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Abstract 

Ftiredi, Z&an, Indecomposable regular graphs and hypergraphs, Discrete Mathematics 101 
(1992) 59-64. 

Let G be a d-regular simple graph with n vertices. Here it is proved that for d > 6 - 1, G 
contains a proper regular spanning subhypergraph. The same statement is proved for 
multigraphs with d > (n - 1)/3. These bounds are best possible if d is odd. The main tool of the 
proof is a consequence of Tutte’s f-factor theorem on the existence of 2-factors, due to 
TaSkinov. Finally, disproving a conjecture of Alon and Berman, an indecomposable d-regular 
3-uniform hypergraph is constructed with d 3 2(nm6)‘2. 

1. Introduction, results 

A hypergraph H is a pair H = (V(H), 8(H)), where V is a finite set, the set of 
vertices or points, and 8, the edge set, is a collection of subsets of V. Note that 8 
may contain the same set more than once, the multiplicity of E E 8 is denoted by 
m,(E). If we want to emphasize that H contains (or might contain) multiple 
edges, then we call it multihypergruph. If H does not contain multiple edges (i.e. 
m(E) = 1 for all E E %‘), then it is called a simple hypergraph. A hypergraph is a 
k-graph, or k-uniform hypergraph if all edges have k elements. The 2-graphs are 
called graphs. A pseudograph is a (multi)graph with loops. The edge B E 8(G) is 
a bridge of the (pseudo)graph G if there is a partition of the vertex set 
V(G) = VI U V, such that B is the only edge between VI and V,. We denote by 
G 1 A the induced subhypergraph on A. The degree of a vertex 21 is deg,(u) = 
C {m(E): IJ E E E %}. H is d-regular if deg,(v) = d for all vertices 2, E V. F is a 
subhypergruph of H if V(F) c V(H) and 8(F) c g(H). F is a spanning 
subhypergraph of H if lJ E(F) = IJ 8(H). H is indecomposable if it contains no 
proper non-empty regular spanning subhypergraph. 
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In this paper we consider the maximum possible degree of regularity of regular 

indecomposable hypergraphs. More precisely, define for n 2 k > 1, D(n, k) as 

the maximum possible d such that there exists a d-regular indecomposable 

k-uniform hypergraph on n vertices. Moreover, Dsimple(n, k) = max{d: there 

exists a d-regular indecomposable simple k-graph}, D(n) = max{d: there exists a 

d-regular indecomposable hypergraph on IZ vertices}, where it is understood that 

D(n) = 00 is a possibility. Huckemann and Jurkat (cf. [5]) are the first to prove 

that D(n) (and hence D(n, k)) is finite for all n. The problem of estimating D(n) 

is considered by a number of people, since it has applications in Game Theory. 

Huckemann, Jurkat and Shapley proved that D(n) < (n + l)@+‘)” for all n 2 1 

(cf. [5]). Alon and Berman [l] gave new proofs and the following bound 

D(n, k) s (“k) kn’*. 

They conjectured, that in fact D(n, k) s nc(“), where c(k) depends only on k. In 

Section 4 we will give counterexamples, proving the following. 

Proposition 1.1. D(n, 3) 2 2(n-6)12 for all n Z= 3. 

Concerning the case k = 2, (simple graphs, multigraphs, and pseudographs) 

one of our tools is Petersen’s classical result (cf. [S]). It says that for even d, every 

d-regular pseudograph contains a 2-regular spanning subgraph, i.e. a 2-factor. In 

the case d odd, we are going to use the following theorem of TaSkinov [ll], which 

easily follows from Tutte’s f-factor theorem (cf. [S, Thm. 10.2.20, p. 4031): If a 

d-regular pseudograph does not contain a 2-factor, then it has at least d bridges. 

Using the above tools it follows easily (see [l]), that 

n-l forevenn; 
Dr=udo(nr 2, = [ 2 for odd n. 

A cycle of length IZ is an optimal example for odd n. For even n, the graph 

obtained from a star with n - 1 edges by adding (n - 2)/2 loops at each endvertex 

is (n - l)-regular and indecomposable. Here, verifying two conjectures of 

Gronau [6-71 the following is proved. 

Proposition 1.2. Let d denote the largest odd integer not exceeding (n - 1)/3, 

d 

D(n’ 2, = (2 

for even n, n # 6, 8; 

for odd n and for n = 6, 8. 

Proposition 1.3. Let d denote the largest odd integer not exceeding fi - 1, n 2 3. 

Then 

Dsimple(n7 2) = ( 
d for even n, n = 4 or n 2 16; 

2 for odd n and for all 5 s n =S 15. 
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The finiteness of D(n, 2) is one of the first problems of Graph Theory. It was 

investigated in the classical paper of Petersen [lo] in 1891, and he proved an 

almost exact upper bound n/3 + 1. Indeed, the construction yielding the lower 

bound (n/3) - 2 is due to Petersen and Sylvester (see the recent review of Mulder 

[9]). One of our aims here is to show how easily the above mentioned results 

follow from the tools developed since then. 

2. An indecomposable regular multigraph 

We will prove Propositions 1.2 and 1.3 in a slightly more general form. In this 

section we give a construction yielding the lower bound. As the case d even is 

trivial from Petersen’s theorem in both Propositions, we suppose that d 2 3 is 

odd. 

For 1 <rn s d, let S,,,(d) denote the class of multigraphs with maximum edge 

multiplicity at most m, and degree sequence d, . . . , d, d - 1. That is, each graph 

in S,,,(d) is almost d-regular, all degrees are d except one vertex has degree d - 1. 

Set R,(d) =: min{lV(G)I: G E Y&(d)}, the minimum cardinality of the vertex set 

of such an almost regular multigraph, and set i%,,(d) =: {GE Y&(d): IV(G)1 = 

R,(d)}, the set of graphs with minimum number of vertices. E.g. for m > d/2, 

L&(d) has only one member, a triangle with edge multiplicities (d - 1)/2, 

(d - 1)/2 and (d + 1)/2. Sl(d) consists of only one graph, too, a simple graph on 

d + 2 vertices obtained from the complete graph by deleting from its edge set a 

path of length 2 and (d - 1)/2 disjoint edges. We have 

R,(d)= 1+2 & . 
I 1 

(2.1) 

To prove (2.1) one can use the following theorem of Chungphaisan (cf. [2, p. 

1211). There exists a multigraph with degree sequence d, > d2 Z= . . .a d, 2 0 with 

no loops and maximum edge multiplicity at most m if and only if C di is even and 

the following inequality holds for each 1 c t s it. 

c mt(t - 1) + 2 min{mt, di}. 
i=t+1 

(2.2) 

Consider a graph G E S,,,(d) with n vertices. As d is odd and d > 1 we have that n 

is odd and n > 1. Apply (2.2) with t = n. We get 

(n - 1)d < m(n - l)(n - 2) + min{m(n - l), d - l}. 

Here the right-hand side is at most m(n - l)‘, so we get d s m(n - l), i.e. 

(n - 1)/2 > dl(2m). Here (n - 1)/2 is an integer, so we get (n - 1)/2 2 [d/(2m)l, 

the correct lower bound for n. Finally, it is similarly easy to obtain from (2.2), 

that for all odd n 2 2 [d/(2m)l + 1 there exists a graph G E Sm(d) with n vertices. 

We will need the following simple property of the minimal graphs. 

G E Sm(d) does not contain any bridge. (2.3) 
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Suppose, on the contrary, that the edge {x, y} is a bridge with parts x E V,, y E 

V,. Then x is connected to at least (deg(x) - l)/ m additional vertices of V,, hence 

Here the right-hand side is larger than 1 + 2 [d/(2m)l, for (d, m) # (3, 1). This 
contradicts (2.1). Finally, the case d = 3, m = 1 is trivial. 

Let V be an n-element set, 12 even, with n 3 1 + d&(d). Consider a partition 
of V into d + 1 parts, 

v=v,uv,u.*.uv,, 

such that IV,j = 1, and IV,1 a&(d) is an odd integer for all 16 i s d. Choose 
vi E y, i.e. V, = {vO}. Let Gi E Y&(d) be a graph with vertex set l$ such that all 
degrees are d but deg,,(q) = d - 1. Finally, join v. to each vi. 

Proposition 2.1. The obtained d-regular graph, G, is indecomposable. 

Proof. Suppose, on the contrary, that 8(G) is decomposable into an a-regular 
and a b-regular part. As a + b = d is odd, either a or b is even. Hence, by 
Petersen’s theorem, the corresponding component contains a 2-factor F. Say, 
{vo, vr} E 8(F). Then, the degrees of F ( VI are all 2, i.e. even, except 
deg,,,,(v,) = 1, which is impossible. Cl 

3. The minimal indecomposable graph 

Theorem 3.1. Let d Z= 3 be an odd integer and let G be a d-regular multigraph 

without a 2-factor. Suppose that the maximum edge multiplicity is at most m. Then, 

IV(G)1 3 1 + d + 2d rdl(2m)l. 

Proof. We may suppose that IV(G)] is minimal, so it is connected. TaSkinov’s 
theorem supplies at least d bridges. Delete d of them, and consider the obtained 
d + 1 connected components with vertex sets V,, VI, . . . , V,. The set of d deleted 
bridges in denoted by 9?. We may suppose that some of these partition classes, 
say V,, does not contain any 2-factor. 

If V, is adjacent to all bridges of 9, then all the other I,$ are adjacent to exactly 
one of them. Hence G 1 K E s,,,(d), implying IVJ al?,(d). Altogether, IV1 = 

IV01 + C I&l 3 1 + d&(d), as stated. 
Suppose now that for some t, 16 t < d, B,, BZ, . . . , B, are the bridges of 99 

adjacent to V,. These bridges define a partition of the vertex set V = V. U VI U 
. - . U, such that the only edge between Vi and V \ Ui is Bi. Erase all vertices of G 
outside V, and UIGis, B;, and replace each G 1 Ui by a graph from 9Zm(d), such 
that Bi is adjacent to the vertex of degree d - 1. 
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The obtained new d-regular multigraph G’ has no 2-factor either. But the 
cardinality of its vertex set V(G’) is smaller than IV(, by (2.3), a 
contradiction. 0 

It is easy to see, that the extremal graph in Theorem 3.1 is isomorphic to the 
example given in Proposition 2.1. 

4. The case of 3-uniform hypergraphs 

Here we prove Proposition 1.1. We define a 3-uniform 3 x 2k-regular indecom- 
posable (multi)hypergraph H over 2k + 5 vertices (k 2 0, k f 2 (mod 3)). Let 

V(H) = {Xi, x2, . . . , xk+l> Yl, Y2, . . . > Yk+l> =I> =2> =d* 

Set Ai = {xi, yi, x~+~), & = {xi, yip yi+d, for 1 =S i =S k, Ci = {xk+l, yk+l, Zj} (i = 

1, 2, 3) D = {z,, z,, z3}. Define 8(H) as follows. 

8(H) = {Ai, Bi, Cl, C2, C3, D: 1 s i s k}, 

with multiplicities m(Ai) = m(Bi) = 2k - (-1)i2k-i, m(C,) = 4(2k+’ + (-l)k), 
m(D) = 4(7 x 2k - (- l)k). 

It is easy to see that H is indeed indecomposable. In any d-regular 
subhypergraph F the multiplicities of the three edges C, should be the same, 
denote this by f(Cj). The multiplicity of each Ai equals that of Bi, f(Ai) =f(Bi). 

Then the regularity (at the points x1, . . . , xk+l and zl) gives k + 2 independent 
linear equations. We get f(A,) = d/2, f(A2) = d/4, f(A3) = (3/8)d * * - and in 
general 

As m(Cj) is odd, and for k f 2 (mod 3), it is not divisible by 3 we have (from the 
above equation with E = Cj) that d is divisible by 3 x 2k, a contradiction. 

For n = 2k + 5, k = 2 (mod 3), we can use the above construction again, but 
with multiplicities m(E)/3. 

For even n, n = 2k + 6, k Z= 1, let 

V(F) = {xi, x2, . . . , xk+l, Yl, Y2, . . . , Yk+l, ‘+‘, “‘1, w29 ‘+‘j). 

Set E = {Xk+l, Yk+l, W>, 4 = {WY W, w2, %}\{Wj}(j = 1, 2, 3), G = {Wl, W2, %}- 

Define Z?(F) as follows. 

8(F) = {Ai, Bi, E, F,, 5, F3, G: 1 s i s k}, 

with multiplicities m(Ai) = m(Bi) = 2k - (-l)i2k-i, m(E) = 2k+’ + (-l)k* m(E) = 
$(2k - (-l)k), m(G) = i(7 X 2k + 2 X (-l)k). Then, F is a 3 x 2k-regular, inde- 
composable 3-graph for k f 0 (mod 3). In the case k = 0 (mod 3) we can use the 
same construction with multiplicities m(E)/3, again. 0 
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Similar constructions can be given to prove that lim inf,,, (D(n, k))“” 2 ~6. It 

is very likely that this limit exists, and probably it is close to fi. 

Remark 4.1. The above constructions are related to an example from [3], where 

a 3-uniform hypergraph is given with a fractional matching number with arbitrarily 

large denominator. 

Remark 4.2. Another related result was proved by Engel [4]. First a definition. 

An &(c, k, t) design is decomposable if there is a partition of the blocks into a 

S,(V, k, t) and a S,(V, k, t) designs with (Y + p = A, CY, p 2 1. In [4] it was proved 

that for any given Z.J, k and t there exists a D(v, k, t) such that every design with 

A. > D(v, k, t) is decomposable. 

Of course, D(v, k, 1) = D(v, k). On the other hand, D(v, k, t) s 0((p), (f)). 

Remark 4.3. For k 3 3, the true order of Dsimple (n, k) is certainly much less than 

(;I:). Since there is no f-factor theorem for hypergraphs, this problem remains 

open. 
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