
Maximal Triangle- 
Free Graphs with 
Restrictions on 

Zoltan Furedi 
the Degrees 

MATHEMATICAL INSTITUTE OF THE 
HUNGARIAN ACADEMY OF SCIENCES 

BUDAPEST, HUNGARY 

Akos Seress 
THE OHIO STATE UNIVERSITY 

COLUMBUS, OHIO 

ABSTRACT 

We investigate the problem that a t  least how many edges must a 
maximal triangle-free graph on n vertices have if the maximal valency 
is ID. Denote this minimum value by F(n, 0). For large enough n, 
we determine the exact value of F(n, D) if D 2 (n  - 2)/2 and we 
prove that lim F(n, cn)/n = K(c) exists for all 0 < c with the possible 
exception of a sequence ck  - 0. The determination of K(c) is a finite 
problem on all intervals [ y , ~ ) .  For D = cne, 1/2 < E < 1, we give 
upper and lower bounds for f in, 0) differing only in a constant factor. 
(Clearly, D < (n  - 1)’’ is impossible in a maximal triangle-free graph.) 
0 1994 John Wiley & Sons, Inc. 

1. INTRODUCTION 

A triangle-free graph G on n vertices is called maximal if adding any edge to 
the edge set of G will create a triangle in G. Obviously, a maximal triangle- 
free graph has at least n - 1 edges and the only extremal graph is the star 
on n vertices. However, the star contains a vertex with valency n - 1. In 
this paper, we are interested in the problem that at least how many edges 
must a maximal triangle-free graph have if the maximal degree of vertices 
is I D  for some D < n - 1. We denote the minimal number of edges of a 
maximal triangle-free graph with maximal valency I D  by F(n ,  D). 

Journal of Graph Theory, Vol. 18, No. 1, 1 1 -24 (1 994) 
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The problem is partly motivated by a version of Andrhs Hajnal’s triangle- 
free game (cf. [13]). Starting with the empty graph on n points for some 
n 2 3, two players build a graph on this vertex set by alternatingly picking 
edges. They are not allowed to choose an edge that would complete a triangle 
in the graph and the game ends when it is impossible to choose an edge 
without violating this rule. The first player’s aim is to finish the game as 
soon as possible; on the other hand, the second player tries to ensure that 
the resulting graph has a lot of edges. It can be shown that the second 
player can achieve that no vertex has degree >(n + 1)/2 in the graph hence 
F(n,(n + 1)/2) is a lower bound for the length of the game. 

Clearly, a maximal triangle-free graph has diameter 2. Analogously to 
F(n,  D), it is possible to define the function f ( n ,  D) as the minimal number 
of edges in a graph of diameter 2 and maximal valency ID. Erdds and 
RCnyi [5] started the investigation of the function f ( n ,  D) and Erdds, RCnyi, 
and T. S6s [6] determined the exact value of f ( n , D )  for D 2 [(n + 1)/2]. 
Pach and Surhnyi [12] proved that lim f ( n ,  cn)/n exists for all 0 < c with 
the possible exception of a sequence ck - 0. We shall prove analogous 
results for the function F(n ,D) .  

For D 2 n/2, the complete bipartite graph KD,,-D provides an example 
of a maximal triangle-free graph with maximal valency I D .  However, there 
are maximal triangle-free graphs with much less edges. 

Example 1.1. Let (n - 2)/2 < D 5 n - 3 and let V = { x , y }  U V1 U 
V2 U V3 be a partition of a set V of cardinality n into parts of size 
lVll = IV21 = n - 2 - D and IV31 = 2 0  - (n - 2). Let the graph G 
have the following set of edges: x is connected to each vertex in V1 U V3; 
y is connected to each vertex in V2 U V3; finally, each z E VI is connected 
to each w E V2. Then G is a maximal triangle-free graph with maximal 
valency D and 2n - 5 + (n - 3 - D)2 edges. 

Example 1.2. Let V = { x I , x 2 , .  . . , x l 0 }  be the vertex set of the Petersen 
graph P such that xI,x2,x3,x4 are pairwise nonadjacent. Note that the 
Petersen graph itself is a maximal triangle-free graph with 3 X 10 - 
15 edges. Let n 1 10 be given. Let VI, V2, V3, V, be pairwise disjoint 
sets, also disjoint from V, of size lVil = [(n - 6 + (i - 1))/4]. Then 

lVil = n - 6. For 1 I i I 4, replace xi by the independent set Vi 
in P, connecting the vertices in Vi to the original neighbors of xi in P. The 
resulting graph G has n vertices, 3n - 15 edges, and maximal valency 

(n - 2)/2, n = 0 (mod 4), 

(n - 4)/2, n = 2 (mod 4) .  
(n - 3)/2, n = 1 ,3  (mod 4), 

Also, it is easy to see that the vertex-duplication procedure described above 
maintains the maximal triangle-free property so G is maximal triangle-free. 
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MAXIMAL TRIANGLE-FREE GRAPHS 13 

Theorem 13. Let n > 228. Then 

F(n, D )  = 

2n - 5 ,  D = n - 2 ,  
2n - 5 + (n - 3 - D)2,  
3n - 15, 

n - 3 - J-5 D I n  - 3, 
(n - 2) /2  I D < n - 3 - d n .  

We shall prove Theorem 1.3 in Section 5.  The proof is an easy corollary 
of the tools developed in the next three sections and the following result 
of Duffus and Hanson [2] :  Let G be a maximal triangle-free graph on n 
vertices with minimum degree 3. Then 

In [2] ,  the following more general problem was investigated: Determine 
E(n ,k ,6 ) ,  the minimum number of edges of a maximal &-free graph on 
n vertices with minimum degree 6 .  

2. RESULTS FOR D < n/2 

The following simple lemma provides a lower bound for F(n, D ) .  

Lemma 2.1. Suppose that G is a maximal triangle-free graph on n vertices 
with maximal degree I D .  Then IE(G)I > (n2/2D) - n. 

Proof. Let x be an arbitrary vertex of G and denote its valency by d(x ) .  
The number of vertices reachable from x via a path of length 1 or 2 is 
I d ( x )  + d ( x ) ( D  - 1 )  = d(x)D.  Since the diameter of G is 2, d(x)D 1 
n - 1 implying d ( x )  1 (n - l ) / D .  Hence IE(G)I = f r L E V ( ~ ) d ( x )  1 
(n2 - n)/2D > n2/2D - n. I 

Let us note that this argument also shows that D < Jx is impossible 
in a maximal triangle-free graph. Three graphs are known with D = 
Jn: the pentagon, the Petersen graph, and the Hoffman-Singleton 
graph [ll]. 

Our next goal is to give an upper bound for F(n, D ) .  

Example 2.2. Let q 1 3 be a prime power and let P be a projective 
plane on W I  = {XI,.  . . , x ~ z + ~ ~ I }  with line set { L1,. . . , L q ~ + q + l } .  We can 
suppose that the lines containing are L; for q2 + 1 I i I q2 + 
q + 1 .  Let W2 = { y l , .  . . , Y ~ Z + ~ }  be a set disjoint from W1. First, we 
define a set system 3f and a graph G on the 2(q2 + q )  vertices V = 
{ x ; , y i :  1 5 i 5 q2 + q} .  H consists of q2 sets of size 2(q + 1 ) ;  namely, 
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14 JOURNAL OF GRAPH THEORY 

let Hi = Li U { yj: xi E Li} (1 I i I q2). G is a (q - 1)-regular bipartite 
graph defined as follows. The sets W , \ { ~ ~ 2 + ~ + 1 }  and Wz are independent 
in G. The xi  and y j  are connected if and only if i # j and { x i , x j }  C Lk 
for some q2 + 1 I k I q2 + q + 1. 

Based on 3f and G ,  we can build a maximal triangle-free graph G. 
Let n 2 3q2 + 2q. For 1 5 i I q2, we choose sets Vi disjoint from each 
other and from V such that lVil = [(n - 2(q2 + q)  + (i - 1))/q2J for all 
i. Then the sets Vi are nonempty and IVl + z$, lVil = n. We define G 
on the vertex set V U V1 U U Vqz. The x ,y  E V are adjacent in G if 
and only if they are adjacent in G. The set V 1  U -.. U Vq2 is independent 
in G. Finally, x E V and y E Vi are connected if and only if x E Hi. 

It is easy to check that G is really a maximal triangle-free graph. If 
x E Vi for some 1 5 i I q2, then d(x )  = 2(q + 1). If x E V then d ( x )  I 
q(Nn - 2(q2 + q))/q21 + 1) + q - 1 I (n /q ) .  Finally, Im3I = 2(q + 
l ) (n  - 2q2 - 2q) + (q - 1)(2q2 + 2q)/2 = 2(q + 1)n - q(q + 1) x 
(3q + 5 )  < 2(q + 1)n. 

Remark 23. In Definition 2.6, we shall formulate the abstract properties 
of 3f and G, which ensured that the graph G built on them is maximal 
triangle-free. The construction in Example 1.2 can also be described in this 
setting: in this case, 3f and G are defined on six vertices { y1, y2, . . . , y6). 3f 
consists of four sets, HI = { Y I , Y ~ , Y ~ ) ,  H2 = { Y I , Y ~ , Y ~ ) ,  H3 = { ~ 2 ~ ~ 4 , y d ,  
and H4 = { y3, y5, y6)- The graph G has three edges, { YI,  y6)7 {y27 y51, and 
{Y3,Y41. 

Lemma 2.4. Let D 1 5 f i .  Then F(n ,  D) < (4n2/D) + 2n. 

Proof. Let q be a prime satisfying n/D I q I 2 n / D .  Then n > 
3q2 + 2q and 2(q + 1) < n/q 5 D so the maximal triangle-free graph G 
constructed in Example 2.2 has maximal valency I D .  Moreover, IE(G)I < 
((4n/D) + 2)n, proving the assertion of the lemma. I 

Theorem 2.5. Let c > 0 and 1/2 < E < 1 be fixed. Then (1 + o(1)) X 
(1/2c)n2-" < F(n,cn") < (1 + o(l))(2/c)n2-". 

Proof. Lemma 2.1 proves the lower bound for F(n,cn").  We can 
improve the upper bound provided by Lemma 2.4 by noticing that, for 

( ( l /~ )n ' - " )~ '*~ .  (Such prime exists if n is sufficiently large since, by a 
theorem of Huxley [lo], for large enough x there exists a prime between x 
and x + x ~ " ~ . )  Using this prime q, the graph G constructed in Example 2.2 
has maximal valency < cn" and (1 + o(1))(2/c)n2-" edges. 

large enough n, there is a prime q satisfying (l/c)n'-" < q < (l/c)n'-" + 

I 

In the case D = cn, Lemmas 2.1 and 2.4 give linear upper and lower 
bounds for F(n,  D). We can strengthen this result considerably; however, 
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MAXIMAL TRIANGLE-FREE GRAPHS 15 

the proof requires the exploration of the structure of maximal triangle-free 
graphs. 

Certain hypergraph-graph pairs are intimately related to maximal triangle- 
free graphs. A hypergraph is a pair 3f = (V, E ( 3 f ) )  with E ( 3 f )  C 2". 3f 
is intersecting if Hi n Hi # 0 for all Hi, Hi E E ( 3 f ) .  3f is a sunflower 
if Hi n H, = n H E E ( H )  H for all Hi, Hj E E ( 3 f ) .  The edges of 3f are 
called the petals of the sunflower. For an arbitrary hypergraph 3f, a weight 
function w: E ( 3 f )  - R+*o is a fractional edge packing of 3f if 

1 w(H) 5 1 
x E H  

holds for all x E V. The value of a fractional edge packing is 
E H E E ( ~ )  w(H). The maximal value of fractional edge packings of 3f 
is denoted by v*(H). The v*(3f), as a solution of a problem in linear 
programming with rational coefficients, is a rational number for all 3f. 

Definition 2.6. Let 3f = ( V , E ( 3 f ) )  be a hypergraph and G = ( V , E )  be 
a graph on some set V. The pair 3f, G is a core if it satisfies the following 
properties: 

(I) 3f is intersecting; 
(2) G is triangle-free; 
(3) for all e E E and H E E(H), e ($ H; 
(4) for all x E V and H E E(H), x H, there exists y E H such 

that { x , y }  E E; 
(5 )  for all x , y  E V, if {x,y} (Z H for any H E E ( 3 f )  then either 

{ x , y }  E E or there exists z E V with {x,z} E E and { z , y }  E E. 

Definition 2.7. Let 3f = ( V , E ( 3 f ) )  be a hypergraph with edge set 
E ( 3 f )  = {HI, H2,. . . ,Hm} and c 2 l / v* (3 f ) .  We define A ( 3 f ,  c) as the 
minimal value of the objective function in the linear programming problem, 
A ( 3 f , c )  = min xySl IHilyi, under the restrictions 

1 y i  I c,  for all x E V ,  
xEHi  

rn 

x y i  = 1 .  
i = l  

Note that c 2 l / v * ( 3 f )  is the necessary and sufficient condition to ensure 
that there are feasible solutions. 

Now we are ready to state our last results. 
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16 JOURNAL OF GRAPH THEORY 

Theorem 2.8. For c > 0, let the function K ( c )  be defined as K(c)  = 
inf{A(3f, c)} where the infimum is taken over all hypergraphs 3f, which 
occur in a core with an appropriate graph G and c 1 l/v*(3f). Then 
K ( c )  is monotone decreasing, piecewise linear, and right-continuous. The 
points of discontinuities of K ( c )  are all rational and included in a sequence 
c1 > c2 > - 0. Moreover, for each y > 0, the determination of K ( c )  
on the interval [ y , ~ )  is a finite problem (by solving finitely many linear 
programming problems). 

Definition 2.9. For c > 0, we define a function B(c) the following way. 
If c > 1 then B(c)  := 1. For 0 < c 5 1, let 

Theorem 2.10. (a) For all c > 0, F ( n , c n  + B(c))  = K ( c ) n  + o h ) .  
(b) If K ( c )  is continuous at c then F ( n ,  cn ) /n  = K ( c ) .  

We shall prove Theorems 2.8 and 2.10 in the next two sections. A standard 
argument shows that for determining K ( c )  = inf{A(H,c)), it is enough to 
consider hypergraphs 3f with a bounded number of edges. The crucial point 
in the proof of Theorem 2.8 is Lemma 3.4, where we show that the number 
of vertices can be bounded as well. Hence K ( c )  can be determined as the 
minimum of finitely many values A(3f ,c ) .  

The connection between F ( n ,  cn)  and K ( c )  is explained in Section 4. We 
show that if a maximal triangle-free graph G has a linear number of edges, 
then its vertex set V can be partitioned into two parts V = V1 U V2 such that 
IV1 I = o(lV1) and V2 is independent. Then the neighborhoods of vertices in 
V2 define a hypergraph 3f on V1 that, together with the restriction of G to 
V1, is a core. Moreover, the percentage of vertices of V, with a given edge 
of 3f as neighborhood defines a weight function on 3f, which is a feasible 
solution of the linear programming problem (2.1)-(2.3). 

Finally, in Section 6, we apply one of our constructions to obtain an 
improved bound for a problem of Erdds and Fajtlowicz on the maximal 
valency of a maximal triangle-free graph. 

3. THE FUNCTION Mc) 

In this section, we prove Theorem 2.8. From the definition of A ( H ,  c) (cf. 
Definition 2.7), it is clear that c 1 1 implies that A ( 3 f , c )  is equal to the 
size of the smallest edge of 3f for any hypergraph 3f. Thus K ( c )  = 1 for 
all c 1 1. Throughout this section, we suppose that 0 < c < 1. For these 
values of c, the core described in Example 2.2 provides an upper bound for 
K ( c ) .  The next construction gives a slightly better bound. 
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MAXIMAL TRIANGLE-FREE GRAPHS 17 

Example 3.1. Let p be a prime satisfying ( p  + I)/( p2 + p + 1) < c. 
We define a core on a set V = V1 U V,  of cardinality 2( p 2  + p + 1). Let 
E l , .  . . , E p ~ + p + l  be the line set of the projective plane on a set V1, IV1l = 

p 2  + p + 1. Let V2 = {XI, ..., X ~ Z + ~ + ~ } .  We define E ( 3 f )  = {Ei  U {x i } :  
1 5 i 5 p2 + p + 1). The graph G is bipartite with classes V1 and V2; 
we connect x i  to all points in V1\Ei. It is clear that the pair ( 3 f , G )  is a 
core. Also, the weight function w(Hi)  := l /(p2 + p + 1) gives a feasible 
solution of the linear program (2.1)-(2.3) and 1 w ( H i )  lHil = p + 2. 

Corollary 3.2. K ( c )  5 2(1 + (l/c)). 

Proof. Let p be a prime satisfying 1/c 5 p 5 2/c. Then p + 2 I 
I 2 + 2/c, and the previous example proves the assertion of the corollary. 

Lemma 3.3. Suppose that A ( 3 f , c )  I 2(1 + (l/c)) for some hypergraph 
3f. Then there exists a subhypergraph 3f1 such that A ( 3 f l ,  c) = A ( 3 f ,  c) 
and IE(3fl)l I 2((l/c) + (1/c2)) + 1. Moreover, if ( 3 f , G )  was a core 
with an appropriate graph G, then there exists a graph G1 such that (3fl, GI)  
is a core. 

Proof. Let IE(3f)I = rn. The system of inequalities (2.1)-(2.3) defines 
a convex polytope P in the rn-dimensional Eucledian space. P is bounded 
and nonempty; hence the function 1 IHilyi takes its minimum at a vertex p 
of P. This vertex is the intersection of rn hyperplanes of the type zEHi y i  = 
c for some x E V ;  or y i  = 0 for some 1 5 i I rn; or yi = 1. Since 

at most 2((l/c) + (1/c2)) equations of hyperplanes of the first type can 
occur. Thus, for at least rn - 2((l/c) + (1/c2)) - 1 values of i, the 
equation y ;  = 0 occurs. Let E ( 3 f l )  be the set of those edges Hi of 3f 
for which y j  = 0 does not occur among the equations defining p. Clearly, 
A(3f1,c)  = A ( 3 f , c )  and IE(3fl)I 5 2((l/c) + (1/c2)) + 1. 

Suppose that ( 3 f , G )  is a core for a graph G. The pair (3f1,G) satisfies 
the first four points of Definition 2.6. Notice that if the vertices x , y  E V 
violate (5) in Definition 2.6, then the edge { x , y }  can be added to G without 
violating (1)-(4). Thus G can be extended to a graph G1 such that (HI, G I )  
is a core. I 

Lemma 3.4. Suppose that a hypergraph 3f has rn I 2((l/c) + (1/c2)) + 
1 edges and ( 3 f , G )  is a core for some graph G. Then there exists a 
hypergraph 3 f 1  and a graph GI on IB(c)  points such that A(3f1,c) 5 
A ( 3 f , c ) ,  IE(3fl)l  = rn, and (3f1,Gl) is a core. 
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18 JOURNAL OF GRAPH THEORY 

Proof. The function B(c) is defined in Definition 2.9. We can suppose 
that each vertex of the underlying set V of 3f and G occurs in at least 
one edge of 3f; otherwise we delete these vertices from V and the edges 
of G incident to them from G. The obtained hypergraph 3f‘ and graph G‘ 
satisfies A ( 3 f ’ ,  c) = A ( 3 f ,  c) and the first four points of Definition of 2.6, 
so G’ can be extended to obtain a core. 

Let HI, ..., H, be the edges of 3f ordered the following way. H I  
is an edge of minimal size. If H I , .  . . , Hk are already defined, we 
choose Hk+] such that Hk+]\(H1 U ... U Hk) is as small as possible. 
Let Vk be the union of the first k edges for 0 I k 5 m; VO = 
0 and V ,  = V .  If IHk+1\Vkl 5 21Vkl+m for all 0 5 k 5 m - 1, then 
IVl 5 B(c)  and there is nothing to prove. If IHk+l\Vkl > 21Vkl+m for 
some k, then we describe a method to construct a core (3f’,G’) 
such that A ( 3 f ’ ,  c) 5 A ( 3 f ,  c), 13f’I = m, and xHE.p IHI < x H E ~  IHI. 
By repeated application of this procedure, we can obtain the desired 
pair (HI, GI).  

Suppose that IHk+l\VkI > 21Vkl+m. We partition the points of V\Vk into 
equivalence classes. The x , y  are equivalent if and only if (a) they belong 
to the same edges of 3f and (b) they are adjacent (in G) with the same 
vertices in V k .  We denote the equivalence class of x E V\Vk by ( x ) .  We 
define 3f’ and G’ on the underlying set V’ = Vk U { qX), lqx): x E V\Vk}. 
The edges of 3f’ will be Hi,. . .,HA. Let Hi‘ = Hi for i I k. For i > k, 
let Hi’ = { x E Vk:  x E H i }  U { qX), !qx): x E H i } .  Since each edge of 
3f is partitioned into 121Vkl+m-k-’ classes, lHil < lHil for i > k. Let 
x , y  E Vk be adjacent in G’ if and only if they were adjacent in G. 
The x E Vk is adjacent to a(,) and lqy) for some y E V\Vk in G’ if 
and only if x and y were adjacent in G. The sets {qX): x E V\Vk} and 
{ b(x): x E V\Vk} are independent in G’. Finally, a(,) and b(,) are connected 
if and only if there exist x‘ E ( x )  and y‘ E ( y)  such that {x’, y‘} is an edge 
of G. 

Using the fact that ( 3 f , G )  is a core, it is easy to check that the pair 
( 3 f ’ , G ’ )  satisfies the first four conditions in Definition 2.6. Hence it is 
possible to add some edges to G’ to obtain a core. The weight function w 
giving the value A(H, c) of the objective function in the linear programming 
problem (2.1)-(2.3) for 3f is also a feasible solution for 3f‘; hence 
A ( 3 f ‘ ,  c) I A ( H ,  c). (In fact, A ( 3 f ’ ,  c) < A ( H ,  c) if w(Hi )  > 0 for any 
i > k.) I 

Corollary 3.5. K ( c )  is the minimum of the finitely many values A(H, c) 
where 3f is a hypergraph on IB(c)  points with I((l /c) + (1/c2)) + 1 
edges and ( 3 f , G )  is a core for some graph G. I 

Lemma 3.6. Let 3-f be an arbitrary hypergraph. Then A(3f,c) is a 
continuous, convex, piecewise linear, monotone decreasing function on 
[( l / (V*(3f ) ) ) ,  03). 
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MAXIMAL TRIANGLE-FREE GRAPHS 19 

Proof. Proposition 3.1 in [12] states that there exist real numbers 
0 = TO < 71 < < a&-1, and 0 = bo > 
0 . .  > bkPl such that a(H, T), the minimal value of xHEE(q w(H) IHI 
for fractional edge packings w with value T, is equal to aiT + bi if T E 
[ T ~ ,  q + l ] .  Substituting T = l /c,  we obtain immediately that A ( 3 f ,  c) = 
ai + bic for c E [ 1 / ~ ~ + ~ ,  l/q], proving the assertions of the lemma. 

< T& = v*(3f), 0 < a0 < 

I 

Proof of Theorem 2.8. Let y > 0 be fixed. By Corollary 3.5 and 
Lemma 3.6, K ( c )  can be obtained on [ y , ~ )  as the minimum of finitely 
many piecewise linear, monotone decreasing functions; hence K ( c )  itself has 
these properties. The only possible discontinuities are at points of the form 
l /v* (3 f )  for some hypergraph 3f from this finite collection; in particular, 
there are only finitely many discontinuities in [ y , ~ ) .  I 

4. PROOF OF THEOREM 2.10 

The next two lemmas utilize ideas from [12]. 

Lemma 4.1. Let n > B(c). Then there exists a maximal triangle-free graph 
G = (V(G),E(G)) with maximal degree I c n  + B(c) ,  IV(G)I = n, and 
IE(G)I I K(c)n  + B(c)2. 

Proof. By Corollary 3.5, there exists a core ( 3 f , G )  on some set 
V, IVl 5 B(c) ,  and a weight function w on the edges of 3f such 
that IE(3f)I = m I 2 ( ( l / c )  + (1/c2)) + 1, w is a solution of the linear 
programming problem (2.1)-(2.3), and A ( 3 f ,  c) = W(Hi) IHil = 
K ( c ) .  Let n > B(c)  be given. For 1 5 i 5 m, we choose disjoint 
sets Vi with [(n - IVl)w(Hi)l 5 lVil I [(n - IVl)w(Hi)J + 1 such that 

lVil = n - 1VI.Thegraph G isdefinedon V(G) = V U V1 U -.. U 
V,. x , y  E V are adjacent in G if and only if they are adjacent in G. The 
set V1 U U V, is independent in G. Finally, x E V and y E Vi are 
connected if and only if x E Hi. 

It is easy to check that G is a maximal triangle-free graph. If x E Vi 
for some i then d(x ) ,  the valency of x ,  is l l H i l  I B(c) .  If x E V then 
d(x )  I c(n - IVl) + m + IVI - 1 I cn + B(c) .  Finally, the number of 
edges in G is I K ( c ) ( n  - IVl) + mlVl + lVI2/2 5 K ( c ) n  + B ( C ) ~ .  I 

Lemma 4.2. Let n > 2@ and G = (V(G),E(G)) a maximal triangle- 
free graph with maximal degree I c n  + B(c), IV(G)I = n, and IE(G)I I 
K(c)n  + B(c)’. Then V(G) can be partitioned in the form V(G) = Vl U V2 
satisfying the following properties. 

(a) IVll I ((2K(c) + 1)n + 2 B ( ~ ) ~ ) / l o g  log n. (The logarithms are of 

(b) V2 is an independent set in G. 
base 2.) 
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20 JOURNAL OF GRAPH THEORY 

(c) For x E V2, let H ( x )  = { y  E V1: { x , y }  E E ( G ) } .  Let 3f be a 
hypergraph on V1 with edge set { H ( x ) :  x E V2} and let G be the 
spanned subgraph of G on V1. Then (3f, G )  is a core. 

Proof. Let X = {x E V(G):  d ( x )  2 log log n}. Then 1x1 log log n 5 
z E v ( G ) d ( x )  5 2 K ( c ) n  + ~ B ( c ) ~ ,  hence 

2K(c)n + 2B(d2 
log log n 1x1 5 

For x E V(G)\X, let H ( x )  = { y  E X : { x , y }  E E ( G ) } .  Clearly, IH(x)l < 
log log n for all x E v(G)\X. Let Y = { y  E V(G)\X: 3 z E v(G)\X 
such that H ( y )  f l  H ( z )  = 0). We claim that the partition V1 = X U 
Y ,  V2 = V(G)\(X U Y )  satisfies (a)-(c). Since G is triangle-free, the 
definition of Y ensures that (b) holds. Also, in a maximal triangle-free 
graph, (b) implies (c). So, in view of (4.1), it is enough to prove that 

The key observation is that the set system {H( y): y E Y} cannot contain 
a sunflower with more than log log2n + log log n petals. To see this, let 
us suppose that { H ( y i ) :  0 5 i 5 [log log2n + log log nl} is a sunflower 
for some yi E Y. By the definition of Y, there exists z E Y such that 
H (  yo) fl H ( z )  = 0. Since the vertices in V2 have G-degree <log log n, 
less than log log'n of the y i  can be reached from z via a 52-long path in 
V\X. Hence H ( z )  must intersect >log log n of the H (  y i ) .  The points of 
intersection must be different since H ( z )  fl n H (  y i )  = 0. However, this is 
a contradiction with IH(z)l < log log n. 

By a well-known theorem of Erdds and Rado [4], if a hypergraph 
has at least r!m' edges of size ST-, then some subhypergraph is 
a sunflower with m petals. This implies that the set system { H ( y ) :  

members. (This is the point where we use that n > 264.) Finally, for 
each H C X ,  I{y  E Y :  H ( y )  = H}I 5 log log2n because these y must 
be reached via a 52-long path in V\X from the vertex z E Y satisfying 

IYI 5 (nllog log n). 

y E Y }  has <(log log n)! (log log2n + log log n ) ' O g ' O g  < (n/iog iog3n) 

H ( Z )  n H = 0. I 

Proof of Theorem 2.10. (a) Lemma 4.1 proves that F(n ,cn  + B(c))  5 
K ( c ) n  + o(n). Fix c > 0 and E > 0. We have to prove that for large enough 
n, if G,, is a maximal triangle-free graph on n points with maximal degree 
5 c n  + B(c) then IE(G,,)l > ( K ( c )  - ~ ) n .  Suppose, on the contrary, that 
there is an infinite set M of integers such that, for n E M, there exists such 
G,, with IE(G,,)l 5 ( K ( c )  - ~ ) n .  

By Theorem 2.8, K ( c )  is continuous from the right for all c. Hence we 
can choose 6 > 0 such that K ( c  + 6) > K ( c )  - E .  After that, we choose 
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MAXIMAL TRIANGLE-FREE GRAPHS 21 

n E M, satisfying the following inequalities: 

) > ( K ( c )  - &)n ; (4.3) ( log log n 
(2K(c) + 1)n + 2B(c)2 

K ( c  + 6) n - 

cn + B(c)  < c + 6 .  (4.4) 
n - ( ( 2 K ( c )  + 1)n + 2B(d2)/log log n 

By Lemma 4.2, Gn(V) can be partitioned into two parts VI, V2 satisfying 
(a)-(c). We use the notation introduced in Lemma 4.2(c). Let the weight 
function w on E ( 3 f )  defined as 

w(H) = 

Clearly, x H E E ( ~ )  w ( H )  = 1. For z E VI, using that d ~ " ( ( z )  5 cn + B(c) 
and (4.4), we obtain 

Hence w is a feasible solution of the linear programming problem (2.1)-(2.3) 
for the parameter value c + 6 implying that 1 w(H) IHI 2 K ( c  + 6). 
However, by (4.3), this means that Gn has > ( K ( c )  - ~ ) n  edges, 
a contradiction. 

(b) Suppose that K(c)  is continuous at c and let E > 0 arbitrary small. 
Since F ( n , D )  is a monotone deceasing function of D, 

F(n ,cn  + B(c))  5 F ( n , c n )  I F ( n , ( c  - &)n + B(c - E ) )  

if n is large enough. Dividing by n and taking the limit, we obtain 
K ( c )  5 lim F(n ,  cn)/n 5 K(c  - E) .  Since K ( c )  is continuous at c and E 

is arbitrary, this implies lim F(n ,  cn) /n  = K(c) .  1 

5. THE CASE D z  4 2  

The aim of this section is to prove Theorem 1.3. 

Lemma 5.1. Let n > 2228 and suppose that d ( x )  2 4 for each vertex of a 
maximal triangle-free graph G, IV(G)I = n. Then IE(G)I > 3n - 15. 
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22 JOURNAL OF GRAPH THEORY 

Proof. We repeat the argument of the proof of Lemma 4.2. Suppose 
that IE(G)I I 3n - 15. Let X = {x E V(6): d ( x )  1 log log n}. Then, by 
our assumption, 1x1 log log n I d(x )  I 2(3n - 151, hence 1x1 < 
(6n/log log n). For x E V(G)\X, let H ( x )  = { y  E X: { x , y )  E E ( G ) }  and 
let Y = { y  E V(G)\X: 3 z E V(G)\X such that H ( y )  fl H ( z )  = a. As 
in the proof of Lemma 4.2, we can see that lYl < (n/log log n) and the 
set V(G)\(X U Y )  is independent. Hence IE(G)I 2 z E v ( ~ ) \ ( x u ~ ) d ( x )  2 

4(n - (7n/log log n)). Since n > 22p, 4(n - (7n/log log n)) > 3n, con- 
tradicting our assumption that IE(G)I 5 3n - 15. I 

Lemma 5.2. Let G be a maximal triangle-free graph with maximal 
degree M and let IV(G)l = n. 

(a) If min{d(x): x E V(G)} = 1, then M = n - 1 and G is a star. 
@) If min{d(x): x E V(G)} = 2, then either M = n - 2 and IE(G)I = 

2n - 4 or M I n - 3 and IE(G)I 2 2n - 5 + (n - 3 - M)’. 

Proof. (a) Obvious. 
(b) Let x be a vertex of degree 2 with neighbors y ,  I .  Let A = { w  E V(G): 

{ W , Y )  E E ( G )  A { w , z }  E E(G)) ;  B = { w  E V(G): { W , Y )  E E ( G )  A 
{ w ,  z }  @ E(G)}; and C = { w  E V(G): { w , y }  4 E ( G )  A {w, z }  E E(G)} .  
Since each vertex can be reached from x via a path of length 1 2 ,  A U B U 
C is a partition of V(G)\{ y ,  z } .  Since G is a maximal triangle-free graph, the 
sets A, B, C are independent, there are no edges between A and B U C, and 
each pair u E B, u E C is connected. Moreover, B = 0 e C = 0. If B = 
C = 0, then M = n - 2 and IE(G)I = 2n - 4. If B # 0, then, because 
of symmetry, we can suppose IBI 1 ICl. In this case, M = n - lBl - 2 
and IE(G)I = lBllCl + IBI + ICl + 2(n - 2 - IBI - ICl) = 2n - 5 + 
(1B1 - l)(ICI - 1) L 2n - 5 + (n - 3 - M ) 2 .  I 

Proof of Theorem 1.3. By Examples 1.1, 1.2 and Lemmas 5.1, 5.2, and 
finally (1.1). I 

Coqjecture 5.3. Example 3.1 is optimal in the range (p  + 1)/( p 2  + p + 
1) c c < l / p  for p L 3. 

The above conjecture would imply that F(n,  D) = 4n - 28 for (3/7)n < 
D < n/2 - 0(1) (n  > no(D)). D. Hanson (private communication) have 
found an example showing that F(n ,D)  1 4 n  - 25 for a slightly larger 
range, for D > .4n (n L 10). 

6. MAXIMAL TRIANGLE-FREE GRAPHS WITH SMALL DEGREES 

In this section, we consider the following problem. Determine the minimum 
number Dz(n) such that there exists a triangle-free graph of diameter 2 
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MAXIMAL TRIANGLE-FREE GRAPHS 23 

on n vertices and maximum degree &(n). Obviously, &(n) 1 Jn. 
Erdds and Fajtlowicz (cf. [ 11) pointed out that the random method gives only 
the upper bound &(n) I O ( f i  log n).  The true order of the magnitude of 
&(n) was determined by Hanson and Seyffarth [7], who constructed some 
circular graphs showing &(n) I (2 + o(1)) fi. Another circular graphs 
were found by Hanson and Strayer [8], but their method cannot give a 
better upper bound. Example 2.2 indicates that in fact 

Theorem 6.1. &(n) I 2 / f i ( f i  + n7m) (for all n > no). 

To get this bound, we have to choose the prime q as large as possible 
satisfying 3q2 + 2q I n .  Then r := n - 3q2 - 2q < 2qi9"* for n > no. 
The only new idea we need is the well-known fact from finite geometry, 
that one can choose the sizes of Vi such a way that the size of every lVil 
is either 1 + [r/q2] or 1 + [r/q21, and each vertex from V has degree at 
most 2q - 1 + 2[r/q] (see [9]). 

Further generalizations were investigated by Erdds and Pach [3], who 
considered graphs with property I k ,  that is graphs in which every independent 
set of size k has a common neighbor. 
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