5. P r o o f  o f  T h e o r e m  1.5. 

A pair ~d, ~ of families of subsets of V is said to be cross-intersecting if ANB 
0 for all AE~d, B ~ .  The key to Theorem 1.5 is the following simple observation. 

Lemma 5.1. If.~, 2~ are cross-intersecting then 

AE.,d At EM BE~ B~ E2 

Proof. Define vectors a , b  E ~ v  by 

a(v) = deg~(v) ;=  [{d E M :  v E g}l, 

b(v) = deg2(v ) := I{B E ~ : v  E B}I. 

Then, with (a,b) the usual inner product on Nv,  

~ IAnA'l ~ ~ ]BnB'[--[lal[211bl[2_> (a,b} 2 

AEod A 'E~  BE,~ B'E~' 

= ~ ~ t A n B t  >_l~I21:~L 2 
AEM B E 2  

(the second inequality holding because M, .~ are cross-intersecting). 1 

Now let ~ be as in Theorem 1.5, say with [~1 = m ,  and suppose 

k2m 2 
>- Z Z WnF, (5.1) k 2 - k + 1 

EEAr FE2f 

In case of k = 2 the hypergraph g should be a triangle, g = {El,  E2, E3} with 
edge multiplicities #1,/z2,/z3, and an easy calculation shows that  (5.1) implies Pl = 
#2 = #3, and thus equality holds. From now on we suppose that  k _> 3. 
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Fix v E V and set 
M= {A E~ :vE A} 

d = IMI = deg~(v).  

Apply Lemma 5.1 to od\{p} and ~.  

(5.2) E E(]AMA'I -1)  E E 
AEo~ A'E~ BE~  B ' E 2  

Set a=(m-d) -2 E E IBMB'I �9 Then 
B E ~  B '  E.~ 

(5.3) 

(Notice that the hypothesis 

or, equivalently, 

(5.4) 

It follows that  

(5.5) 

IB n B'I ~ 1~121~12 = d2(m - d) 2. 

l < a < k .  

N A = ~  gives d<m.) In terms of a, (5.2) becomes 
AE~ 

E E (IAMA'I- 1) >_ d2/a, 
AEM A'  @d 

AEod A' Eod 

E IE n FI _> E E IA n A'I + E E 18 n 8'1 + 2~(~- ~)j 
EE~f FE~f AE~ AIE~ B E 2  B ' E 2  

> ( ld-1)  d2+a(m-d)2+2d(m-d) 

= 1[(a2 - a + 1)d 2 - 2(a 2 - a)md + a2rn2]. 
a 

For given m, a the right hand side of (5.5) is minimized at d = ~ where it 
aZ_a_t_l , 

a2m 2 
takes the value ~ .  Combining this with (5.1) gives 

k2m 2 a2m2 
> ~2 ~2 IE n El > a2 a + 1 ( 5 . 6 )  k 2 - k + 1 -  - - " 

EE3t' F E ~  

x 2 For the function g(x); = ~ one has 

g(x) =g(k) i f~c ~ , k  
< g(k) otherwise. 
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Thus by (5.3) and (5.6), 

aE (1, ~ _ 1 1 U  {k}' 

But if a = k the ;$ consists of copies of some fixed edge B and we may sharpen (5.4) 
via 

F_, (IA n A'I - l) >_ 
Ae,,d A'EM 

[ArhAII>I 

( E t  E 1) +(k-2)d>d2/k+(k-2)d" 
AE A~ EM 

IANArt>1. 

In particular, for k >_ 3, this gives strict inequality in (5.4) and in the second 
inequality of (5.6), which is impossible since the left and the right hand sides of 
(51.6) are equal. 

It follows that 1 < a_< K~--r-1" Inserting this in (5.4) and letting v E V vary yields 
the basic inequality 

(5.7) E E IEAFI>- ( 2 - k ) ( d e g ( v ) ) 2  for all vE V. 
E~v F~v 

Summing on v gives 

(5.8) E E ]EnFI2= E E E IEnFIk ( 2 - k )  E (deg(v))2" 
EEN FEN vEV E~v F~v vEV 

Furthermore, 

(5.9) -2  E E I E n F t = - 2 E  (deg(v))2" 
EEN FE~ v~V 

(5.10) E E 1= m 2 
EEN FEN 

Summing (5.8)-(5.10) gives 

(5.11) E E (IE f? FI -- 1)2 > m2 1 _ - ~ ~ ( a e g ( v ) )  2- 

EEN FEN vEV 
Thus, noting that 

(5.!2) 

we have 

_> 

[ E N F [ - I > _ ( I E M F [ - 1 ) 2 / ( k - 1 ) ,  

E ( d e g ( v ) ) 2 -  ra2= E E ( I E N F ] - I )  
vEV EEN FEN 

-- -- -s vCV / EEN FEN 
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and a little rearranging gives the inequality of Theorem 1.5: 

k2m 2 
(5.13) E E l E a F ] =  ~-~- (deg(v))2 -> k 2 _ k  + l" 

EC~ FC2( vEV 

Suppose now that  equality holds in (5.13). This requires that equality always 
hold in (5.12), in other words that  

(5.14) I S n F] �9 {1, k} for all E,  F �9 o~. 

Now for v �9 V let A1,. . . ,Ap be the distinct sets on v which appear as edges o f ~ ,  
(note that  p < k), and let Pi be the multiplicity of Ai. Since (5.7) must hold with 
equality we have 

P k ~ (INn A"I- 1 ) - - ( k -  1 ) E p  2 > - l(deg(v))2 
A2vAr~v i=1 P 

k - 1  
-> - ~  (deg(v))2 = Z Z (IA n A'I - 1). 

A~v A~v 

Thus p = k and all #i are equal to some fixed #, which (by connectedness of Y{, 
say) does not depend on v. That  is, Y{ consists of # copies of some k-regular, k- 
uniform 1-intersecting hypergraph 2{0, and such a hypergraph is easily seen to be 
a projective plane. I 

Remark 5.1 The following example shows, that  one cannot easily sharpen Theorem 
1.5 for hypergraphs with no projective planes. 

Let T = {vO,Vl,... ,vk} and let ~ consists of t copies of {Vl, . . . ,vk} together 
with (k - 1)t edges containing {v0, vl }, 1 < i _< k, all edges being disjoint apart from 
the intersections forced by these specifications. Then [~1 = t(k 2 -  k + 1), and we 
have 

1 k 2 ( 1 )  
1 12 Z Z IE n FI - k2 - k + 1 + O , 

EEX FCN 
which can be arbitrarily close to the minimum ratio as t---~ oe. 
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