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ABSTRACT

We investigate the problem that at least how many edges must a
maximal triangle-free graph on n vertices have if the maximal valency
is =D. Denote this minimum value by An, D). For large enough n,
we determine the exact value of An, D) if D= (n — 2)/2 and we
prove that lim An, cn)/n = K(c) exists for all 0 < ¢ with the possible
exception of a sequence ¢, — 0. The determination of K(c) is a finite
problem on all intervals [y,®). For D= cn®, 1/2 < & < 1, we give
upper and lower bounds for A(n, D) differing only in a constant factor.
(Clearly, D < (n — 1)"? is impossible in a maximal triangle-free graph.)
© 1994 John Wiley & Sons, Inc.

1. INTRODUCTION

A triangle-free graph G on n vertices is called maximal if adding any edge to
the edge set of G will create a triangle in G. Obviously, a maximal triangle-
free graph has at least n — 1 edges and the only extremal graph is the star
on n vertices. However, the star contains a vertex with valency n — 1. In
this paper, we are interested in the problem that at least how many edges
must a maximal triangle-free graph have if the maximal degree of vertices
is =D for some D < n — 1. We denote the minimal number of edges of a
maximal triangle-free graph with maximal valency <D by F(n, D).
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The problem is partly motivated by a version of Andras Hajnal’s triangle-
free game (cf. [13]). Starting with the empty graph on n points for some
n = 3, two players build a graph on this vertex set by alternatingly picking
edges. They are not allowed to choose an edge that would complete a triangle
in the graph and the game ends when it is impossible to choose an edge
without violating this rule. The first player’s aim is to finish the game as
soon as possible; on the other hand, the second player tries to ensure that
the resulting graph has a lot of edges. It can be shown that the second
player can achieve that no vertex has degree >(n + 1)/2 in the graph hence
F(n,(n + 1)/2) is a lower bound for the length of the game.

Clearly, a maximal triangle-free graph has diameter 2. Analogously to
F(n, D), it is possible to define the function f(n, D) as the minimal number
of edges in a graph of diameter 2 and maximal valency =D. Erd8s and
Rényi [5] started the investigation of the function f(n, D) and Erdds, Rényi,
and T. Sés [6] determined the exact value of f(n,D) for D = |(n + 1)/2].
Pach and Suranyi [12] proved that lim f(n,cn)/n exists for all 0 < ¢ with
the possible exception of a sequence ¢, — 0. We shall prove analogous
results for the function F(n, D).

For D = n/2, the complete bipartite graph Kp ,_p provides an example
of a maximal triangle-free graph with maximal valency =D. However, there
are maximal triangle-free graphs with much less edges.

Example 1.1. Let (n —2)/2<D =<n—3and let V = {x,y} U V; U
Vo U V3 be a partition of a set V of cardinality n into parts of size
Vil =IVo2l=n -2 —D and |V3| =2D — (n — 2). Let the graph G
have the following set of edges: x is connected to each vertex in V) U Vj;
y is connected to each vertex in V, U Vj3; finally, each z € V, is connected
to each w € V,. Then G is a maximal triangle-free graph with maximal
valency D and 2n — 5 + (n — 3 — D)* edges.

Example 1.2. Let V = {x},x,,...,x;0} be the vertex set of the Petersen
graph P such that xj,x;,x3,x4 are pairwise nonadjacent. Note that the
Petersen graph itself is a maximal triangle-free graph with 3 X 10 —
15 edges. Let n = 10 be given. Let Vy,V,,V3,V, be pairwise disjoint
sets, also disjoint from V, of size |V;| =|(n — 6 + (i — 1))/4). Then
?=1 [Vil =n — 6. For 1 =i < 4, replace x; by the independent set V;
in P, connecting the vertices in V; to the original neighbors of x; in P. The
resulting graph G has n vertices, 3n — 15 edges, and maximal valency

(n —2)/2, n =0 (mod4),
D = {(n - 3)/2, n=1,3 (mod 4),
(n —4)/2, n=2(mod4).

Also, it is easy to see that the vertex-duplication procedure described above
maintains the maximal triangle-free property so G is maximal triangle-free.
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Theorem 1.3. Let n > 22”. Then

F(n,D) =
2n — 5, D=n-2,
2n—-5+Mm-3-D?* n-3—JVn—10<=D=n-3,
3n — 15, (n-2/2=D<n-3-+n—-10.

We shall prove Theorem 1.3 in Section 5. The proof is an easy corollary
of the tools developed in the next three sections and the following result
of Duffus and Hanson [2]: Let G be a maximal triangle-free graph on n
vertices with minimum degree 3. Then

|E(G)| = 3n — 15. (1.1)

In [2], the following more general problem was investigated: Determine
E(n,k, 8), the minimum number of edges of a maximal K;-free graph on
n vertices with minimum degree 6.

2. RESULTS FOR D < n/2
The following simple lemma provides a lower bound for F(n, D).

Lemma 2.1. Suppose that G is a maximal triangle-free graph on n vertices
with maximal degree <D. Then |E(G)| > (n?/2D) — n.

Proof. Let x be an arbitrary vertex of G and denote its valency by d(x).
The number of vertices reachable from x via a path of length 1 or 2 is
= d(x) + d(x)(D — 1) = d(x)D. Since the diameter of G is 2, d(x)D =
n — 1 implying d(x) = (n — 1)/D. Hence |E(G)| = %erv(g)d(x) =
(n> — n)/2D > n?/2D — n. 8

Let us note that this argument also shows that D < +/n — 1 is impossible
in a maximal triangle-free graph. Three graphs are known with D =
v/n — 1: the pentagon, the Petersen graph, and the Hoffman-Singleton
graph [11].

Our next goal is to give an upper bound for F(n, D).

Example 2.2. Let ¢ = 3 be a prime power and let P be a projective
plane on W, = {xy,...,xp24441} with line set {L,,...,Lz+,+1}. We can
suppose that the lines containing xgz2.,+1 are L; for g2 + 1 =i < g% +
g+ 1. Let W, = {yl,...,yqz+q} be a set disjoint from W;. First, we
define a set system FH and a graph G on the 2(g? + ¢) vertices V =
{xi,yi: 1 =i = q*®+ q}. H consists of ¢° sets of size 2(g + 1); namely,
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letH; = L; U {y;: x; € L;i} (1 =i =< ¢?. G isa(q — 1)-regular bipartite
graph defined as follows. The sets W\ {x,21,+1} and W, are independent
in G. The x; and y; are connected if and only if i # j and {x,-,x,-} C L
forsome ¢> + 1 =k <g*+q + 1.

Based on { and G, we can build a maximal triangle-free graph G.
Let n = 3q*> + 2q. For 1 = i < g%, we choose sets V; disjoint from each
other and from V such that |V;| = [(n — 2(¢®> + q) + (i — 1))/q?] for all
i. Then the sets V; are nonempty and |V| + Z?il |Vl = n. We define G
on the vertex set V.U V; U --- U V. The x,y € V are adjacent in G if
and only if they are adjacent in G. The set V| U --- U V2 is independent
in G. Finally, x € V and y € V; are connected if and only if x € H;.

It is easy to check that G is really a maximal triangle-free graph. If
x EV,forsome 1 < i =< g2 thend(x) = 2(q + 1).If x € V thend(x) =
q((n — 2(¢*> + q))/¢’l + 1) + ¢ — 1 =< (n/q). Finally, |E(G)| = 2(q +
)(n—2¢*—2q) + (g — )(2¢* +29)/2=2(q + )n — q(g + 1) X
(3q + 5) < 2(q + Dn.

Remark 2.3. In Definition 2.6, we shall formulate the abstract properties

of H{ and G, which ensured that the graph G built on them is maximal

triangle-free. The construction in Example 1.2 can also be described in this

setting: in this case, H and G are defined on six vertices { Y1, Y25+ -+, Y6} H

consists of four sets, Hy = {y1,y2,y3}, Ha = {y1,¥4,ys}, Hs = {y2,¥a, 6},

2{1nd Hi = {ys,ys,ys}. The graph G has three edges, {yi,ys}, {y2,ys}, and
Y3, Yas.

Lemma 2.4. Let D = 5,/n. Then F(n,D) < (4n*/D) + 2n.

Proof. Let q be a prime satisfying n/D < q < 2n/D. Then n >
3¢* + 2q and 2(q + 1) < n/q =< D so the maximal triangle-free graph G
constructed in Example 2.2 has maximal valency <D. Moreover, |E(G)| <
((4n/D) + 2)n, proving the assertion of the lemma. [

Theorem 2.5. Let ¢ > 0 and 1/2 < & < 1 be fixed. Then (1 + 0(1)) X
(1/2c)n*2 < F(n,cn®) < (1 + o(1)) (2/c)n?~2.

Proof. Lemma 2.1 proves the lower bound for F(n,cn®). We can
improve the upper bound provided by Lemma 2.4 by noticing that, for
large enough n, there is a prime q satisfying (1/c)n'™® < g < (1/c)n!"® +
((1/c)n'~2)"'2, (Such prime exists if n is sufficiently large since, by a
theorem of Huxley [10], for large enough x there exists a prime between x
and x + x7'2) Using this prime ¢, the graph G constructed in Example 2.2
has maximal valency < cn® and (1 + o(1)) (2/c)n** edges. 1

In the case D = cn, Lemmas 2.1 and 2.4 give linear upper and lower
bounds for F(n,D). We can strengthen this result considerably; however,
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MAXIMAL TRIANGLE-FREE GRAPHS 15

the proof requires the exploration of the structure of maximal triangle-free
graphs.

Certain hypergraph—graph pairs are intimately related to maximal triangle-
free graphs. A hypergraphisapair H = (V,E(H))with E(H) C 2V. H
is intersecting it H; N H; # & for all H;,H; € E(3). H is a sunflower
if H; N H; = Nuee(sryH for all H;,H; € E(3{). The edges of 3 are
called the petals of the sunflower. For an arbitrary hypergraph H , a weight
function w: E(#{) — R*? is a fractional edge packing of H if

ZW(H) <1

x€EH

holds for all x € V. The value of a fractional edge packing is
ZHEE(:,{) w(H). The maximal value of fractional edge packings of

is denoted by »*(H). The v*(3), as a solution of a problem in linear
programming with rational coefficients, is a rational number for all H .

Definition 2.6. Let 3 = (V,E(H)) be a hypergraph and G = (V, E) be
a graph on some set V. The pair H , G is a core if it satisfies the following
properties:

(1) H is intersecting;

(2) G is triangle-free;

@) foralle EE and H € E(H), e ¢ H;

(4) for all x €V and H € E(H), x ¢ H, there exists y € H such
that {x,y} € E;

(5) for all x,y € V, if {x,y} & H for any H € E(3{) then either
{x,y} € E or there exists z € V with {x,z} € E and {z,y} € E.

Definition 2.7. Let H = (V,E(3#)) be a hypergraph with edge set
E(3)={H,H,,...,H,} and ¢ = 1/v*(FH). We define A(F,¢) as the
minimal value of the objective function in the linear programming problem,
A(H ,c) = min X7, |H;ly;, under the restrictions

i=1

Y yisc, foralx€v, (2.1)
xXEH;
yi=0, forall <i=<m, (2.2)

Note that ¢ = 1/»™(H) is the necessary and sufficient condition to ensure
that there are feasible solutions.

Now we are ready to state our last results.
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Theorem 2.8. For ¢ > 0, let the function K(c) be defined as K(c) =
inf{A(#, ¢)} where the infimum is taken over all hypergraphs JH , which
occur in a core with an appropriate graph G and ¢ = 1/»*(). Then
K(c) is monotone decreasing, piecewise linear, and right-continuous. The
points of discontinuities of K(c) are all rational and included in a sequence
¢ > ¢; > --+ — 0. Moreover, for each y > 0, the determination of K(c)
on the interval [y, ) is a finite problem (by solving finitely many linear
programming problems).

Definition 2.9. For ¢ > 0, we define a function B(c) the following way.
If c>1then B(c):=1. For0 < ¢ =< 1, let

Bo(c) = 22((1/c)+(1/cz))+1’ Bk+|(c) - 22((1/c)+(l/02))+1+2f_0B;(c)’

and  B(c) := Bprey+aery(c).

Theorem 2.10. (a) For all ¢ > 0, F(n,cn + B(c)) = K(c)n + o(n).
(b) If K(c) is continuous at ¢ then lim,—.. F(n,cn)/n = K(c).

We shall prove Theorems 2.8 and 2.10 in the next two sections. A standard
argument shows that for determining K(c) = inf{A(3{, c)}, it is enough to
consider hypergraphs JH with a bounded number of edges. The crucial point
in the proof of Theorem 2.8 is Lemma 3.4, where we show that the number
of vertices can be bounded as well. Hence K(c) can be determined as the
minimum of finitely many values A(H , c).

The connection between F(n, cn) and K(c) is explained in Section 4. We
show that if a maximal triangle-free graph G has a linear number of edges,
then its vertex set V can be partitioned into two parts V = V; U V; such that
|[Vil = o(|V]) and V; is independent. Then the neighborhoods of vertices in
V, define a hypergraph H{ on V; that, together with the restriction of G to
V1, is a core. Moreover, the percentage of vertices of V, with a given edge
of H as neighborhood defines a weight function on J, which is a feasible
solution of the linear programming problem (2.1)—(2.3).

Finally, in Section 6, we apply one of our constructions to obtain an
improved bound for a problem of Erdds and Fajtlowicz on the maximal
valency of a maximal triangle-free graph.

3. THE FUNCTION Ki¢)

In this section, we prove Theorem 2.8. From the definition of A(H , ¢) (cf.
Definition 2.7), it is clear that ¢ = 1 implies that A(3{,c) is equal to the
size of the smallest edge of F{ for any hypergraph F{ . Thus K(c) = 1 for
all ¢ = 1. Throughout this section, we suppose that 0 < ¢ < 1. For these
values of ¢, the core described in Example 2.2 provides an upper bound for
K(c). The next construction gives a slightly better bound.
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MAXIMAL TRIANGLE-FREE GRAPHS 17

Example 3.1. Let p be a prime satisfying (p + 1)/(p?> + p + 1) < c.
We define a core on a set V = V| U V, of cardinality 2( p> + p + 1). Let
Ei,...,Ep4p4 be the line set of the projective plane on a set Vy, [V| =
p2+ p+ L Let Vo = {xi,...,xp24,41}. We define E(H ) = {E; U {x;}:
1 =<i=< p?+ p + 1}. The graph G is bipartite with classes V; and Va;
we connect x; to all points in V,\E;. It is clear that the pair (H,G) is a
core. Also, the weight function w(H;) := 1/(p? + p + 1) gives a feasible
solution of the linear program (2.1)-(2.3) and > w(H;)|H;| = p + 2.

Corollary 3.2. K(c) = 2(1 + (1/¢c)).

Proof. Let p be a prime satisfying 1/c < p < 2/c. Then p + 2 <
2 + 2/c, and the previous example proves the assertion of the corollary. 1

Lemma 3.3. Suppose that A(F,¢) = 2(1 + (1/c)) for some hypergraph
. Then there exists a subhypergraph H; such that A(F,, ¢) = A(H , ¢)
and |[E(H))| = 2((1/c) + (1/¢?)) + 1. Moreover, if (H,G) was a core
with an appropriate graph G, then there exists a graph G, such that (H;, G;)
is a core. '

Proof. Let |[E(3)| = m. The system of inequalities (2.1)—(2.3) defines
a convex polytope P in the m-dimensional Eucledian space. P is bounded
and nonempty; hence the function X |H;|y; takes its minimum at a vertex p
of P. This vertex is the intersection of m hyperplanes of the type 3,y yi =
cforsomex € V;ory;, = 0forsome 1 < | < m;or Z;":l y; = 1. Since

S v =S Hily: = A(H, ) = 200 + (1/c)),
i=1

xEV xEH;

at most 2((1/c) + (1/c?)) equations of hyperplanes of the first type can
occur. Thus, for at least m — 2((1/¢) + (1/c?)) — 1 values of i, the
equation y; = 0 occurs. Let E(#,) be the set of those edges H; of H
for which y; = 0 does not occur among the equations defining p. Clearly,
A(H,,c) = A(H ,c) and |[E(HDI = 2((1/c) + (1/c?) + 1.

Suppose that (3{, G) is a core for a graph G. The pair (3], G) satisfies
the first four points of Definition 2.6. Notice that if the vertices x,y € V
violate (5) in Definition 2.6, then the edge {x, y} can be added to G without
violating (1)—(4). Thus G can be extended to a graph G such that (#, G;)
is a core. 1

Lemma 3.4. Suppose that a hypergraph H has m =< 2((1/c) + (1/c?)) +
1 edges and (H,G) is a core for some graph G. Then there exists a
hypergraph ; and a graph G, on <B(c) points such that A(H;,¢c) <
A(H ,¢), |IE(H)| = m, and (H,,G,) is a core.
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Proof. The function B(c) is defined in Definition 2.9. We can suppose
that each vertex of the underlying set V of 3{ and G occurs in at least
one edge of HH ; otherwise we delete these vertices from V and the edges
of G incident to them from G. The obtained hypergraph 3’ and graph G’
satisfies A(H',c¢) = A(3, ¢) and the first four points of Definition of 2.6,
so G’ can be extended to obtain a core.

Let H,,...,H, be the edges of F{ ordered the following way. H,
is an edge of minimal size. If H,,...,H, are already defined, we
choose H;,; such that H, \(H; U --- U H;) is as small as possible.
Let V., be the union of the first k edges for O <=k =m; Vo=
& and V,, = V. If |Hes)\Vi|l = 2*" for all 0 <k <m — 1, then
[Vl = B(c) and there is nothing to prove. If |H;.\Vi| > 2IVs+m for
some k, then we describe a method to construct a core (H',G')
such that A(H ', c) <= A(H ,c), |H'| = m,and 3 ye g0 |Hl < Y yesr |HI
By repeated application of this procedure, we can obtain the desired
pair (H,, Gy). .

Suppose that |Hy1\Vi| > 2IVsI*m We partition the points of V\V, into
equivalence classes. The x,y are equivalent if and only if (a) they belong
to the same edges of J{ and (b) they are adjacent (in G) with the same
vertices in V;. We denote the equivalence class of x € V\V, by (x). We
define H ' and G’ on the underlying set V' = V; U {ay, byy: x € VAV, ).
The edges of 3{’ will be Hj,...,H!. Let H = H; for i < k. For i > k,
let H = {x € Vi: x € H;} U {ayy, byy: x € H;}. Since each edge of
3 is partitioned into =2V:l*m=k-1 classes, |H!| < |H;| for i > k. Let
x,y € V; be adjacent in G’ if and only if they were adjacent in G.
The x € V, is adjacent to a(, and b, for some y € V\V; in G’ if
and only if x and y were adjacent in G. The sets {a;): x € V\V,} and
{b<x>: x € V\Vk} are independent in G’. Finally, ayy and b,y are connected
if and only if there exist x’ € (x) and y’ € (y) such that {x',y’} is an edge
of G.

Using the fact that (3H,G) is a core, it is easy to check that the pair
(#{', G') satisfies the first four conditions in Definition 2.6. Hence it is
possible to add some edges to G’ to obtain a core. The weight function w
giving the value A(H , ¢) of the objective function in the linear programming
problem (2.1)-(2.3) for H is also a feasible solution for J{’; hence
AH ', ¢c) = A(H ,¢). (In fact, A(H ', c) < A(H, ¢) if w(H;) > 0 for any
i>k) 1

Corollary 3.5. K(c) is the minimum of the finitely many values A(F , c)
where H is a hypergraph on <B(c) points with <((1/c) + (1/¢?)) + 1
edges and (3, G) is a core for some graph G.

Lemma 3.6. Let H be an arbitrary hypergraph. Then A(F ,¢) is a
continuous, convex, piecewise linear, monotone decreasing function on

[(1/ (™ (FH))), ).
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MAXIMAL TRIANGLE-FREE GRAPHS 19

Proof. Proposition 3.1 in [12] states that there exist real numbers
O=r<m <. <m=v*H),0<ay<--<ar,and0 = by >
-+« > by_; such that a(F,T), the minimal value of ZHGE(H) w(H) |H|
for fractional edge packings w with value T, is equal to a,7 + b, if T €
[7:, Ti+1). Substituting T = 1/c, we obtain immediately that A(F ,¢c) =
a; + b;c for ¢ € [1/7:+1,1/7:], proving the assertions of the lemma. J§

Proof of Theorem 2.8. Let y >0 be fixed. By Corollary 3.5 and
Lemma 3.6, K(c) can be obtained on [y,>) as the minimum of finitely
many piecewise linear, monotone decreasing functions; hence K(c) itself has
these properties. The only possible discontinuities are at points of the form
1/v*(3{) for some hypergraph J{ from this finite collection; in particular,
there are only finitely many discontinuities in [y,®). §

4. PROOF OF THEOREM 2.10
The next two lemmas utilize ideas from [12].

Lemma 4.1. Letn > B(c). Then there exists a maximal triangle-free graph
G = (V(G),E(G)) with maximal degree <cn + B(c), |V(G)| = n, and
|E(G)| = K(c)n + B(c)*.

Proof. By Corollary 3.5, there exists a core (3 ,G) on some set
V, |Vl = B(c), and a weight function w on the edges of H such
that |[E(H )| = m = 2((1/c) + (1/c?)) + 1, w is a solution of the linear
programming problem (2.1)-(2.3), and A(H ,c) =X, w(H)|H;| =
K(c). Let n > B(c) be given. For 1 <i =<m, we choose disjoint
sets V; with [(n — [VDw(H)] = |Vi| = [(n — |[VDw(H;)] + 1 such that
> Vil = n — |V|. The graph G is definedon V(G) =V U V; U --- U
Vm. X,y € V are adjacent in G if and only if they are adjacent in G. The
set Vi U --- U V, is independent in G. Finally, x € V and y € V; are
connected if and only if x € H,.

It is easy to check that G is a maximal triangle-free graph. If x € V;
for some i then d(x), the valency of x, is <|H;| = B(c). If x € V then
d(x) = c(n — |V]) + m + |[V| = 1 = cn + B(c). Finally, the number of
edges in G is =<K(c)(n — |V]) + m|V] + |VI*/2 = K(c)n + B(c)>. 1

Lemma 4.2. Let n > 2% and G = (V(G),E(G)) a maximal triangle-
free graph with maximal degree <cn + B(c), |V(G)| = n, and |E(G)| =
K(c)n + B(c)?. Then V(@) can be partitioned in the form V(G) = V, U V,
satisfying the following properties.

@) IVil = (2K(c) + 1)n + 2B(c)?)/log log n. (The logarithms are of
base 2.)
(b) V; is an independent set in G.
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(c) For x EV,, let Hx) ={y € Vi: {x,y} € E(G)}. Let H be a
hypergraph on V; with edge set {H(x): x € V,} and let G be the
spanned subgraph of G on V;. Then (H,G) is a core.

Proof. LetX = {x € V(G):d(x) = log log n}. Then |X| log log n =
erwg) d(x) = 2K(c)n + 2B(c)?, hence

IX| < 2K(c)n + 2B(c)*
B log log n )

(4.1)

For x € V(G)\X, let H(x) = {y € X:{x,y} € E(G)}. Clearly, |H(x)| <
log log n for all x € V(G)\X. Let Y = {y € V(G)\X: 3z € V(GI\X
such that H(y) N H(z) = &}. We claim that the partition V; = X U
Y, V, = V(GI\\(X U Y) satisfies (a)-(c). Since G is triangle-free, the
definition of Y ensures that (b) holds. Also, in a maximal triangle-free
graph, (b) implies (c). So, in view of (4.1), it is enough to prove that
Y| = (n/log log n).

The key observation is that the set system {H(y): y € Y} cannot contain
a sunflower with more than log log?n + log log n petals. To see this, let
us suppose that {H(y;): 0 < i < |log log?n + log log n]} is a sunflower
for some y; € Y. By the definition of Y, there exists z € Y such that
H(yo) N H(z) = . Since the vertices in V, have G-degree <log log n,
less than log log?n of the y; can be reached from z via a <2-long path in
VA\X. Hence H(z) must intersect >log log n of the H(y;). The points of
intersection must be different since H(z) N [YH(y;) = &. However, this is
a contradiction with |H(z)| < log log n.

By a well-known theorem of Erdds and Rado [4], if a hypergraph
has at least r!m” edges of size =<r, then some subhypergraph is
a sunflower with m petals. This implies that the set system {H(y):
y € Y} has <(log log n)! (log log?n + log log n)'® ¢ " < (n/log logn)
members. (This is the point where we use that n > 2%.) Finally, for
each H C X, {y € Y: H(y) = H}| < log log?n because these y must
be reached via a <2-long path in V\X from the vertex z € Y satisfying
HzNH=J. &

Proof of Theorem 2.10. (a) Lemma 4.1 proves that F(n,cn + B(c)) =
K(c)n + o(n). Fix ¢ > 0 and & > 0. We have to prove that for large enough
n, if G, is a maximal triangle-free graph on n points with maximal degree
=cn + B(c) then |E(G,)| > (K(c) — &)n. Suppose, on the contrary, that
there is an infinite set M of integers such that, for n € M, there exists such
Gn with IE(Gn)l = (K(C) - 8)”-

By Theorem 2.8, K(c) is continuous from the right for all c. Hence we
can choose & > 0 such that K(c + 8§) > K(c) — &. After that, we choose
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n € M, satisfying the following inequalities:

n > 2% 4.2)
2
K(c + 6)(n _ (2K(o) + Dn + 2B(c) ) > (K(c) — &)n; (4.3)
log log n
cn + B(c)

n — ((2K(c) + n + 2B(c)*)/log log n <c+3é. (4.4)

By Lemma 4.2, G,(V) can be partitioned into two parts V|, V, satisfying
(a)—(c). We use the notation introduced in Lemma 4.2(c). Let the weight
function w on E(F) defined as

Hx € Vy: H(x) = H)|

wiH) = Vsl

Clearly, ZHEE(H) w(H) = 1. For z € V;, using that dg,(z) < cn + B(c)
and (4.4), we obtain

cn + B(c) -

ZW(H)S =c+ 6.

2EH |V2|

Hence w is a feasible solution of the linear programming problem (2.1)-(2.3)
for the parameter value ¢ + § implying that > w(H)|H| = K(c + §).
However, by (4.3), this means that G, has >(K(c) — €)n edges,
a contradiction.

(b) Suppose that K(c) is continuous at ¢ and let & > 0 arbitrary small.
Since F(n, D) is a monotone deceasing function of D,

F(n,cn + B(c)) = F(n,cn) < F(n,(c — &)n + B(c — g))

if n is large enough. Dividing by n and taking the limit, we obtain
K(c) = lim F(n,cn)/n < K{(c — €). Since K(c) is continuous at ¢ and &
is arbitrary, this implies lim F(n,cn)/n = K(c). 1

5. THE CASE D = n/2
The aim of this section is to prove Theorem 1.3.

Lemma 5.1. Let n > 2%” and suppose that d(x) = 4 for each vertex of a
maximal triangle-free graph G, |V(G)| = n. Then |E(G)| > 3n — 15.
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Proof. We repeat the argument of the proof of Lemma 4.2. Suppose
that |[E(G)| = 3n — 15. Let X = {x € V(G): d(x) = log log n}. Then, by
our assumption, [X| log log n < 3 ,ey(g d(x) = 2(3n — 15), hence |X| <
(6n/log log n). Forx € V(G)\X,let H(x) = {y € X: {x,y} € E(G)} and
letY ={y € V(G)\X: 3 z € V(G)\X such that H(y) N H(z) = &}. As
in the proof of Lemma 4.2, we can see that |Y| < (n/log log n) and the
set V(G)\(X U Y) is independent. Hence |E(G)] = 3 cvgnxun d(x) =
4(n — (7n/log log n)). Since n > 22°, 4(n — (7n/log log n)) > 3n, con-
tradicting our assumption that |[E(G)| = 3n — 15. 1

Lemma 5.2. Let G be a maximal triangle-free graph with maximal
degree M and let |V(G)| = n.

(a) If min{d(x): x € V(G)} = 1, then M = n — 1 and G is a star.
(b) If min{d(x): x € V(G)} = 2, then either M = n — 2 and |E(G)| =
2n—4orM=<n-3and |E(G)=2n -5+ (n -3 - M)>=

Proof. (a) Obvious.

(b) Let x be a vertex of degree 2 with neighbors y,z. Let A = {w € V(G):
{w.y} € E(G) A {w,2} € E(G)}; B= {w € V(G): {w,y} € E(G) A
{w,z} € E(G)}; and C = {w € V(G): {w,y} & E(G) A {w,z} € E(G)}.
Since each vertex can be reached from x via a path of length =2, A U B U
C is a partition of V(G)\{y, z}. Since G is a maximal triangle-free graph, the
sets A, B, C are independent, there are no edges between A and B U C, and
each pairu € B, v € C is connected. Moreover, B =3 < C = J.1f B =
C=g,then M =n — 2 and |E(G)| = 2n — 4. If B # , then, because
of symmetry, we can suppose |B| < |C|. In this case, M = n — |B| — 2
and |[E(G)| =|BlIC| + |Bl + |IC| +2(n —2 - B = IC])=2n - 5 +
(Bl-=D(Cl-1)=2n—-5+(n—-3-M72~L 1

Proof of Theorem 1.3. By Examples 1.1, 1.2 and Lemmas 5.1, 5.2, and
finally (1.1). 1

Conjecture 5.3. Example 3.1 is optimal in the range (p + 1)/(p? + p +
)<c<1/p for p=3.

The above conjecture would imply that F(n, D) = 4n — 28 for (3/7)n <
D < n/2 — O(1)(n > no(D)). D. Hanson (private communication) have
found an example showing that F(n,D) < 4n — 25 for a slightly larger
range, for D > .4n (n = 10).

6. MAXIMAL TRIANGLE-FREE GRAPHS WITH SMALL DEGREES

In this section, we consider the following problem. Determine the minimum
number D,(n) such that there exists a triangle-free graph of diameter 2
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MAXIMAL TRIANGLE-FREE GRAPHS 23

on n vertices and maximum degree D,(n). Obviously, D,(n) = +n — 1.
Erdds and Fajtlowicz (cf. [1]) pointed out that the random method gives only
the upper bound D,(n) = O(\/n log n). The true order of the magnitude of
D,(n) was determined by Hanson and Seyffarth [7], who constructed some
circular graphs showing D,(n) < (2 + o(1)) /n. Another circular graphs
were found by Hanson and Strayer [8], but their method cannot give a
better upper bound. Example 2.2 indicates that in fact

Theorem 6.1. D,(n) < 2/\/3(/n + n") (for all n > ny).

To get this bound, we have to choose the prime g as large as possible
satisfying 3g®> + 2¢g < n. Then r := n — 3¢*> — 2q < 2q"9"2 for n > n,.
The only new idea we need is the well-known fact from finite geometry,
that one can choose the sizes of V; such a way that the size of every |V;|
is either 1 + |r/q?] or 1 + [r/q?*], and each vertex from V' has degree at
most 2g — 1 + 2[r/q] (see [9)]).

Further generalizations were investigated by Erdds and Pach [3], who
considered graphs with property I, that is graphs in which every independent
set of size k has a common neighbor.
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