Random Volumes in the *n*-Cube

M. E. DYER, Z. FÜREDI, AND C. McDIARMID

ABSTRACT. Consider the *n*-cube $[0, 1]^n$ in \mathbb{R}^n . This has 2^n vertices and volume 1. Pick N = N(n) vertices independently at random, form their convex hull, and let V_n be its expected volume. How large should N(n) be to pick up significant volume?

Let $\kappa=2/\sqrt{e}\approx 1.213$, and let $\epsilon>0$. We have recently shown that, as $n\to\infty$, $V_n\to 0$ if $N(n)\le (\kappa-\epsilon)^n$, and $V_n\to 1$ if $N(n)\ge (\kappa+\epsilon)^n$. We discuss this and related results.

1. Introduction

We are interested in the *n*-cube $Q_n = [0, 1]^n$ in *n*-dimensional real space \mathbf{R}^n . This polytope has the set $\{0, 1\}^n$ of 2^n vertices and has volume 1. Let N = N(n), and let $\mathbf{Z}_1, \mathbf{Z}_2, \ldots, \mathbf{Z}_N$ be independent random variables, each uniformly distributed over $\{0, 1\}^n$. Form the convex hull S_n of these random points and let V_n be its expected volume, that is, $V_n = \mathbb{E}[\operatorname{vol}(S_n)]$. How large should N(n) be to pick up significant volume? The answer is surprisingly (?) small. The following theorem is given in [2]. We shall sketch the outlines of the proof here.

Theorem 1.1. Let $\kappa = 2/\sqrt{e} \approx 1.213$ and let $\epsilon > 0$. Then, as $n \to \infty$,

$$V_n \to \left\{ \begin{array}{ll} 0 & if \ N(n) \leq \left(\kappa - \epsilon\right)^n, \\ 1 & if \ N(n) \geq \left(\kappa + \epsilon\right)^n. \end{array} \right.$$

What happens if we pick points within the n-cube? Suppose now that we sample N times uniformly from $[0, 1]^n$ and let V_n be the expected volume of the convex hull of the points picked. The next theorem is also from [2]; it is proved along exactly the same lines as Theorem 1.1.

THEOREM 1.2. Let $\lambda = \int_0^\infty (1 - \coth t + 1/t)^2 dt \approx 2.13969$, and let $\epsilon > 0$.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 52A25, 60D05.

Then, as $n \to \infty$,

$$V_n \to \left\{ \begin{array}{ll} 0 & \text{if } N(n) \leq \left(\lambda - \epsilon\right)^n, \\ 1 & \text{if } N(n) \geq \left(\lambda + \epsilon\right)^n. \end{array} \right.$$

These theorems concerning the n-cube are of course tight, but an even tighter result holds for the unit ball B_n in \mathbf{R}^n in a sense that we are about to explain. Denote the volume of this ball by γ_n . Suppose now that we sample N times uniformly from B_n , and let V_n be the expected volume of the convex hull of the points picked.

THEOREM 1.3. If $\omega(n) \to \infty$ as $n \to \infty$, and

$$N(n) = n^{(\frac{1}{2} + \frac{\omega(n)}{\log n})n},$$

then $V_n/\gamma_n \to 1$. \square

(Natural logarithms are used throughout.)

 $O(\eta^n)$. \square

However, now define $V_B(n)$ to be the maximum volume over all sets S which are the convex hull of N(n) points in B_n . (There is no randomness

here.) Bárány and Füredi [1] extend an idea of Elekes [3] to show that, as $n \to \infty$, $V_B(n)/\gamma_n \to 1$ only if the conditions of Theorem 1.3 hold. Thus, roughly speaking, as soon as N is large enough that it is possible to place N

points so as to pick up most of the volume of B_n , then a random choice of N points will do.

Is there a similar phenomenon for the n-cube Q_n ? We may define $V_Q(n)$

Is there a similar phenomenon for the *n*-cube Q_n ? We may define $V_Q(n)$ analogously to $V_B(n)$ above. Then, using Elekes' idea, we can show Theorem 1.4. Let $\eta = 1.18858$. Then $V_Q(n) \to 0$ as $n \to \infty$ if N(n) =

This leads us to pose the following

 \mathbf{Z}_1 , \mathbf{Z}_2 , ..., \mathbf{Z}_N is, then $\mathbf{x} \notin S_n$. Thus

Question 1.5. Is it the case that, for $\epsilon>0$, $V_Q(n)\to 0$ when $N(n)=O((\frac{2}{\sqrt{\epsilon}}-\epsilon)^n)$? \square

2. Sketch of the proof of Theorem 1.1

The state of the proof of the state of the s

In this section we sketch the outlines of the proof in [2] of Theorem 1.1. Which points $\mathbf{x} = (x_1, x_2, \dots, x_n)$ of Q_n are not likely to be included in S_n ? This will happen if some half-space H contains \mathbf{x} but contains few

vertices of Q_n . Thus, given \mathbf{x} in Q_n , let $q(\mathbf{x})$ be the infimum, over all half-spaces H containing \mathbf{x} , of the quantity $\mathbf{P}(\mathbf{Z} \in H)$. Here \mathbf{Z} is uniformly distributed over all the vertices of Q_n . Clearly, if \mathbf{x} is in H, but none of

 $\mathbf{P}(\mathbf{x} \in S_n) \le Nq(\mathbf{x}).$

For $\alpha > 0$, let the α -center Q_n^{α} be the convex subset of Q_n defined by

$$Q_n^{\alpha} = \{ \mathbf{x} \in Q_n : q(\mathbf{x}) \ge e^{-\alpha n} \}.$$

LEMMA 2.1 (central lemma). Let $\alpha > 0$.

(a) If $\operatorname{vol}(Q_n^{\alpha}) = o(1)$ and $N(n) = o(e^{\alpha n})$, then $\mathbb{E}[\operatorname{vol}(S_n)] = o(1)$. (b) If $\operatorname{vol}(Q_n^{\alpha}) = 1 - o(1)$ and $N(n) \ge \beta n^2 e^{\alpha n}$ where $\beta > \alpha$, then

(b) If $\operatorname{vol}(Q_n^{\alpha}) = 1 - o(1)$ and $N(n) \ge \beta n^2 e^{\alpha n}$ where $\beta > \alpha$, the $\mathbb{E}[\operatorname{vol}(S_n)] = 1 - o(1)$.

By this lemma it suffices to show that

$$\operatorname{vol}(Q_n^{\alpha}) = \begin{cases} o(1) & \text{if } \alpha < \nu, \\ 1 - o(1) & \text{if } \alpha > \nu \end{cases}$$

where $\nu = \log 2 - \frac{1}{2}$. To do this we approximate Q_n^{α} by a more easily handled body. We would like to find a suitable "separable penalty function"

$$F(\mathbf{x}) = \frac{1}{n} \sum_{j=1}^{n} f(x_j),$$

such that if we set

$$F_n^{\alpha} = \{ \mathbf{x} \in (0, 1)^n : F(\mathbf{x}) \le \alpha \},$$

then F_n^{α} approximates Q_n^{α} in a suitable way.

Let us pull a rabbit out of a hat. Suppose we take

$$f(x) = x \log x + (1 - x) \log(1 - x) + \log 2,$$

for 0 < x < 1. Then we can show that

(a) $F_n^{\alpha} \subseteq Q_n^{\alpha}$, and

that

(a) $\Gamma_n \subseteq \mathcal{Q}_n$, and

(b) if $0 < \beta < \alpha$ then $Q_n^{\beta} \cap (0, 1)^n \subseteq F_n^{\alpha}$ for *n* sufficiently large. To prove (a) we use the Bernstein (or Markov) inequality; to prove (b) we use "exponential centering" together with a uniform version of the central limit theorem [4]—the details are messy. From (a), (b), it suffices to show

 $\operatorname{vol}(F_n^{\alpha}) = \begin{cases} o(1) & \text{if } \alpha < \nu, \\ 1 - o(1) & \text{if } \alpha > \nu. \end{cases}$

But this is easy. Let X_1, X_2, \ldots, X_n be independent random variables each uniformly distributed on (0, 1). Then $\mathbf{E}[f(X_1)]$ turns out to be ν —this is the "explanation" of the constant. Also, by the weak law of large numbers

the "explanation" of the constant. Also, by the weak law of large numbers
$$vol(F_n^{\alpha}) = \mathbf{P}((X_1, X_2, \dots, X_n) \in F_n^{\alpha})$$

$$= \mathbf{P} \left(\frac{1}{n} \sum_{j=1}^{n} f(X_j) \le \alpha \right)$$
$$= \begin{cases} o(1) & \text{if } \alpha < \nu, \\ 1 - o(1) & \text{if } \alpha > \nu. \end{cases}$$

3. Sampling from the unit ball B_n

In this section we shall prove Theorem 1.3. Let $N=N(n)=n^{(\frac{1}{2}+\frac{o(n)}{\log n})n}$, where $\omega = \omega(n) \to \infty$ as $n \to \infty$. Sample N times uniformly from the unit ball $B_n = B(0, 1)$ in \mathbb{R}^n , let S_n be the convex hull of the points picked, and let $V_n = \mathbb{E}[\operatorname{vol}(S_n)]$. Let

$$\gamma_n = \operatorname{vol}(B_n) = \frac{\pi^{n/2}}{\Gamma(n/2 + 1)}.$$

We must show that $V_n/\gamma_n \to 1$ as $n \to \infty$. We shall in fact show more, that if $\epsilon > 0$, then

(1)
$$\mathbf{P}(S_n \supseteq B(0, 1 - \epsilon/n)) \to 1 \quad \text{as } n \to \infty.$$

Note that
$$\operatorname{vol}(B(0, 1 - \epsilon/n)) = \gamma_n (1 - \epsilon/n)^n \ge \gamma_n (1 - \epsilon),$$

and so if (1) holds, then

and we are done.

Let
$$r = 1 - \epsilon/n$$
 and

 $V_c = \operatorname{vol}(\{\mathbf{x} \in B_n : x_1 \ge r\})$. By the argument used in the proof in [2] of the central lemma, it suffices for

 $V_{n}/\gamma_{n} > 1 - \epsilon + o(1)$,

us to show that
$$\binom{N}{(1 - V_c/\gamma_u)^{N-n}} \to 0 \quad \text{as } n \to \infty.$$

$$\binom{N}{n} (1 - V_{\epsilon}/\gamma_n)^{N-n} \to 0 \quad \text{as } n \to \infty.$$

But

$$\frac{V_{\epsilon}}{\gamma_n} = \frac{\gamma_{n-1}}{\gamma_n} \int_r^1 (1 - x^2)^{n/2} dx$$

$$\sim \frac{\gamma_{n-1}}{\gamma_n} \int_r^1 (1 - x^2)^{n/2} dx$$

$$= \frac{\gamma_{n-1}}{\gamma_n} \left[-\frac{(1 - x^2)^{(n+1)/2}}{n+1} \right]_r^1$$

$$= \frac{\gamma_{n-1}}{\gamma_n} \frac{(1 - r^2)^{(n+1)/2}}{n+1}.$$

Now
$$\gamma_{n-1}/\gamma_n \sim \sqrt{2\pi/n}$$
 and $(1-r^2)^{(n+1)/2} \sim (2\epsilon/n)^{(n+1)/2} e^{-\epsilon/4}$. So $V_\epsilon/\gamma_n \sim (2\pi)^{-1/2} e^{-\epsilon/4} (2\epsilon)^{(n+1)/2} n^{-(n/2+1)}$. Hence

 $NV_{\epsilon}/\gamma_n = \exp\left\{\left(\frac{1}{2} + \frac{\omega}{\log n}\right)n\log n + \frac{n+1}{2}\log(2\epsilon) - \left(\frac{n}{2} + 1\right)\log n + O(1)\right\}$ $= \exp\{(1 + o(1))\omega n\}.$

We can now establish (2). We have

its introduction.

$$\binom{N}{n} (1 - V_{\epsilon}/\gamma_n)^{N-n} \le \exp\{n \log N - (N-n)V_{\epsilon}/\gamma_n\}$$

$$= \exp\left\{ \left(\frac{1}{2} + \frac{\omega}{\log n}\right) n^2 \log n - \exp\{(1 + o(1))\omega n\} \right\}$$

$$\to 0 \quad \text{as } n \to \infty .$$

4. Deterministic lower bound

In this section we shall prove Theorem 1.4. We wish to prove a lower bound to the maximum volume that can be achieved by the convex hull of N points placed anywhere in Q_n . This will obviously hold also when the points are restricted to be vertices. However, by Carathéodory's theorem, any internal point of Q_n is contained in a simplex whose vertices are also vertices of Q_n . Thus the maximum volume that can be achieved by the convex hull S_n of any N points of Q_n is no more than that which can be achieved by the convex hull S of N' = (n+1)N of Q_n 's vertices. Thus we may restrict attention to the vertices of Q_n at the cost of inflating the number of points by a factor (n+1). This factor turns out to be insignificant, but the argument below can, in fact, be modified without great difficulty to avoid

Using a theorem of Elekes [3] we describe a set of balls whose union is guaranteed to include S. These balls are defined by any chosen point and the vertices of S. It is natural to consider the center $(\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2})$ of Q_n as the chosen point. Each ball in the set is then the smallest that contains this point and a particular vertex of S. For the "typical" vertex $(0, 0, \dots, 0)$ of Q_n , the relevant ball is

$$K = \left\{ \mathbf{x} : \sum_{j=1}^{n} \left(x_j - \frac{1}{4} \right)^2 \le n/16 \right\}.$$

For any other vertex, the corresponding ball can be determined by symmetry. Observe that

$$\operatorname{vol}(K \cap Q_n) = \mathbf{P}\left(\sum_{j=1}^n \left(X_j - \frac{1}{4}\right)^2 \le n/16\right),\,$$

where the X_j are distributed independently, with each uniform on [0, 1]. For any t > 0, therefore, the Bernstein inequality gives

$$\operatorname{vol}(K \cap Q_n) \le \mathbb{E}\left[\exp\left\{2t\left(n/16 - \sum_{j=1}^n \left(X_j - \frac{1}{4}\right)^2\right)\right\}\right]$$
$$= \left(\mathbb{E}[\exp\{t(X - 2X^2)\}]\right)^n$$

where X is uniform on [0, 1]. Thus, since t > 0 is arbitrary,

$$\operatorname{vol}(K \cap Q_n) \le \left\{ \inf_{t > 0} g(t) \right\}^n,$$

where

(3)
$$g(t) = \int_0^1 e^{t(x-2x^2)} dx.$$

It is easy to show, by differentiating twice, that g(t) is a strictly convex function of t. It is also easy to see that g(0)=1, g'(0)<0, and $g(t)\to\infty$ as $t\to\infty$. Thus g(t) has a unique minimum in $(0,\infty)$. In the region of the minimizing value t_{\min} (which turns out to be around $2\frac{1}{2}$), close numerical approximation of g(t) can easily be achieved as follows. We substitute $y=(x-\frac{1}{4})$ in the integrand of (3) and then perform term-by-term integration of its expansion as a power series in y. Hence we can minimize g(t) numerically to high accuracy by (say) Fibonacci search. We find $t_{\min}\approx 2.52635$ and $g(t_{\min})<0.841339$. Now S is the convex hull of N'=(n+1)N vertices, so

$$\operatorname{vol}(S) \le N' \operatorname{vol}(K \cap Q_n) = o(1),$$

if

$$N = O(1.18858^n) = O(0.841339^{-n})$$
. \square

Acknowledgments

Thanks to Imre Bárány and Geoff Grimmett for useful conversations and insights.

REFERENCES

- I. Bárány and Z. Füredi, Approximation of the sphere by polytopes having few vertices, Proc. Amer. Math. Soc. 102 (1988), 651-659.
- M. E. Dyer, Z. Füredi, and C. McDiarmid, Volumes spanned by random points in the hypercube, to appear, 1990.
- G. Elekes, A geometric inequality and the complexity of computing the volume, Discrete Comput. Geom. 1 (1986), 289–292.
- W. Feller, An Introduction to Probability Theory and its Applications, vol. II, Wiley, New York, 1971.

University of Leeds

HUNGARIAN ACADEMY OF SCIENCES

UNIVERSITY OF OXFORD