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MIDPOINTS OF DIAGONALS OF CONVEX n-GONS*

PAUL ERDOSt, PETER FISHBURN$, AND ZOLTAN FUREDI+

Abstract. Let f(#) be the minimum over all convex planar n-gons of the number of different midpoints
of the () line segments, or diagonals, between distinct vertices. It is proved that f(#) is between approximately
0.8(3) and 0.9(%). The upper bound uses the fact that the number of multiple midpoints, shared by two or
more diagonals, can be as great as about (%)/10. Cases for which the number of midpoints is at least
[n(n—2)/21+ 1, the number for a regular n-gon when n is even, are noted.
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1. Introduction. Let M denote the set of midpoints of the (%) line segments between
distinct vertices of a convex r-gon in the plane. Let f(#) = min | M|, taken over all
convex n-gons. We prove that f(#n) is between about 0.401n% and 0.45r°.

THEOREM 1. Forall n = 3,

n\ | nnt+t1)(1—e'?) n\ | n*=2n+12
G s (O H 5

The lower bound proof, in § 2, is based in part on the following lemma.

PARALLELOGRAM LEMMA (Euclid). Two finite crossing line segments in the plane
have the same midpoint if and only if the ends of the segments are the vertices of a
parallelogram.

Section 2 also uses the notion of a multiple midpoint. Call a point in M multiple if
it is the midpoint of two or more of the (%) line segments between vertices of the convex
n-gon. We let M denote the set of multiple midpoints.

Let g(n) = max |M|, taken over all convex n-gons. Clearly f(n) + g(n) = (5). The
upper bound on f(#) in Theorem 1 is a corollary of the following theorem.

THEOREM 2. Forall n = 3,

n*=2n+12
20 }

g(n)z[

This quadratic lower bound on g(n) is the largest lower bound presently known for
n = 18, but for most n = 17 it is exceeded as follows:

n 56 7 8 9 10 11 12 13 14 15 16 17
2_2n+
noA12) 0 5, 033 405 6 7 9 10 11 13
20
g(n)= 1 2334 5 6 8 9 10 11 13 l4

The construction for the improved lower bound on g(n) is described in § 4.
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Section 5 concludes our study of M with remarks on | M| when the number of
multiple midpoints is small. Its main result, which includes all regular n-gons for even
n, is the following theorem:.

THEOREM 3. If the number of multiple midpoints is less than 3, or if one vertex of
the convex n-gon is an endpoint of diagonals whose midpoints include all multiple mid-
points, then

|M|;[”—(”2‘—2}]+1.

This inequality can fail when |M| = 3.

We are not aware of previous contributions to the problems investigated here. Some
time ago, Behrend [1] looked at sets of integers that contain no element midway between
two others. More recently, Freiman [4], [ 5] obtained many results involving midpoints
in additive number theory. One of these says that if 2 = X\ < 2™, m = 2, then there is a
constant ¢, > 0 such that every sufficiently large finite X € R™ whose points determine
no more than A| X' | midpoints has at least ¢,| X'| of its points in some hyperplane in
R™. Fishburn [2], [ 3] gives an elementary proof of the planar version of Freiman’s result
and finds nearly best values of ¢, for 2 = A < 4. The latter work uses results in the pres-

ent paper.
2. Lower bounds on f(n). Let f(V) = | M| for a convex n-gon with vertex set I/
and nonempty multiple midpoint set M. For each p € M let
V(p)={xeV:u=(x+y)/2 for some yeV},
E(u)={all diagonals with midpoint u},
D(u) = {all diagonals for ¥ (u) except those in E(y)}.

Thus ¥V (g) is the vertex set of E(u), |V(u)| =2|E(w)|, and |D(n)| + |E(p)| =
(""¥"). Let u* = | E(u)]. Then

| D(p)| =2p*(n*—1).
Clearly, E(p) N E(M\) = & when u # A, p, A € M, and the same hypotheses and the
Parallelogram Lemma are easily seen to imply D(g) N D(A) = &. Obviously,
. n "
J¥)= 5] 2 (1)

peM

We observe in passing that for n = 3

02(3) 5

so that f(n) is at least as great as about (§)n?. Observe that 2 | D(u)| = (%) — n/2]
since for every x € V there is a y € V'\ {x} across the n-gon from x such that [x, y] is
not a side of a parallelogram on four vertices of V. Therefore

oy DWI_1 1((n)_
B ren=3 S (p)|é4[(2) rnm],

and the given inequality for f( I') follows from this and the concluding equality of the
preceding paragraph.
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The rest of this section is devoted to the better lower bound specified in the follow-

ing lemma.
LEMMA 1.

n\ | n(n+1)(1—e'?)
S

This shows that f(n) > 0.4016n? for all large n.
A new definition is needed. Let

C(x)={[y,z]€E(pn):xV(n) and xe¢{y,z}}

for each x € V: see Fig. 1(a). The following result is central.

LEMMA 2. Every two diagonals in C(x) intersect in the interior of the n-gon.

Proof. Suppose otherwise for [y, z], [a, b] € C(x). Let u be the midpoint of
[y, z] and of [x, w], let @ be the midpoint of [a, b] and [x, c], and suppose with no
loss of generality that « lies in the x direction from [y, z]. Then a and b must lie in the
three-sided dashed regions shown in Fig. 1(b), one in each region, or else convexity will
be violated.

Assume that a is in the upper dashed region and b is in the lower dashed region.
Suppose a = y: see Fig. 1(c). Then b # z by our initial supposition, and since [x, )],
[/, ¢], and [ z, w] are mutually parallel by the Parallelogram Lemma, we violate convexity.
Therefore a # y. Similarly, b # z.

It follows that @ and b are interior to their regions. Position a accordingly, anywhere
in its region: see Fig. 1(d). Then convexity forces b to be interior to the shaded triangular

f(V)i(
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region. But ¢, the fourth vertex of the parallelogram for «, will then lie in the interior of
the hexagon with vertices axbzwy, which gives another violation of convexity. O
For each v € V'let

=IC(v|= 2 (-1,

{uiveV(p)}
and for each diagonal [x, y] of the n-gon define its “length” by
[(x,y)=1+min { number of ¥ points on one side of xy line,
number of V' points on the other side of xy line },

so that 1 = /(x, y) = |n/2]. If n is odd, there are n diagonals for each / € {1, -,
(n—1)/2};if nis even, there are n diagonals for each /€ {1, -+, (n — 2)/2} and n/
2 diagonals with / = n/2. The following connection between ¢ and / is immediate from
Lemma 2.

COROLLARY 1. ¢, = l(x, y) forallve V and all [x, y] € C(v).

We now construct an (5) X n 0-1 matrix 4 (}) that will be manipulated to yield the
conclusion of Lemma 1. The (%) rows of A(}") are labeled by the diagonals in nonin-
creasing order of their / values: the final n rows have / = 1. The n columns of 4 = A(V')
are labeled by the vertices in nonincreasing order of their ¢,. Write i — [x, y] when row
i has label [x, y], and j = v when column j has label v. We define A’s entries by the
following: when i — [x, y] and j = v,

1 if [x,y]eC(v),
"o otherwise.

When j = v,c, = 2Z; Ayand 2 ¢, = 2y 2u*(u* — 1). Let r; = 2; A, for row i. When
i—[x,y],ri=0if[x, y] ¢ Uy E(u), but if [x, y] € E(u) then

ri=|{v:[x,y]eC(®)}| =2(p*—1).
Since p* rows have labels in E(u),

@ 2u*—1
T e Z[ e )}n*=2(#*—1)-
i=1 M M
Therefore
. I Fi
f(V)—(Z) ?r,-+2'

Our lower bound on f( V) is obtained from an upper bound on X r;/(r; + 2).
Assume until later that n is odd. Then, by Corollary 1 and the nonincreasing order
of rows by /,

. n—1 i—1
if 4;,=1 then c}é*-z——{-—n-—J,

where ¢; is ¢, when j — v,
Let .o/ be the set of all (3) X n nonnegative integer matrices with column sums
2= Z¢,, TOW SUMS 7y, ry, -+ -, and

n—1 -1
CJ<T—[IT whenever entry (7, j) #0.
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Clearly A(V') € .o/. Suppose B€ o/, i < a, j < b, and By B,; > 0. Let B’ equal B except
on{i,a} X {j, b}, where
BYy=B;+1,
= Bip—1,
B,=B,—1,
Bu,=B,+1.

Then B' € .o/ since we have changed neither the column nor row sums, and in going to
B’ we need

n—1 1i—1 n—1 a—1
= =] — and S —— :
e =) @ &g [

The first of these is true since i < g and for Bwe had ¢; = (n—1)/2 —|(a — 1)/n]. The
second is true since j < b = ¢, = ¢;.

It follows from a finite sequence of switches as just described that A(}’) can be
transformed into 4° € .o/ so that no positive entry of 4 is northeast or southwest of
another positive entry. This implies that all positive entries of A lie on a rectilinear
staircase path as shown in Fig. 2(a). We suppose for convenience that all entries of A°
on the path are positive: this is not needed for the desired conclusion, but it simplifies
calculations by avoiding special notation that would continually refer to the set of all
rows for which r; > 0,

Let W= Z r;/(r;+ 2)and let R; be the set of rows i for which 4% > 0. The staircase
pattern gives R = R, = -+ = R,,. Also let

AL
I i
W= 2 43 J=Lnm
ie Ry Fi
n 1
s| A | Ay
rs+l
n
(2)
fioq
t ?j ?,j’-vl
AD
Ri={s, --- .1}
Cj= A+l + o+ h g+ AY
A A
d;-=—.§ + 14+ k14 T

(a) (b)
FiG. 2
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Them
W: _H _ _J;{ -.—ﬂ
%:ﬂ-'i‘rz %:(;jgu ¥ )n+2
" A@}
=2 X —-=2W,
ryt2
Ji=TieRy Fi Vi
We assign a fractional number of rows, dj, to colummn j in which AF > 0, as follows:
d}?'= E Ag}-ﬁ Fi.
e B

lﬁ"amtbnﬁnsﬂml@lmmﬁwd&,@<;4$ﬁné 1, and iff i is between the first and last
members of R then Af/r; = 1 since the r; total for row i is all in column j: see
Fig, 2(b).

Suppose ¢ = max K. Them

dy+ -~ +di=t—1+ 3, A=t
E=ji

n—1 |dyt---+d—1
[

LemMA 3. For all j, ¢/ d; = 2 and

"._siq‘@'
e+ 2d;”

Proof. mehminedﬂiwrufgamﬂd}msﬂnmnmmFig.Z(ln)),Aﬂé(A T2,
Fysu = 1(2), --- , S0 summation gives ¢; = 2d;. When | R;| = m, the inequality

cj/d,
W,<d—2F
i /] Jﬂd},-H'z

can be put in the form

2 plr—r)/(r+2)=0,
k=1

where py > 0, Z pp = 1 and 7 = 2 pyr,. When multiplied by the product of the
(ry + 2), this inequality becomes

2 ﬂﬂ’_’pl[ 11 m+2)][(ra—m)2%0,
i<j ke i)
which is true. [

By Lemma 3, Zy(p* — 1) = W = 2, ¢id;/(c; + 2d;). Denote the latter sum by
Fle,d), c=(ey, -~ ,cyand d = (dy, -~ , dy). mmmmm
o o
TAXimiz F - _ o

= _;;Zu ¢+ 2d;
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subjecttoc, = ¢, = --- Z¢,and, forj=1, -+, n,

-1 + i g.—
df>01 C_;/'d,EZ, Cjén = dl dj Ij.

2 n

We replace the final constraint by the weaker but smooth ¢ =(n+1)/2—
(dy + -+ + d;)/n, observe that F increases in each ¢;, and therefore take ¢; as large
as possible:

w n+l di+--+d
CJ': - "

2 n
Thus max F(c, d) = max F(c*, d) subject to d;> 0 and ¢;" = 2d,.
LEMMA 4, .
. n(n+1) 1
max F(c*,d é—( 1 ——).
) T 7

Proof. Letcy=(n+1)/2and omit * on ¢;. Also let x; = ¢;/d; Z 2. By the definition
of ¢; we have ¢; = [nx;/(1 + nx;)]c; ;. Therefore

i
nXx;
Cj:C()H 3
o T+ nx
e
nx; n
di=c¢ ' ,
¢ o r.I;Ill-ﬂ'tx,- 1 +nx;

and

F{c,d)=cuﬁ(ﬁ i ) :

j=t\icg 10X 2+ X

with each term in the sum = since x; = 2. Fora, b > 0

na 1 na'nb 1 nb lJr nb_na 1
l+nal2+a \l+na 1+nb)2+b \1+nb)2+b l+nb l+nal2+a

if and only if @ = b. It follows that F is maximized when x; = x, = -+ = x,, = 2, so
assume the following,
Fix x; through x,. Let x = x,. Then

I nx 1 nx
—F(c,d)= £
co (5:d) (1+nx)2+x (l+nx)S’

where S = (n — 1)/4. Differentiation shows that the right-hand side decreases when
2—nx’+S(2+x)2<0,

which is true when x = 2 + 1/#n. We may therefore suppose that x < 2 + 1/#n. But then
S'is much smaller than n/4, and the preceding inequality holds for all x = 2. This implies
that F is maximized at x; = 2, hence at x; = 2 for all j, where

col| 2n 2n \? 2n \"
L S— ...+
# 4[2n+1+(2n+1)+ (2n+1)]

_n(n+1) B 2n \"| nm(n+1) 1
-2 - [ ) :
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Lemma 4 completes our proof of Lemma 1 when #n is odd. When # is even, the
preceding analysis is modified by replacing the bound on ¢; obtained from Corollary
1 by

n |i+tn/2—1
o<|11
2 n
which corresponds to the remark on / for n even that precedes Corollary 1. Then ¢/
preceding Lemma 4 can be replaced by

c_ntl 1 di+--+d

4 2 n n

The only effect this has on the proof of Lemma 4 is to change ¢y there to cp = (n + 1)/
2 + 1/n. This changes the final equation in that proof to

po[ntD 1T (2
4 2 2n+1
It is easily checked that this is less than n(n + 1)(1 — e '/?)/4 when n = 10. Therefore
Lemma 4 holds for all n = 3 except for n € {4, 6, 8}. Lemma 1 claims for these three

that f(n=4)25, f(n=6)= 11,and f(n = 8) = 21. Since f(4) = 5, f(6) = 13, and
f(8)€ {24,25}, Lemma I holds for all n = 3.

3. Lower bound on g(n).

THEOREM 2.
(n*—2n+12)
z|— 3.
g(n)—l 20 J Jornz3
Proof. Leta, = k*fork=4,5,---,3m— land by = 3k®fork=1,2, -, m
with m = 2. Take N > 12m? and construct the convex (4m — 4)-gon that has m lower-
left vertices (—k, by) for k=1, -- -, m, and 3m — 4 upper-right vertices (k, N — a;) for
k=4,---,3m— 1. Forevery | =i<j = mitis easily checked that
(*) bj_b{:aH 2j —A2i+j.

Since j — i = (i + 2j) — (2i +j), it follows that [(—J, b;), (i + 2j, N — a;, ;)] and
[(—i, b)), (2i + j, N — a4 ;)] have the common midpoint

¢;=((i+))/2,(N—?—j>-4ij)/2).

Moreover, if i # k, i <j, k <[, and i + j = k + [, then the vertical components of Cyj
and ¢y; are distinct. Therefore every multiple midpoint ¢; is distinct, so

g(4m—4);(’;).

The lower bound ratio of g(n)/n? in this case is approximately (m%/2)/(4m)* = 1/32.

We get a larger ratio by deleting vertices at both ends of the upper-right part of the
construction since the a; pairs that match the b, pairs as in (*) are denser in the middle
of the ay sequence. A crude calculation for the quadratic terms shows that if we delete
K vertices at each end of the a; sequence then we lose about K?/3 of the c;. This also
removes 2K points from »n, so the new ratio for g(n)/n? is approximately

m?/2—K?/3
(4m—2K)* "’
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which is maximized through differentiation with respect to K at K = 3m/4, where the
ratio is 1/20.

To be more precise, suppose T vertices are removed from the a; sequence, | 7/2 |
at one end and [ 7/21 at the other end. Then, with details omitted, we get

s (52 os-o 2]

Given n, we then consider the (m, T') pairs that satisfy n = 4m — 4 — T to determine
the pair that maximizes the right-hand side of the preceding inequality. Further calcu-
lations show that the maximum is| (n> — 2n + 12)/20 ], as claimed in Theorem 2. |

4. Another construction for g(n). The a; and b, of the preceding proof were chosen
in an attempt to minimize #n, given that each of the (") pairs from the lower left is
matched by a pair from the upper right to yield a different multiple midpoint. We ex-
amined variations to this construction, but their lower bounds on g(7)/n? were smaller
than 1/20.

However, as mentioned earlier, a different construction gives larger lower bounds
on g(n) for most n = 17. This other construction yields a lower bound on g(#n)/n of
approximately 7/6 for large n, as compared to n/20 for the quadratic construction used
to prove Theorem 2, and is therefore much less powerful than the quadratic bound for
large n.

Figure 3 illustrates the other construction that yields the largest lower bounds on
g(n) for small » that are presently known. Its 18 vertices are numbered in the order in
which they enter the construction. We begin with the tall narrow rectangle for vertices

g 1 2 6 7

10 ,
18 14 18 47

ok —— —

* i

1.5\“'—0_.——0"/:5
11

25 3 4 8

FIG. 3. *’s denote multiple midpoints.
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1 through 4, then position 5 to the left of 3 so that the horizontal distances from 5 to 3
and from 3 to 4 are equal, with 5 slightly above the line through 3 and 4.

The other points are then positioned by midpoint restrictions and symmetry. Let
p(i, j) denote the midpoint between i and j. A complete account of multiple midpoints
is shown in the following construction routine:

p(l,4) =p(2,3)

position as described above
u(5,6) = pu(2,4)

u(5,7)=pu(3,6)

position horizontally symmetric to 5

9: u(8,9)=pu(l1,3)

10:  u(8, 10) = u(4,9)

11: (10, 11) = u(2, 5)

12: w(7,12) = pu(1, 8)and u(6, 12) = u(9, 11)
13: w(12,13)=u(3,7)

14: pu(11, 14) = p(4, 10)

15: u(14, 15) = u(2, 12)

160 w(13,16) = pu(l, 11)and u(7, 16) = u(10, 15)
17: w(12, 17) = u(5, 13)

18: u(11,18) = u(8, 14).

o - O Ln

Each p equation here identifies a different multiple midpoint. The lower bound on g(n)
is the number of u equations in place after point » is added.

The preceding construction shows that every vertex can be at the end of two or
more diagonals whose midpoints are in M. This occurs for the first time in the construction
at n = 12. Moreover, by Theorem 2, the smallest # presently known for which g(n) >
nis n = 23. We do not know whether a smaller » suffices in either case.

5. Small numbers of multiple midpoints. This section focuses on situations that
force | M| to be much larger than the upper bound on f(#n) in Theorem 1. For each
r € M let V' (u) be the set of all vertices at ends of diagonals that have midpoint p. If
p€Mthen |V(u)| €{4,6,8,---}.

The following lemma is an easy consequence of the Parallelogram Lemma.

LEMMA 5. If p € M then all midpoints of line segments between points in V () that
differ from p are different from each other. If \, p € M, X # u, and L is the line through
Nand p,then LO V(NN V() =@, VNN V()| E2and, if |V(N)N V(]| =
2, then \ or u is the midpoint between the points in V(X)) N V().

Let R, be a regular n-gon for even n. It follows immediately from the first part of
Lemma 5 that

| M(R,)] =(§)—(§—1)=3(”—2_—2—)+ 1.

An easy proof also shows that the maximum number of parallelograms that can be
formed from the vertices of a convex n-gon for even n occurs at R, and equals
n(n — 2)/4. The two diagonals of each parallelogram cross at the one multiple midpoint
of R,.

The initial observation in the preceding paragraph generalizes to the following
theorem.



MIDPOINTS OF DIAGONALS OF CONVEX m-GONS 339

THEOREM 3. If either | M| = 2 or Nyg V() + & them
M| ;“M% i
2
The comclusion can fail if |M| = 3.
Figure 4 verifies the final statememt of the theorem. With »= 11 amd M =

{ mus pz, p3 ), we have
Vip)=1{1,2,3,6,89},
V(p2)={2,4.6,11},
V(ps)=1{3,4,5,7,10,11}

so that ¥ () N V() = {2, 6}, V(wa) N ¥(as) = {4, 11}, and ¥ () N V(ps) =
{3}. Startimg with all diagonals im place, we must remove five (two for w,, one for u,,
two for ;) to have no multiple midpoint, so | M| = () — 5 = 50. On the other hand,
T(II9)/2T+ 1 = 5I.

The conclusion of Theorem 3 for |[M| = 2 follows from Lemmza 5. For example,
if M = {\, g} and | F(A) N V()] = 2, them with 2¢, = [F(A)] and 2¢, = | F ()] we
MEZ(m-Ir lf;'w)é w4 2. The remowal Cﬂr(ltjg\— ﬂ)‘ﬂ*(tﬂl‘— ]])) "l:l*.::.:Z-.'I:'I.:u|'e':i|-'.. O !n-;_q Iration
in which no two remaining diagonals have the same midpoint, so

! i m nt2

" pii m(m—2)
(3)+ B |52

The following lemma is needed for the M V(w) # @ part of Theorem 3.

LEMMA 6. Suppose |M | =t = 3 and MingV () # @. Let ey be the numuber of vertices
im exactly k of the V(w) for we M. Them a, = 1, ap =0 for 2 <k <t, and ey =t — 1.

Proof. Take x € NMygV (w) and M = {py, po, -~ , ) as shown im Fig. 5(a). If
vertex y # x is im at least two V(w), say V(w;) and V(w,), then Lemma 5 requires y €
{ vy, v; )} It follows that a;, = 1 and ey = Oforall 2 < k < 1.




340 P. ERDOS, P. FISHBURN, AND Z. FUREDI

X

V3

(a)

violations of convexity

(b)
FiG. 5

Lemma 5 and convexity imply the following: see Fig. 5(b).

Rule 1. v; € V(u;) for at most one j # i.

Rule2. [vie V(w),i<jl=v,&V(p)ifg=i<p=j.

Rule 1 implies a; = ¢, and it follows easily from Rule 2 and its dual for j < ; that
a; = 2 when ¢ = 3. We use induction on ¢ in what follows.

Suppose a; =t — 1fort =3, ---,r— 1 with r = 4. Contrary to the lemma, suppose
oy = r when |[M| = r. Suppose then that v; € V'(g,) for some i < r. By Rule 2, v, ¢
V(u,) when g = i < p = r. Since a, = r and Rule 1 require every v, to be in a V' (u,),
g # p, it follows that each of v;,, through v, is in one of V' (u;4 ) through ¥ (u,) that
has a different index. But this is impossible by the induction hypothesis if i < r — 2, by
Lemma 2 if i = r — 2, and by definition if i = r — 1. Hence no v; for i < risin V(g,),

a contradiction. Therefore a; = r — 1. O
Proof Completion (Theorem 3). Let |[M| =¢=3 with M = {yu;, -+, i} and
| V()| = 2ck. Suppose Ny ¥V (n) # . Since (az, *++, ) = (¢t —1,0,---,0, 1) by

Lemma 6, 2 (2¢;) = n+ 2(t — 1). Excision of 2 (¢, — 1) diagonals gives a configuration
in which no remaining diagonals have the same midpoint. A calculation similar to that
preceding Lemma 6 yields | M| =Tn(n —2)/21+ 1. E

6. Discussion. We have shown that f(») lies between about 0.8(5) and 0.9(%), that
|M| can be as large as about 0.1(%), and that if either |M| = 2 or if some vertex lies
at the ends of diagonals whose midpoints cover M, then the corresponding rn-gon has
(M| =2Tn(n—2)/21+ 1.

Several open problems, in addition to exact values of f(#) and g(n), are suggested
by our study. Does lim f(n)/n? exist and, if so, what is its value? We ask a similar
question for g(n)/n*?. Let M5 denote the set of all midpoints shared in common by at
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least three diagonals, and let #(n) = max | Mj3| over all convex n-gons. Does there exist
¢ > 0 such that A(n) > cn? for all large n? If so, does a similar conclusion hold for
midpoints with multiplicities that exceed 3?
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