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Random Volumes in the 7n-Cube

M. E. DYER, Z. FUREDI, AND C. McDIARMID

ABsTRACT. Consider the n-cube [0, 11" in R". This has 2" vertices and
volume 1. Pick N = N(n) vertices independently at random, form their
convex hull, and let ¥, be its expected volume. How large should N(n) be
to pick up significant volume?

Let k = 2//e =~ 1.213, and let ¢ > 0. We have recently shown that,
as n—oo, V, =0 if Nn)<(k—¢€)",and V, - 1 if N(n)> (k+e)".
We discuss this and related results.

1. Introduction

We are interested in the n-cube Q, = [0, 11" in n-dimensional real space
R". This polytope has the set {0, 1}" of 2" vertices and has volume 1.
Let N=N(n),andlet Z,, Z,, ..., Z, be independent random variables,
each uniformly distributed over {0, 1}". Form the convex hull S, of these
random points and let ¥, be its expected volume, that is, V, = E[vol(S,)].
How large should N(n) be to pick up significant volume? The answer is
surprisingly (?) small. The following theorem is given in [2]. We shall sketch
the outlines of the proof here.

THEOREM 1.1. Let k =2/ \/e ~ 1.213 and let € > 0. Then, as n — o,
0 ifN(n)<(x—-¢€),
V.- 1 if N(n)>(k+e¢€)".
O
What happens if we pick points within the n-cube? Suppose now that we
sample N times uniformly from [0, 1]" and let V, be the expected volume

of the convex hull of the points picked. The next theorem is also from [2];
it is proved along exactly the same lines as Theorem 1.1.

THEOREM 1.2. Let A= [;°(1—cotht+ l/f)zd! & 2.13969, and let € > 0.
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Then, as n — oo,
0 ifN(n)
V,— < 1 if N(n)

(A—e)",
Gxel.
O

=
=

These theorems concerning the n-cube are of course tight, but an even
tighter result holds for the unit ball B, in R" in a sense that we are about
to explain. Denote the volume of this ball by 7, . Suppose now that we

sample N times uniformly from B, , and let V, be the expected volume of
the convex hull of the points picked.

THEOREM 1.3. If w(n) — oo as n — oo, and

1, winr) )

N(n) = n'?" o

then V, [y, — 1. O

(Natural logarithms are used throughout.)

However, now define V,(n) to be the maximum volume over all sets .S
which are the convex hull of N(n) points in B, . (There is no randomness
here.) Barany and Fiiredi [1] extend an idea of Elekes [3] to show that, as
n — oo, Vg(n)/y, — 1 only if the conditions of Theorem 1.3 hold. Thus,
roughly speaking, as soon as N is large enough that it is possible to place N
points so as to pick up most of the volume of B, , then a random choice of
N points will do.

Is there a similar phenomenon for the n-cube Q, ? We may define V,(n)
analogously to Vy(n) above. Then, using Elekes’ idea, we can show

TueEOREM 1.4, Let n = 1.18858. Then VQ(H) —0 as n—o0 if N(n)=
o(n"). o

This leads us to pose the following

QUESTION 1.5. Is it the case that, for € > 0, VQ(n) — 0 when N(n) =
O(Z-a" o

2. Sketch of the proof of Theorem 1.1

In this section we sketch the outlines of the proof in [2] of Theorem 1.1.

Which points x = (x,, X,, ..., x,) of Q, are not likely to be included
in S, ? This will happen if some half-space H contains x but contains few
vertices of Q, . Thus, given x in Q, , let g(x) be the infimum, over all half-
spaces H containing x, of the quantity P(Z € H). Here Z is uniformly
distributed over all the vertices of Q, . Clearly, if x is in A, but none of
Z,Z,,...,Z, is,then x ¢ S, . Thus

P(xe S, < Ng(x).
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For a > 0, let the o -center Q, be the convex subset of Q, defined by

Oy ={x€Q,:q(x)>e ""}.
LEMMA 2.1 (central lemma). Let « > 0.
(a) If vol(Q)) = o(1) and N(n)=o(e™), then E[vol(S,)] = o(1).

(b) If vol(Q;) = 1 —o(l) and N(n) > Bne™ where B > a, then
E[vol(S,)] = 1 — o(1).

By this lemma it suffices to show that
o(l) if a <v,
1-0o(l) ifa>v

vol(Q;) = {

where v = log 2—% . To do this we approximate Q: by a more easily handled
body. We would like to find a suitable “separable penalty function”

F) =23 f(x),
i=1

such that if we set
F'={xe(0,1)":F(x)<a},

then F' approximates Q| in a suitable way.
Let us pull a rabbit out of a hat. Suppose we take

f(x)=xlogx + (1 —x)log(l —x)+1og2,

for 0 < x < 1. Then we can show that

(a) F,'C Q) ,and

(b) if 0 < f < a then Qf N0, 1)" C F" for n sufficiently large.

To prove (a) we use the Bernstein (or Markov) inequality; to prove (b) we
use “exponential centering” together with a uniform version of the central
limit theorem [4]—the details are messy. From (a), (b), it suffices to show

that

vol(Fna) _ { o(1) ifa<v,

1-0(1) ifa>v.
But this is easy. Let X, X,, ..., X, be independent random variables each

uniformly distributed on (0, 1). Then E[f(X,)] turns out to be v—this is
the “explanation™ of the constant. Also, by the weak law of large numbers

vol(F) =P((X,, X, ..., X,) € F,)

P (% ST < 0:)
=1

_{o(l} ifa<wv,
“l1-0() fa>v.
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3. Sampling from the unit ball B,

| il
l.;_" log n In

In this section we shall prove Theorem [.3. Let N = N(n) = n'
where @ = w(n) — co as n — oo. Sample N times uniformly from the unit
ball B, = B(0, 1) in R", let S, be the convex hull of the points picked,
and let ¥, = E[vol(S,)]. Let
nnﬂ
T2+ 1)"

We must show that V, /7, — 1 as n — occ. We shall in fact show more, that
if € > 0, then

(1) P(S,2B(0,1-€/n))—1 asn—oo.

7, = vol(B,)

Note that
vol(B(0, 1 —e/n)) =y, (1 —€/n)" >7,(1—€),

and so if (1) holds, then
l/;/yn Z 1 _€+O(1Js
and we are done.
Let r=1—¢/n and
V.=vol({x€B,:x 2r}).
By the argument used in the proof in [2] of the central lemma, it suffices for
us to show that

(2) (’:’r)(;-m;}n)""”ao as n — .

But
F

I
Yo Figesy / (1 —xz)””zafx
})H },n r

" I
N Yot /’ e xz)"“{zdx
yn r

2 2 1
_ Zum [_(1 —x-)‘"*”’“}

I n+1
-
_ R rz)(n+|);z
5. n+1

Now 3,_,/7, ~ VZa/n and (1-r")"*D ~ (2e/n)™* e S0 ¥, /7, ~

(2?!)— I,:’Ze—f,-'él(ze)(n+l},s‘2n—(nf2+l} . e

exp { (% + é—a) nlogn +
exp{(l + o(1))wn}.

z n+1
MV [¥;

Il

log(2¢) — (% + l) logn + 0(1)}

Il
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We can now establish (2). We have

N N—
(n)(l ~V/7,)" " < exp{nlogN — (N —n)V,/3,}

Il

1 ) 5
exp { (5 + _logn) n”logn —exp{(1 +o(_l}}wn}}

—0 asn— oco.

4. Deterministic lower bound

In this section we shall prove Theorem 1.4. We wish to prove a lower
bound to the maximum volume that can be achieved by the convex hull of
N points placed anywhere in Q, . This will obviously hold also when the
points are restricted to be vertices. However, by Carathéodory’s theorem,
any internal point of @, is contained in a simplex whose vertices are also
vertices of Q, . Thus the maximum volume that can be achieved by the
convex hull S, of any N points of Q, is no more than that which can be
achieved by the convex hull S of N' = (n+ )N of Q,’s vertices. Thus we
may restrict attention to the vertices of Q, at the cost of inflating the number
of points by a factor (n+ 1). This factor turns out to be insignificant, but
the argument below can, in fact, be modified without great difficulty to avoid
its introduction.

Using a theorem of Elekes [3] we describe a set of balls whose union is
guaranteed to include S. These balls are defined by any chosen point and
the vertices of S. It is natural to consider the center (4, 3,...,3) of Q,
as the chosen point. Each ball in the set is then the smallest that contains this
point and a particular vertex of S. For the “typical” vertex (0,0,...,0)
of Q, . the relevant ball is

K:{x:j(xj_;)zn,m}_

j=1

For any other vertex, the corresponding ball can be determined by symmetry.
Observe that

vol(KNnQ,) =P (Z (Xj = %) < n/l6) :

J=1

where the X are distributed independently, with each uniform on [0, 1].
For any ¢ > 0, therefore, the Bernstein inequality gives

vol(KNnQ,)<E [exp{f&r (n/lﬁv i (X; - é)h) }]

J=1
= (E[exp{t(X — 2X°)}])"
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where X is uniform on [0, 1]. Thus, since ¢ > 0 is arbitrary,

vol(KNnQ,) < {infg(r)} >
=0
where

1 2 )
(3) g(1) =/ ™ gy
0

It is easy to show, by differentiating twice, that g(1) is a strictly convex func-
tion of . It is also easy to see that g(0) = 1, g'(0) < 0, and g(1) — oo
as 1 — oco. Thus g(f) has a unique minimum in (0, oo). In the region of
the minimizing value ¢_, (which turns out to be around 2%) , close numer-
ical approximation of g(¢) can easily be achieved as follows. We substitute
y = (x—1) in the integrand of (3) and then perform term-by-term integration
of its expansion as a power series in y . Hence we can minimize g(7) numer-
ically to high accuracy by (say) Fibonacci search. We find toin ~ 2.52635

and g(7...) < 0.841339. Now S is the convex hull of N' = (n+ )N
vertices, so

vol(S) < N'vol(K N Q,) = o(1),
if

N =0(1.18858") = 0(0.841339™"). O
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