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Given a po lygon  II wi th  n vertices whose  sides are walls. Guards ,  located at vert ices can  
see all directions,  bu t  canno t  see beyond  walls. We prove t h a t  at  mos t  In~2] gua rds  suffice to see 
everywhere  t he  whole plane.  If II is not  convex, t h e n  [n /2 j  suffice. 

1. I n t r o d u c t i o n  

The prison yard problem is one of a family of guard problems, where one places 
guards at various points in or on a simple polygon (representing the walls of an 
enclosure) with the aim of covering (seeing) every point of the interior or exterior 
regions with at least one guard. Here covering (or seeing) a Point means having 
an unobstructed line of sight from some guard to the point. The most celebrated 
versions are the art gallery and the rectilinear art gallery problems, raised by Klee 
[4] in 1973, and solved in [2] and in [3]. Aggarwal's thesis [1] and a monograph by 
O'Rourke [7] discuss these matters mainly from the computational geometric point 
of view. In the prison yard version only vertex guards are allowed (i.e. guards 
placed on vertices of the polygon) and they required to cover both the interior and 
the exterior of the polygon. It is easy to see that  a (strictly) convex polygon with 
n vertices requires at most [n/2] guards and indeed needs that  many. 

Theorem 1. In/2] vertex guards suNce to cover both the interior and exterior of a 
simple polygon II of n vertices. In the non-convex case [n/2] guards suffice. 

The prison yard problem was independently posed by D. Wood and J. Mal- 
kelvitch [7]. The value F /21 was conjectured by O'aourke, [7, Conjecture 6.1] 
who gave an upper bound L2n/JJ. This upper bound was improved to F7n/12] 
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by Kooshesh, Moret and Sz@kely [5]. A recent excellent survey is [8] by Shermer; 
further partial results can be found in the paper of M. Watanabe [9]. 

We cannot resist to quote O'Rourke's book [7, p. 156.]: "Proving or disproving 
this conjecture is one of the most interesting open problems in this fields." O'Rourke 
also devotes a short section to negative results, two natural approaches of the prison 
yard problem. Constructing counterexamples he showed that  neither one leads a 
solution. (One of the methods is dominating a triangulation by combinatorial vertex 
guards; the other one is, called Chazelle's method, to form a convex partitioning of 
the plane from the n-vertex polygon.) 

O'Rourke also considered the orthogonal case (when the sides of II are parallel 
to the axis) and proved an upper bound [7n/16] + 5. The determination of the 
exact bound remains open. 

2. P r i s o n  y a r d s  a n d  t h e  F o u r  Co lo r  T h e o r e m  

Using the n vertices of II and adding the point infinity one can obtain a 
triangulation of the whole plane, i.e. a planar graph G with n + l  vertices. The Four 
Color Theorem implies, that  there exists a subset C of the vertices of G (namely, 
the two smallest of the four color-classes) of size at most (n + 1)/2 such that  C 
meets all triangles, so C covers both the exterior and the interior of II. The only 
problem is that  C might contain the point infinity. So the essence of the proof is 
to show that for the graph G with n + l  vertices, and for any vertex w there exists 
a subset C (of size at most ( n + l ) / 2 )  avoiding w and meeting all triangles. 

But the real difficulty now is, that  the above statement is not true for all planar 
graphs G and for all w C V(G).  In the following example, G e, on 5t%1 vertices (f>_ 
2), one needs at least 3g vertices to meet all triangles if one cannot use the vertex 
w. The vertex w is joined to all the others, the vertices Pl,.. . ,P5~ form a long 
cycle (in this order), (say, Pl, . . . ,P5~ is a convex 5~-gon on the plain with w lying 
outside), moreover, for every i (0 _< i < g) N(G ~) contains the triangle formed by 
the edges P5i+lP5i+3, P5i+3Psi+5, P5i+1P5i+5; finally, the rest of the edges can be 
drawn arbitrarily (by maintaining planarity). Any cover avoiding w must contain 
at least 3 vertices from P5i+l , . . .  ,P5i+5 to meet all the triangles containing w and 
the triangle P5i+lP5i+3P5i+5. This example is an extension of the one given by 
O'Rourke [7, p. 159.] on 10+i  vertices. But the statement is true and will be 
proved by a tedious induction, (defining not one but immediately two covers A and 
B, see the rest of the paper) if G \ w has no chord: 

Theorem 2. Let ag be a triangulation of the sphere with vertex set V, w c V an 
arbitrary vertex. Each triangle of ~ can be dominated by a subset of V of size 
[IVI/2] avoiding w i f  ~ \ w has no chord. 

Note that  Theorems 1 and 2 are not equivalent, although the connection 
between them are ensured by Lemma 5, that  the convex hull of a simple polygon II 
can be triangulated without using any chord (except in the case II itself is convex, 
but this case is trivial). It is very likely, that  in Theorem 2 [IVI/2] can be replaced 
by kiVl/2j. 

Our proofs for Theorem 1 and 2 are constructive and give rise to low-order 
polynomial (in some sense, linear) time procedures for constructing a covering 
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obeying this bound. In general, finding the minimum number of guards is known 
to be NP-hard (Lee and Lin [6]). 

3. D e f i n i t i o n s  

The convex hull of a set S is denoted by convS. [x,y] stands for the segment 
with endpoints x and y. The boundary of a region R is denoted by OR. 

A planar simplicial complex 3 ~ is a set of three kinds of members, h 0 = VUNUJ, 
where V c R 2 is a finite set, 8 is a collection of closed segments with endpoints from 
V, and 3" is a set of closed triangles with sides from N. Moreover, the members of 
3O are joined regularly, i.e. the set V and the interior points of the segments from 

and the interior points of the triangles from 5 r are pairwise disjoint. We use the 
notation V(3O), N(3O), ~nd 5r(3o) to refer for the set of vertices, edges, and triangles 
of 5~ respectively. We frequently identify 50 by its abstract simplicial complex, so 
{x,y} E3O and {a,b,e} E3O really mean that  [z,y] EN(Se), and conv(a,b, c) E J(3O). If 
R = U3O, then 5 ~ is called a triangulation of R. 

A simplicial complex ~ is called a subcomplex of h 0 if ~ C 50. For W C V we 
define the induced subcomplex or restriction 3OIW as {X  E 50 : X c W}, and let 
b~ W = 3OI(V\ W). The members of 3O lying completely on the boundary of the 
region U3O form again a simplicial complex, 03O. A chord Ix, y] is an edge from N(3O), 
such that  Ix,Y] (~03O but both x, yE 03o. 

A planar triangulated figure, Y~, is a simplieial complex with no holes, (i.e. 
R 2 \  (UN) is connected), and it might equipped with a special vertex q = q(N) 
chosen from the boundary, q E V ( N ) ~  0N. We call a vertex on the boundary of 
ordinary if it is neither a cut vertex of ~ nor the special vertex q. The vertices/edges 
of 0N are also called eccternal vertices/edges. 

is 2-connected if it is connected and does not have any cut vertex. Then 0N 
is a cycle. A general planar triangulated figure N may have (maximal) 2-connected 
subcomplexes that are linked together at cut vertices and perhaps at cut edges or 
isthmuses. A 2-connected subcomplex ~ of N may have chords, which can partit ion 

into a tree like structure of blocks that  are chordless. 
We call a 2-connected subcomplex ~ of N simple if it either contains no chords 

(in ~), or IV(~)I =4 ,  or if each of its chords cuts off from the rest of ~ exactly one 
triangle T whose third vertex is ordinary. Any such triangle T will be called a petal 
of ~, and the third vertex is a petal vertex of ~. A chord not cutting off a petal is 
called non-trivial. 

4. C o m p a t i b l e  cover s  

Let 3O be a planar triangulation. A cover of the triangles is a subset of the 
vertices C C V(3O) meeting all members of J(3O). A cover C is compatible with the 
subset of edges M C N(J) ,  if it meets every member of od, too. 

A quasi 2-coloring, X, of the edges of N with colors c~ and ~ is a mapping X : 
N---~ {9, c~,r {a,/~}}, i.e. it is a partial multicoloring, every edge can have both, one, 
or none of the colors c~ and 8. We say that the covers A and B are compatible with 
a given quasi 2-coloring X, if A is compatible with the set of edges having color c~, 
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and B is compatible with the set of edges having color ~, i.e. with the set ( E  e 8 : 
~ e X ( E ) } .  

Our main results, Theorem 1 and 2, are implied by the following. 

Theorem 4. Let :~ be a planar triangulated figure with n vertices, each of whose 
external edges is labeled with (at most) one label chosen from the set {~,~}. 
Isthmuses, which are external on both sides, can have both labels. Let q be any 
vertex on the boundary of ~ ,  (called the special vertex). Then there are subsets A 
and B of the vertex set of ~ such that: 

- -  each triangle of ~ intersects set A and set B; vertex q lies in set 13; and 
every external edge of ~ intersects the set denominated by its,label(s), and 

- -  the cardinalities of A and B sum to at most n. 

The proof of Theorem 4 goes by induction on the number of vertices, it consists 
of several reduction steps. We will describe a sequence of "reductions" that  allow 
us to obtain sets A and 13 obeying our conditions given similar sets on a smaller 
figure. There may be many generalizations to non-polygonal regions that  can be 
resolved by the same argument. 

5. T r i a n g u l a t i o n s  w i t h  no  c h o r d s  

In this section before starting the coloring process, we find an appropriate 
triangulation of conv II. The following lemma was also proved (independently) by 
Kooshesh, Moret and Sz6kely (see [5, Lemma 4]). 

Lemma 5. Given a non-convex, simple polygon II with vertex set V. Then one can 
triangulate conv II obtaining :~ so that 
(5.1) ~ uses only vertices of II, i.e. V ( ~ ) = V ,  
(5.2) :~ uses all edges of II, and 
(5.3) :~ does not use any chord ofconvII .  

Proof  of Lemma 5. First, note that  no side of II is a chord of co ' v i i .  Hence, 
starting with the sides of II and convII, and adding edges joining vertices of V as 
far as it is possible one gets a triangulation satisfying (5.1) and (5~2). Let  J be a 
triangulation satisfying (5.1) and (5.2), and having minimum flu d~ber of chords of 
D :--V(convII).  We claim that J satisfies property (5.3), as well 

Suppose, on the contrary, that  {x,y} E ~(5 p) with x ,y  E D is ! a chord. There 
are two triangles containing this inner edge {x, y, a}, {x, y, b} e ff(hP). ~As x and y 
are on the boundary of convII, {x,a,y,b} form a convex quadrilatergl. I f{a ,b}  
D, i.e. either a or be  int convII, then replacing {x ,y}  by {a,b} (and also {x ,y ,a}  
and {x,y ,b} by {a,b,x} and {a,b,y}) one gets a triangulation with fewer chords. 

Otherwise, a,b c D. Let K C D be a set containing {a,x ,b ,y}  with maximal 
cardinality with the property U(b~ = convK. (This means,~.that cony / (  is 
triangulated only by the sides and chords of D, like {a,x,b,y}.) ' / .There are two 
neighboring vertices of 0convK,  say u,v, such that [u,v] ~ I I .  Then there is a 
vertex z e int c o n v I I \ c o n v K  with {u ,v , z}  E 5P. The.set  K t2 {z} ~ forms a vertex 
set of a convex polygon. Delete 3~[ (K U (z))  from J and add u new 'triangulation 
obtained by the chords {{z,k} :/~ C K}. The Obtained new triangulation of convII 
has fewer chords of D than 5 p. This contradiction completes the proof. | 
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6. P r o o f  o f  t h e  P r i s o n  Y a r d  T h e o r e m  ( an d  T h e o r e m  2) v ia  T h e o r e m  4 

Proof  of Theorem 1. As the convex case is easy, let II be a non-convex, simple 
polygon with vertex set V, IV] = n. Denote by D the vertex set of convII. These 
vertices are naturally ordered along 0convH, D - - { x l , x 2 , . . .  ,Xd}. We may suppose 
that  [XdXl] ~ 11. Apply Lemma 5 to get a triangulation 5 ~ of convII with no 
chords. Put  the vertices of D into two sets, A0 and B0, alternately, i.e. A0 :-- 
{z l , xa , . . .  ,x2i+l,...}, and B0 := {x2i :2 < 2i <d}. 

Let ~ denote the triangulation b ~ \ D. It is a (connected) planar triangulated 
figure. Let q, the special vertex of ~ ,  be defined as the third vertex of the triangle 
of b ~ containing [xl,xd]. Label the edge E E 0R by the color a (or/3) if a triangle 
T E SO, E C T ESO meets B0 (or A0, respectively). Isthmuses can have both labels. 
Label a means that  if we want to extend the set A0 to a cover of the triangles of 
3~ using only vertices from V \ D ,  then one or both endpoints of that  edge must be 
placed in A. Theorem 4 supplies two compatible covers, A and B, of :R with q E B, 
and with IAI + 113] _<n-]DI.  

It is easy to check that  both of the sets Ao tO A and Bo tO B meet all triangles 
of 5O. Indeed, the triangles of ~R are covered by both A and B. The triangles of 
5O with an exterior edge [z/Xi+l] meets both Ao and Bo (with possible exception 
{xl,xd,q} , but then xl EA, qEBo). All the other triangles meets D in exactly one 
point, so they are covered by the compatibility of a and A, and/3 and B. 

These covers Ao tO A and Bo U B form vertex guard sets for the exterior of 
convD, too, hence for the whole plane. Indeed, Ao covers this exterior, and BO 
covers almost all the exterior with the possible exception is the three-sided region 
bounded by the segment [xl,xd], and by a ray starting at xl  opposite to x2 and by 
another ray starting at x d and opposite to Xd_ 1. However, this region is guarded 
by the vertex q E B. Finally, the smaller of these sets has cardinality at most n/2. 1 

Proof  of Theorem 2. Like the above proof. However, BO tO t3 does not necessarily 
cover the triangle {Xl, Xd, W}, SO we add to it one more element from {xl, Zd}. We 
get [Ao toAI+ IBo UB] _< IV] + 1. Take the smaller one. | 

7. S t a r t i n g  t h e  i n d u c t i o n  

To prove Theorem 4 we apply induction on n. If :R is not connected, than we 
can construct the appropriate compatible covers for each component separately. If 
J(3~) = ~ (and :R is connected), than ~(R) is a tree. It is a bipartite graph, so the 
color class not containing q can be A, the other one can be B. From now on, we 
may suppose, that  :~ is a connected triangulated figure, and n > 3. 

If the special vertex, q, is a cut vertex, then there exist V1, V2 C V(~) ,  VIMV2 = 
{q}, V1 to V2 = V(~)  such that  the subcomplexes ~1 = ~IV1 and ~2 = :RIV2 are 
connected only at the vertex q, ~ = ~ l  U~2. Apply the induction hypothesis to :~i 
( i=  1,2) to obtain the compatible covers Ai, Bi with JAil + ]Bi[ _< I~]. Define A =  
A1UA2, B = B I U B 2 .  As q is the special vertex we have qEB]MB2 hence we get 
that I B] < I B1 [ + I B2] - 1. This implies [A] + I BI _< IV1 [ + IV21 - 1 = n. 

If any vertex v on the boundary of ~ has no label ~ on any of its incident 
boundary edges, we may place v in set A, remove v from :R, and place labels /3 
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on all the boundary edges of :R \ v that were internal in 5~ and labels c~ and fl on 
any isthmus in :~ \ v that  is not an isthmus in :~. Finding sets A and B in N can 
therefore be accomplished by finding corresponding sets in :~ \  v so labeled (using 
our induction hypothesis); and appending v to ~ \  v, and to set A. The same 
statement holds with A and B interchanged except for vertex q. We may therefore 
restrict our attention to 5~ such that  every ordinary vertex has labels c~ and ~ on 
its two incident boundary edges. 

If 3~ contains a pendant vertex t, connected only by an isthmus, [t,u], to the 
rest of :~, we may place u in both A and B, and t in neither. With u in both A 
and B, both sets intersect every triangle and edge containing t or u. If we find sets 
A and B in 5~\ {t,u} obeying our conditions with arbitrary labels on any edges 
external in 5~\ {t,u} but not in :~; by adding u to each set we will have such sets 
in N. The above argument must be modified in the case t = q; then put t into B, 
and u into A, and call u to the special vertex of N \ t .  The role of c~, A and fl, B 
should be exchanged. 

Lemma 7. Every planar triangulated figure, ~ ,  with ]V(:~)I _> 3 and with the 
distinguished vertex q, contains one of 
(7.1) a pendant vertex other than q; or 
(7.2) a simple 2-connected region ~ connected to the rest of ~ at a single vertex 
vl, with q not in ~\1)1; or 
(7.3) a simple 2-connected region ~ connected to the rest of ~ through two 
adjacent vertices [vl,v2] ~0~, with q not in $ \  {vl,v2} and with IV(~)] >4; or 
(7.4) ~ is itself simple. 

Proof. Recall that  for IV(~)I > 5 simple triangulation means that it is 2-connected, 
no non-trivial chord, but  it might have petals. We may further suppose in Case 
(7.2) that  vl # q because we already supplied reduction for the case q being a 
cut vertex. Proof of Lemma 7 can be obtained by standard argument left to the 
reader. | 

8. T h e  m a i n  idea  of  t h e  p r o o f  of  T h e o r e m  4 

Consider a simple 2-connected part of :~, denote it by ~ (this is usually given 
by (7.2)-(7.4)). ~ is a planar triangulated figure, its boundary edges inherit the 
quasi 2-coloring of 0:~ (of course, only those edges appearing simultaneously in c9~ 
and in 0:~). Let C : = V ( ~ )  denote its vertex set, D the vertex set of the boundary, 
D = {vl,v2,.. .  ,Vd} in this order, d _> 3, (i.e. D = V(O~), [vivi+l] E @(~) for all 1 < 
/ <  d, Vd+ 1 = Vl). We may suppose that  the colors a and fl alternate in the edges 
0~, except in at most one vertex in case of d is odd. But, in general, we do not 
require that  all the boundary edges are colored, neither the presence of a special 
vertex in D. 

As ~ is simple, for any triangle T E Y(~) one of the following holds 
(8.1) T n D = ~ ,  T is completely internal; 
(8.2) I T n D I = I ,  T has exactly one vertex on the boundary; 
(8.3) T n D = E  is a boundary edge from 0~, the third vertex is internal; 
(8.4) ITND] =2,  T contains (exactly) one chord. This chord cuts off a petal; 
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(8.5) T is a petal, it contains three consecutive vertices of D; 
(8.6) T has exactly two chords, then $ is a pentagon with these two chords; 
(8.7) T has exactly three chords, then ~ is a hexagon with these three chords; 
(8.8) T = J ( 6 ) .  

Let X and Y be a partit ion of D, X U Y = D ,  X N Y = ~ .  (In most cases 
we simply put the boundary vertices alternately in two sets, X = {vl ,va,vs , . . .}) .  
Using the induction hypothesis, we are going to construct two subsets of C\D,  Xin 

and ~ n ,  such that  ]Kin ] + ]]qnl-< IO\D], and the sets X * =  X U X i n  and Y * =  
YtoIqn both cover all the triangles T E 3"(~) whenever T has at most one vertex on 
the boundary D. We call X* and Y* the extensions of X and Y in 6. 

These extensions are constructed exactly in the same way as in Section 6 
the sets A and B. Consider the triangulation 6 \ D. Label the edge E in its 
boundary by the color ~ (or v) if a triangle T, with E C T E g meets Y (or X, 
respectively). (Isthmuses can have both labels.) Theorem 4 (applied to 6 \ D  with 
this boundary coloration) yields, Xin , a cover of E \ D  compatible with ~ and :gin, 
a cover compatible with v, such that  the sum of sizes of these sets does not exceed 
Ic I -  IDI. It is easy to check that  both of the sets Xin and Yin meet all triangles 
of 6 having no chord. Let us note, that  we can further designate one vertex from 
O(E\D) into Xin or Yin (as a special vertex of that  figure). 

If we would like to use X as (a part of) a cover of 6 compatible to a, then a 
petal vertex vi E X A D has no significant role in covering the triangles of $ ($) ;  it 
can be replaced by any of its neighbors vi_ 1 or by Vi+ 1. Even more, these vertices 
meet more triangles, vi's only function is to meet those external edges [vi-1, vii and 
[vi, vi+l] of ~ which are labeled a. If one of these edges, say [Vi_l, vii, is not labeled 
by a, then we take vi out of X and instead put Vi+l in. (If none of the two external 
edges have label a then we replace vi arbitrarily by one of its neighbors in D.) 
Starting with the set X and doing the above exchange operations simultaneously 
for all eligible petal vertices we obtain the set Xa. The definitions of X/~, Ya and 
]73 are similar. We do not modify the sets Xin and :gin" We set X~ = Xa tO Xin 
and X/~ = X/~ tO Xin , Yc~ = Ya tO Yin, Y/~ = YZ tO Yin" We call this process the petal 
modification of X, (of X*, etc.). The modified set Xa (X*, etc.) meets at least as 
many triangles and edges labeled a as the original X (X*, etc.) does. 

Summarizing, let 6 be a simple figure, and suppose that  there is no triangle 
T C $ ( 6 )  of types (8.6) (8.8). Take a partit ion X to Y = D extend them in the 
interior of 6, and apply the appropriate petal modifications. Then the following 
lemma states, that  the obtained sets X*, X/~, X/~ are compatible covers with the 

following possible deficiencies. (A similar statement holds for Y*, Yc~, Y/~.) 

Lemma8. (i) IX l lXI, IX l JX*l etc., and IX*I+IY*I ICI, 
(ii) If  v C X is not a petal vertex, then v E X~ and v ~ X* 

(iii) X*, X~, X~ meet all triangles of type (8.1)-(8.2). 

(iv) If  X* (X*, or X~) misses a triangle {vi,vi+l,x} of type (8.3), then 

{Vi, Vi+l } C Y and x is not the designated special vertex of Xin. 
(v) If  X* misses-a triangle {vi,w,vi+2} of type (8.4), then {vi ,vi+2}cY,  and 
either vi+l EY,  too, or Vi+l E X  with oz=x([vi,vi+l] ) =X([Vi+l,Vi+2]). 
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(vi) If Xg misses a triangle {vi,Vi+l,Vi+2} of type (8.5) (petal), then all these 
three vertices belong to Y.  
(vii) K X ~  misses an edge {Vi,Vi+l} with aEX([vi ,v i+l] ) ,  then {vi,v~+l}CY. | 

During the induction proving Theorem 4 beside the simple reductions discussed 
above we use the following method, what we call basic reduction. 

Basic Reduction. It consists of the following steps: Select an appropriate 2- 
connected simple subcomplex ~. Put C := V(O~) in X and Y (in most cases 
alternately), then extend them to X* and Y* in the interior of ~. Change X* to 
X* and X~, and do so with Y*. We will construct the sets A1 and B1 using the 
above four sets. Consider the planar triangulated figm'e ~, (it is usually ~ \  C with 
eventually modifying the labeling on its boundary). Apply induction for ~ to get 
A2 and B2. Finally, A = A1 U A2, and B = B1 kJ B2 will satisfy the conditions of 
Theorem 4. 

The precise meaning of these reductions is that  any pair (A2,B2) that  obeys 
the conditions of Theorem 4 on the reduced region ~ can be extended to one that  
obeys the same conditions on the entire region ;~. The crucial point in the basic 
reduction is, that  one could not use simply the induction hypothesis for the two 
parts of o~, because in general IV(~ ) I+IV(~)I > n, so we have to guarantee somehow 
that  the covers of ~ and ~ fit together. 

By virtue of Lemma 7, we need to distinguish only four cases (7.1)-(7.4) to 
complete the proof. We have already provided reductions for the case of the pendant  
edge (7.1) in Section 7. The case of the cut vertex (7.2) is the subject of the next 
Section 9. It is divided into subcases according to the parities of IcI and of IDI. 
Our reduction in case (7.2) will apply to case (7.4) as well, simply set vl = q and 
follow the same argument. In the case of the cut segment (7.4) we again use four 
separate reductions depending on the parities of ICI and of ]DI. Each of these cases 
might be subdivided into several subcases. The case (7.4) when both IC t and TDI 
are even is especially complicated; it is considered in the last Section 12. 

9. T h e  case  o f  a cu t  v e r t e x  

We now turn to the problem of reducing a simple figure g, connected to $ [ \ g  
only at vertex vl,  with q not in g \ vl (or g = ; ~  itself is simple). Let C denote its 
vertex set, and let D be the set of vertices of the boundary, D = {vl, v2, . . . ,  Vd}, d > 
3. We may also suppose that  ~ is a minimal subcomplex supplied by Lemma 7, so 
if the special vertex qED, then q=v 1. 

Consider first the case when E = [Vd, V2 ] E N(~) and it is a cho rd .  The 
minimality of ]C I implies that  E does not cut off more than one vertex from the 
rest of g (and so h'om ~) ,  because we then use reduction (7.3) for ~ \ v,  (or for a 
subfigure of that).  Hence, C=D={vl ,v2 ,va ,v4}  with the only chord E.  Let A1 = 
B1 ={Vl,V3} and apply induction to ~ = ~ \ C .  

Consider the case when a c h o r d  of g starts from vl,  F = [vl,vi] E ~(~), 1 < 
i < d. The minimality of ICI implies that  F does not cut off more than one vertex 
from ~ (on either side), because we then use reduction (7.3). Hence, C = D = 
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{Vl,V2,V3,V4} with the only chord F =  [Vl,V3]. Let A1 = B1 = {Vl,V3} and apply 
induction to 3 = N \ C. 

From now on, we may suppose that  Vl, v2 and v d are not petal vertices of $. 
Moreover, there is no triangle in J ( ~ )  containing more than one chord. Indeed, 
suppose, on the contrary, that T has at least two chords. Then, similarly as we did 
above, one can use one of these chords to cut off a smaller simple figure (containing 
T) from $. This contradicts the minimality of IcI. 

From now on we may apply Lemma 8. Suppose that  ]D] is even.  Assign every 
second vertex on D to X and the rest to Y, with Vl in X, i.e. X={v l , v3 , . . .  ,Vd-1}, 
Y = {v2, v4, . . . ,  Vd}. These assignments can be extended to all of ~ as described in 
Section 8 and both X* = Xin U X and Y* meet all triangles having at most one 
vertex from D (types of (8.1)-(8.2)). Our alternating assignment assures that  there 
is a member of X and of Y in every edge in D, triangles of $ that  contain an edge 
of D intersect both X and Y automatically. So X and Y cover all triangles of 
types (8.3) and (8.5). If a triangle TE3"(~) is not covered by X, then it must have 
exactly one chord, say [vi,vi+2] , with both endpoints in X,  vi,vi+ 2 E X and an 
inner vertex w ~ D, T = conv(vi, vi+2, w), i.e. of type (8.4). So after the appropriate 
modifications for petals X* and Yc~ are a-compatible covers of ~, while X~ and Y~ 
are/~-eompatible covers. 

I f  Ixl  _< Ic I /2 ,  then we may use X~ for A1 and X/~ for B1 which will assign 
vl to both. This will reduce the problem to 3 = 5~ \ ~. O t h e r w i s e ,  we must have 
IY*l _< ([C[-1)/2,  and we may use Y* for A1 and Y~ for B1, and reduce the problem 

to ~ \  ( C \ v l ) .  

In the rest of this section we suppose that  IDI is odd .  Assign vertices of D 
alternately to X and Y again with Vl in X, but now two adjacent vertices Vl, Vd of 
D must be assigned to the same set, which we choose to be X, X := {Vl, v3, . . . ,  Vd}, 
Y :=D\X .  This assignment can be extended to $ \ D  as before, but now the vertex 
of $ \ D whose incident boundary triangle contains [Vl,Vd] must be a member of 
Y* in this extension. Our induction hypothesis proves the existence of extensions 
obeying this condition. Again, similarly as above, we get the compatible covers 
X* and X~ after appropriate modifications for petals. However, the analogously 

obtained !/* and Y/~ are not necessarily compatible covers of $, they might miss 

the edge [vl,vd]. 

I f  IX*[ _< IC[/2, then the resulting sets X* can be A1, while X/~ can be B1 and 

we can reduce to ~ =:R \ C. I f  IV*l< ( I C r / 2 ) -  1, then we can reduce to ~ = :~  \ C 
with " * B:=Y~+Vl .  A1 .=Y~ +Vl ,  

The only missing case is IY*[= ( [ c I -  1)/2. From now on we may suppose that  
IcI is odd .  Redefine X as X={Vl,V3, . . .  ,Vd_2}, and let Y = D \ X .  Then the only 
homogeneous boundary edge is [Vd_l,Vd]. We explain the subease when its l abe l  
is ~. (The other subcase follows similarly by replacing/3 and a, and X} by X~*.) 

Using the induction hypothesis extend X and Y to get X* and Y*, and modify 
them at the petals. Then !/*, Y~ and X* are compatible covers of ~, while X~ 

might miss [Vd-lVd]. 
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In this case, if  IY*I <_ ( ICI -  1)/2, then we can use !/* for A1 and Y/~ for B1 

and reduce to ~ = : g \ ( C \ v l ) .  I f  no t ,  we must have [X*l <_(IC1-1)/2 and we can 
use X* as A1 and X}+v  d as B1, reducing to ~ = : R \ C .  

10. T h e  case  of  a cu t  s e g m e n t ,  b e g i n n i n g  

We now suppose that  our simple 2-connected figure ~ with boundary D = 
{Vl,. . . ,  Vd} (Vd+l = vl) is connected to the rest of N through the vertices vx and v2 
of the edge [Vl,V2], the other vertices from D are ordinary (in ~ ,  and so in ~). The 
labels a and/3 alternate around ~ (except [Vl, v2] has no label). Again, C denotes 
the vertex set of ~. The special vertex q ~ C\{vl,v2}. We may suppose again, that  
IC[ is minimal among such sets (and IC[ >_4). 

Consider first the case when one of the connecting vertices v1,~02, say v2, is 
a p e t a l  vertex in ~, {Vl,V2,V3} C J (~ ) .  The minimality of IC[ implies that  the 
chord [Vl,V3] does not cut off more than one vertex from the rest of ~ (and so from 
~) .  Hence, C=D={vl,v2,v3,v4}. Suppose that  the (identical) labels  on the the 
boundary edges [v2,v3] and [v4,v]] are a, (the case/3 is similar). Apply induction 
to the complex ~ - - -N\  {v3, v4} with label a on the new boundary edge [Vl, v2]. We 
obtain the compatible covers A2 and/32,  with [A2[ + [B21 _< n - 2 .  Suppose, that  
the vertex vi belongs to the cover A2 (i E {1,2}). Then the sets A := A2 U {v3_i}, 
B := B 2 U {va} yield compatible covers for the whole ;~. 

Consider the case when a triangle T = {a, b,c} E J ( ~ )  contains more than one 
c h o r d s  of ~, say [a, b] and [a, c] are chords. The three vertices of T cut 0~ into tree 
arcs. The cut segment [vl,v2] can not lie on the arc ac (neither on ab), because 
then the segment [a, c] cut off a smaller simple figure (containing T) from ~. Thus 
it lies on the arc bc. The segment [b, c] cannot be a non-trivial chord, so it is either 
cuts off a petal, or it is an external edge of ~ (i.e., [b,c] = [vl,v2]). The first case 
is impossible, since we may suppose that  neither of vl,v2 is a petal vertex. In the 
later case ~ is a pentagon, D={vl, . . . ,v5} with the chords [vz,v4] and [v2,v4] (i.e. 
a = v4). As this figure is symmetric, we may suppose that  X([v2,v3])= a, hence 

=9. 
To find compatible covers of ;~ we apply induction to the complex ~ = ( ~  \ 

{v3,v4,v5})U~', where ~' is the petal (Vl,Z,v2) with a new vertex z and [z,vl] is 
labeled/3 and [z, v2] is labeled a. We obtain the compatible covers A2 and B2 of 
with IA2] + [B21 _<n-2 .  We may suppose that  none of them contains the artificial 
vertex x, (otherwise we may replace it by one of its neighbors), so vl E B2 and v2 
A2. Then the sets A := A2 U {v4}, B := B 2 U {v4} yield compatible covers for the 
whole N. 

Prom now on, we may suppose that  any triangle from O'(~) containing two or 
more vertices of D is either a petal, or a neighbor of a petal (and then it has exactly 
one vertex in C \  D), or contains an external edge [vi, Vi+l] (1 _< i < d). So we may 
apply Lemma 8 if needed. Furthermore, we may suppose that vl and v2 are not 
petal vertices of ~. Let z be the third vertex in the triangle containing [Vl,V2], we 
have that z C C \ D. The above properties make an alternating assignment of the 
boundary vertices into X and Y, (and then extending and modifying at the petals) 
a very efficient way of finding compatible covers. 
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11. T h e  case o f  a cu t  s e g m e n t ,  o d d  b o u n d a r y  

Let us summarize again the method applied in Section 9 in the following 
Corollary what we will use several times. (We formulate it only for X and a.) 
Let $ be a simple figure such that  there is no triangle T E $($)  with two or more 
chords (i.e. of types (8.6)-(8.7)). Suppose that the there are no two neighboring 
external edges with the same color. (This implies, that in the case d odd at least one 
edge is colorless.) Call a partition X U Y  = D strictly alternating if each but at most 
one boundary edge meets both X and Y. In the case d odd the only homogeneous 
edge is denoted by H, H E c95, and suppose its endpoints are in X, and its color is 
x(H)  = a. Extend X and Y in the interior of E, and apply the appropriate petal 
modifications. 

Corollary 11. X* is an a-compatible cover of E, X~ and Y~ are /3-compatible 
covers; Y* is an a compatible cover, except that it might miss the edge H. Finally, 
they fulfill Lemma 8 (i) and (ii), too. | 

We now continue the investigation of the case when ~ is a simple 2-connected 
figure connected to the rest of 5~ through the vertices vl and v2 of the edge [vl,v2]: 
In view of the last paragraph of the previous Section we could apply Corollary 11. 

If IDr is o d d  a n d  IcI is even,  then we place the vertices in D alternately in 
X and Y so that  b o t h v l  andv2 are i n X ,  ( X = { v l } U { v 2 i : 2 < 2 i < d } ) .  This 
assignment can be extended into $ by induction (with z being a special vertex of 
E \ D ,  z E Yin), and both X* and Y* (after some modifications at petals) can be 
used for either A1 or B1 (according to Corollary 11). I f  IX* I _< IcI/2, then let A 1 :=  
X~, B1 = X} and reduce to 2 = :~  \ C. (Here we used that  the vertices vl, v2 were 
not moved at the petal modification, so {Vl,V2} C X~ N X}.) Othe rwise ,  2[Y*[ _< 

IC1-2 and we may use Y* for A 1 and Y~ for B1 and reduce to 2=:~\ (C\{v l ,v2}) .  
If ]DI and IC[ are b o t h  odd ,  we make use of two different assignments of 

vertices of D to X~ and Y~ (7 E {a,~}), in each of which one of Vl and v2 is in 
each set, and some adjacent pair {v'Y,w ~} lies in the same set, say X ~. In one, 
[va,w a] is chosen to have the label a; in the other/3. E.g., suppose that  the label 
on [v2,v3] is a, then the label on [Vd,Vl] is /3. Define X ~ as {v2} U {v2i+l : 3 _< 
2 i + 1 < d } ,  y c ~ : = D \ X  a, and let X z : = { v 2 i + 1 : 1 _ < 2 i + 1 < _ d } ,  Y ~ : = D \ X P .  
Assign the third vertex of the triangle containing the homogeneous edge Iv ~, w q'] to 
a special vertex of ~ \ D  belonging to Yi~n (if that  vertex belongs to C\D) .  Extend 
X'Y, Y'Y into E by using the induction hypothesis. Corollary 11 implies, that  after 
petal modifications the sets Xa ~*, X~*, YJ*, Yff* are compatible covers of E, while 

Yo~* might miss the edge Iv2, v3], and Yff* might miss the edge [Vl, Vd] (only). 

In either case, if  IX~/*[ < IY*[ we may use Xa ~* for A 1 and X~* for B1. In 
case of 7 = a reduce to 2 = N \ (C \ {vl}) (where Vl is in yc~ and v2 in X a in this 
assignment); In case of 7 = ~  reduce to ~ = : R \  ( C \  {v2}). 

Finally, it m u s t  be  that  [Y~*[ _< ( IC[ -  1)/2 in each case, and in consequence 

we may use one of these Y's for A1 := Yf*  and the other for B1 := Yff*. Thus Vl 
will lie in the compatible cover B1 and v2 in set A1, and the cardinalities of A1 and 
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B1 sum to I c l -  1. This allows a reduction from :~ to ~ = (:~ \ (C \ {vl,v2}))U ~' 
where ~' is the petal (vl,x,v2) with a new vertex x and [x,vl] labeled/3 and Ix,v2] 
labeled a. We proceed as in the last but one paragraph of Section 10. We may 
suppose that the compatible covers A2 and B2 of ~ do not contain the artificial 
vertex x. Thus IAI=I&uA21<_IAII+IA21-1 and tAI=IB~UB21<_IB~I+I~NI-~- 
We have I A~I+ I~21 < I r (~ ) l  = ~ -  I Ct + 3, which implies the desired upper bound 
IA}+lBl_<~. 

12. T h e  case  o f  a cu t  s e g m e n t ,  e v e n  b o u n d a r y  

The final case with ID[ is e v e n  has additional complications. Assign every 
second vertex of D to X, and the rest to Y, with Vl, say, in X and v2 in Y. Extend 
them to compatible covers of ~, and modify at the petals to get X*, X~, Ya* and 

Y/~. I f  X* has at most ( ICI -  1)/2 elements, we may use it both for A 1 :=X~ and 

.=Yc~ B1 :=X/~ and reduce to ~ = : ~ \ ( C \ { v 2 } ) .  IfY*<(ICl-1)/2, then we let AI '  * 

and B1 := Y~ and reduce to ~ = : ~ \  (C\{vl }). (Here we used again that the vertices 

vl,v2 were not moved at the petal modification.) If none of the above, then IX*I= 
IY*I = ICI/2, (so from now on IC] is even). In that case use the notations Xold, 
Yold for these covers. Without loss of generality, we will suppose that  )/([v2,v3])= 
a. The reduction(s) in the case )/([v2,v3])=/3 is identical. 

If ~ h a s  a pe ta l ,  with Vm its petal vertex, (necessarily 2 < m < d -  1), then 
let X2 U Y2 be a strictly alternating labeling of ~ \  {Vm} with vl,v2 in X2. The 
extensions assured by Corollary 11 for ~ \  {Vm} are compatible covers of ~ \  {Vm} 
with [X~I + IY2*[ < I C I -  1. However, X* * 14,* and Y,* - 2,a, X2,;~, 2,a, 2,# all meet the 
petal triangle {vm 1, vrn,vrn+l}, too, because Vm-l,V~z+l are not petal vertices in 
f\{Vm}, so they were not shifted out from X2 and !/2. Note that (in f )  the two 
external edges adjacent to Vm have distinct colors, and the edge colored a meets 
X2, the other edge meets Y2. (There are two cases to check, according to the parity 
of m.) So X~,a, Y,~/~ are compatible covers of the whole f ,  and X~,/3, 14"2,a miss 

only one edge. 
We distinguish two cases. I f  Ix~l < ICI/2-1, then let A1 - X *  and B1 = 

- -  - -  2~19g 
X~,~O{Vrn} and reduce to ~ = ~ \ C .  O t h e r w i s e  1!/2"1 <__ ICI/2-1, we can use Y/~ for 

B1, and one of the previous X*old,a or Y*old,a for A1, reducing to ~ \ ( C \  {Vl, v2}) 

with the label a on [vl,v2] (like in the case IC[ = IDI = 4, see the beginning of 
Section 10). From now on, we may suppose that  ~ has no any chord. 

We will consider new assignments of the vertices in D to X3 and Y:a which 
have both vl and v2 in X3 and alternate elsewhere except on one more edge E of 
0 f  with both endpoints in X3. (So IX31 = d / 2 +  1, and E's  color is necessarily c~, 
because we have supposed that  )~([v2, v3]) = a.) 

Suppose such an assignment on D can be extended into ~ \D  to sets X~ and Ya* 
which obey the conclusion of Lemma 8 in all of ~. We can then, if IX*[ is at most 
ICI/2 use X*s,a for A1 and Xa, s for B1 and reduce to ~ \ ~ .  Otherwise, we can use 

Y'3",/3 for B1, and the previous X*old,~ or Y*old,~ for A1, reducing to :R\(C\{v~,v2}), 
like we did it above. 
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We have now provided reductions for every case of Theorem 4. Our proof is 
therefore complete if we can prove the supposition of the last paragraph above. 
This is the content of Lemma 12. 

Lemma 12. Suppose, that the simple, 2-connected figure ~ has no chord, and has 
even number of vertices on its boundary D, D : =  { V l , V 2 , . . . , v 2 k , v 2 k + l  = v l }  in 
order. Then, there exists a j, 1 < j < k and sets X* Y.* - - 3, 3 c C = V ( ~ )  with the 
following properties 

Ix l+lr *[_<lcl, 
each triangle in Y(~) meets X~ and meets I/3", 
each boundary edge meets X~, {Vl, v2} C X~, and each boundary edge except 

[vi, v2] and [v2j,2j+l] meets I/3" 

Note that  in this Lemma the original coloring of the external edges of ~ is 
irrelevant. 
Proof. We have defined z to be adjacent to Vl and v2 in ~, z is an inner point of 
~. Let 2j + 1 be the smallest odd index of vertices of D adjacent to z, 3_< 2j + 1 < 
2k + 1; and let V2il, v2 i2 , . . .  , V2ig be the vertices from v2, v3,..., v2j  a l so  adjacent to 
z, with l = i l < i 2 < . . . < i , < j .  Set 

X :-~ {Vl,V2} U {V2j,V2j+l } kJ { V 2 f + l  : 1 < 2 f  + 1 < 2j + 1}U 

U{v2f : 2 j + l < 2 f  < 2 k + 1 } ,  

and let Y = {z}UD\X.  Cut ~ into f + 2  induced subcomplexes along [z, vii and the 
above mentioned g+  1 segments adjacent to z, i.e. let us denote by ~t (2 < t <  g) 

the (induced) subcomplex of ~ with boundary z, v2it_ 1, V2it_ 1 + 1 , ' " ,  V2it; let ffe+l 

be the induced subcomplex with boundary z, v2i~, V2ie+l,..., v2j, v2j+i, let ge+2 be 
the induced subcomplex with boundary z,v2j+l,...,v2k,Vl, and finally let $1 be 
the subcomplex generated by the triangle {Z, Vl,V2}. If z is connected only to vl 
and v2 from D, then j = k and v2j+l = v l ,  ge+2 is empty, {v2k , Vl, v2} C X; if j = 1 
then f = l  and {vi ,v2,v3}CX. 

Let V i denote the set of inner vertices of $i, (especially, V 1 = (~), V 1 U V 2 U 
... U V e+2 is a parti t ion of (C \ D ) \  {z}. A d d  a new external vertex w and edges 
[w,z], [W, Vl], [w,v2j+l] and triangles {Vl,Z,W}, {v2j+l,Z,W} to ~e+2 to obtain the 
2-connected, chordless complex ~e+2,+. Join the vertex w to X. 

We are going to extend the sets X N v($t) ,  Y N V($ ~) into the interior using 
Corollary 11 as follows. The region ~1 has no interior point, X 1 = y.1 = (~. A 

I n  I n  
region St for 2 < t < f is 2-connected, chordless, the elements of X and Y are 
strictly alternating on its boundary. So Corollary 11 implies, that there are sets 
Xtn, Y.tln such that  x t ,*= (XNV($t) )UX~n and yt , .  both meet all the triangles 

and boundary edges of ~t, and [xt,*l + ]Yt,* I _< Ivtl. 
~e+l is chordless, 2-connected, X and Y are strictly alternating along its 

boundary, so after applying Corollary 11 the extended set y~+i , ,  will meet all 
triangles and boundary edges except [v2j,v2j+l]. 

In case of $g+2,+ apply Lemma 8 to the partition on its boundary, i.e. assign 
labels on the external edges of ~e+2,+\V(O~e+2,+), let z E Y be the special vertex of 
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tha t  figure, and apply  the induct ion hypothesis  to get the sets X. g+2 and X. g+2 with  111 In 
to ta l  size at  most  Ive+~ I + 1. The  complex ~e+%+ has no chord at all, so (ii), (v), 
(vi) do not apply. There  are only two tr iangles of type  (8.3) wi th  a homogeneous  
external  edge, namely  the two new triangles containing w and z. These  are also 
covered since z E Y. 

Finally, let X3,in = Ul<t<~+2X~n , X~ = (X \ {w}) O X3,in and Ya,in = 

Ol<t<~+2Yitn, I/3" = X O Y3,in The  sets X~,  Y3* have at  most  IC] elements,  b o t h  
meet  all t r iangles and a lmost  all sides of E, fulfilling the claims of L e m m a  12. | 
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