Saturated *r*-uniform hypergraphs

Paul Erdős

Mathematical Institute of the Hungarian Academy of Sciences, 1364 Budapest, P.O.B. 127, Hungary

Zoltán Füredi*

Mathematical Institute of the Hungarian Academy of Sciences, 1364 Budapest, P.O.B. 127, Hungary

Zsolt Tuza*

Computer and Automation Institute of the Hungarian Academy of Sciences, H-1111 Budapest, Kende u. 13–17, Hungary

Received 20 March 1989

Abstract

Erdős, P., Z. Füredi and Z. Tuza, Saturated r-uniform hypergraphs, Discrete Mathematics 98 (1991) 95–104.

The following dual version of Turán's problem is considered: for a given r-uniform hypergraph F, determine the minimum number of edges in an r-uniform hypergraph F on r vertices, such that $F \notin F$ but a subhypergraph isomorphic to F occurs whenever a new edge (r-tuple) is added to F. For some types of F we find the exact value of the minimum or describe its asymptotic behavior as r tends to infinity; namely, for r for r for r and r denotes the family of all r-uniform hypergraphs with r vertices and r edges. Several problems remain open.

1. Introduction

A hypergraph H is a pair (V, \mathcal{H}) , where \mathcal{H} is a family of subsets of V. The elements of V are called vertices, the $H \in \mathcal{H}$ are called edges (hyperedges). A hypergraph is called r-uniform, or an r-graph, if |H| = r holds for every $H \in \mathcal{H}$. The 2-graphs are called graph. For $X \subset V$ we set $\mathcal{H}[X] = \{H: X \subset H \in \mathcal{H}\}$. The degree $\deg(H, X)$, or briefly $\deg(X)$, of a set X is the cardinality of $\mathcal{H}[X]$. $\deg(\{x\})$ is abbreviated as $\deg(x)$. The family of all r-subsets of a k-set is called the complete r-graph and is denoted by K_r^k . For brevity, H usually is identified with \mathcal{H} . The hypergraph $F = (U, \mathcal{F})$, $\mathcal{F} = \{F_1, \ldots, F_m\}$ is called a subhypergraph

0012-365X/91/\$03.50 © 1991 — Elsevier Science Publishers B.V. All rights reserved

^{*} Research supported in part by the Hungarian National Science Foundation under Grant No. 1812.

of H if there are edges $H_i \in \mathcal{H}$ and a bijection $\varphi: (\bigcup_{1 \le i \le s} F_i) \to (\bigcup H_i)$ such that $\varphi(F_i) = H_i$. The number of such injections is denoted by $\operatorname{NSub}(F, H)$. If $\operatorname{NSub}(F, H) > 0$, then we write $F \subset H$.

Let F be a given r-graph. An r-uniform hypergraph $H = (V, \mathcal{H})$ is called F-saturated if $F \not\subset H$ and whenever a new edge H (an r-tuple of V) is added to H, then $\mathcal{H} \cup \{H\}$ contains a subhypergraph isomorphic to F. We are interested in the behavior of the function $\operatorname{sat}(n, F)$, defined as the *minimum* number of edges in an F-saturated hypergraph on n vertices.

Although the first result of this type was published as early as in 1964 [3], very little is known about sat(n, F) for arbitrary F. The first attempt to describe general properties of sat(n, F) for graphs was made by Kászonyi and Tuza [6] who gave a linear upper bound $sat(n, F) \le cn$ for every graph F, where c = c(F) is a constant, depending on F but not on n. The corresponding conjecture

$$\operatorname{sat}(n, \mathbf{F}) \leq \operatorname{O}(n^{r-1}) \tag{?}$$

for the r-uniform case has not yet been proved—this seemingly rather simple problem is open even for 3-uniform hypergraphs. For 'weakly' and 'monotonically' saturated hypergraphs, however, the analogous inequalities follow from a more general recent result of the third author [10]. (Those definitions will be given later.)

Those few examples of graphs for which the exact value of sat(n, F) is known, are surveyed in [9] where several problems are raised as well. For hypergraphs, however, there is just one theorem of this type (with its extensions under weaker assumptions): Bollobás [1] proved that $sat(n, K'_r) = \binom{n}{r} - \binom{n-t+r}{r}$. In the present paper we investigate some further particular cases, when F has few edges.

First of all, let us note that the problem can be raised in a more general setting, namely when F stands for a (finite or infinite) collection of r-uniform hypergraphs. Then F-saturated means that H contains no member of F, but this property does not hold anymore when any new edge is added to H. (This natural generalization was useful in [6] proving the linear upper bound for graphs.)

Denote by $H_r(p, q)$ the family of all r-uniform hypergraphs with p vertices and q edges. If p = r + 1, then $H_r(r + 1, q)$ consists of just one hypergraph. Note that if p is relatively large with respect to q and r, then the problem becomes trivial. As a matter of fact, for $n \ge p$

$$\operatorname{sat}(n, \mathbf{H}_r(p, q)) = q - 1$$
 whenever $q - 1 \le \binom{p - r}{r}$.

A surprising result of Ruzsa and Szemerédi [7] states that the *maximum* number of edges in a 3-uniform hypergraph on n vertices, not containing any member of $H_3(6, 3)$ is at most $o(n^2)$ but it grows faster than $n^{2-\varepsilon}$, for all $\varepsilon > 0$. Our first result shows that the *minimum* has a simpler behavior.

Theorem 1. For
$$n \ge 5$$
, sat $(n, H_3(6, 3)) = \lfloor (n-1)/2 \rfloor$.

There are several $H_3(6, 3)$ -saturated structures with a minimum number of edges. As it can be seen from the proof, all but at most two connected components of them are isomorphic to $H_3(4, 2)$.

In the case when the forbidden hypergraph F is 'almost complete', we have the following asymptotic result.

Theorem 2. For
$$n > r \ge 2$$
, sat $(n, H_r(r+1, r)) = (\frac{1}{2} - o(1))(\frac{n}{r-1})$.

We conjecture that the construction given in the proof is best possible; it would yield sat $(n, \mathbf{H}_r(r+1, r) = \sum_{i \ge 1} \binom{n-2i}{r-2})$. This equality is trivial for graphs (r=2), and we can prove it for r=3 as well.

Theorem 3. For $n \ge 4$, sat $(n, H_3(4, 3)) = \lfloor (n-1)^2/4 \rfloor$. Moreover, there are 2 or 1 extremal hypergraphs according as n is odd or even.

The case of $H_3(4, 2)$ is relatively simple and its solution can be extended for r-uniform hypergraphs as follows. Denote by t(n, r) the minimum number of edges in a graph of order n that does not contain an independent set of r vertices. The complementary form of Turán's theorem [8] states that the unique n-vertex graph of t(n, r) edges without an independent set of size r consists of r-1 complete subgraphs of almost equal sizes as connected components, i.e.

$$t(n, r) = \sum_{i=0}^{r-2} \left(\left\lfloor \frac{n+i}{r-1} \right\rfloor \right) = \frac{n^2}{2r-2} - O(n).$$

Theorem 4. $t(n, r)/{r \choose 2} \le \operatorname{sat}(n, H_r(2r-2, 2)) \le t(n, r)/{r \choose 2} + \operatorname{O}(n)$, and the lower bound is sharp for infinitely many values of n.

Note that the latter three results remain valid for so-called *monotonically* saturated hypergraphs, too, i.e. those which may contain F (or some members of F when F is a hypergraph family) and the requirement is that the addition of any new edge *increases* the number of subhypergraphs isomorphic to F (or $\Sigma_{G \in F} \operatorname{NSub}(G, H) < \Sigma_{G \in F} \operatorname{NSub}(G, H)$, respectively).

Using the terminology of [2], call \boldsymbol{H} weakly \boldsymbol{F} -saturated if the complement $\tilde{\boldsymbol{H}}$ of \boldsymbol{H} (i.e. the r-tuples not belonging to \boldsymbol{H}) can be ordered, say $\tilde{\mathcal{H}} = \{H_1, \ldots, H_s\}$, in such a way that for every i $(1 \le i \le s)$ the number of subhypergraphs isomorphic to (some members of) \boldsymbol{F} in $\mathcal{H} \cup \{H_i: j \le i\}$ is strictly larger than that in $\mathcal{H} \cup \{H_i: j < i\}$; i.e.

$$\sum_{G \in F} \operatorname{NSub}(G, \mathcal{H} \cup \{H_j : j \leq i\}) > \sum_{G \in F} \operatorname{NSub}(G, \mathcal{H} \cup \{H_j : j \leq i\}).$$

Denote by wsat(n, F) (msat(n, F)) the minimum number of edges in a weakly (monotonically) F-saturated hypergraph on n vertices. It is easy to see that in general

$$wsat(n, F) \leq msat(n, F) \leq sat(n, F)$$
.

Theorem 5. For $n > r \ge 2$, wsat $(n, H_r(r+1, 3)) = n - r + 1$.

In a more general form, a conjecture of the third author [9] states that

wsat
$$(n, \mathbf{H}_r(r+1, k)) = {n-r-2+k \choose k-2}$$
 (?).

We note that the argument presented in the proof for k = 3 is purely combinatorial. For the other solved case k = r + 1, however, the proofs in [4] and [5] both use algebraic techniques.

It remains open to describe the extremal hypergraphs in Theorem 5.

2. Proofs

Proof of Theorem 1. The simplest example proving the upper bound for $n \ge 5$ is the collection H of $\lfloor (n-1)/2 \rfloor$ triplets that contain a fixed vertex $v \in V$ and are pairwise disjoint outside v. This H is easily seen to be $H_3(6, 3)$ -saturated.

To prove the upper bound, let H be an $H_3(6, 3)$ -saturated hypergraph on n vertices. If H has two edges H, H' with $|H \cap H'| = 2$, then $H \cup H'$ does not meet any further edge of H. Moreover, it is easy to see that $H \setminus \{H, H'\}$ is $H_3(6, 3)$ -saturated on the remaining n - 4 vertices. Thus, in this case we can apply induction from n - 4 to n, since the lower bound $\max\{2, \lfloor (n-1)/2 \rfloor\}$ is trivial for $4 \le n \le 6$.

Suppose that any two edges of \boldsymbol{H} share at most one vertex. Denote by V_1,\ldots,V_t the vertex sets of the connected components of \boldsymbol{H} . (If v is an isolated vertex, then $\{v\}$ is considered to be a component.) If $t \geq 3$, pick a vertex $v_i \in V_i$ for i=1,2,3. The hypergraph $\boldsymbol{H} \cup \{v_1,v_2,v_3\}$ does not contain any member of $\boldsymbol{H}_3(6,3)$, contradicting the assumption that \boldsymbol{H} is saturated. Thus, $t \leq 2$. Since \boldsymbol{H} is 3-uniform, a connected component on n' vertices must have at least $\lceil (n'-1)/2 \rceil$ edges. Consequently, $|\mathcal{H}| \geq \lceil (|V_1|-1)/2 \rceil + \lceil (|V_2|-1)/2 \rceil \geq \lceil (n-2)/2 \rceil = \lceil (n-1)/2 \rceil$. (For t=1, we artificially put $V_2 = \emptyset$.) \square

By a more careful analysis of the above proof, one can describe the structure of all $H_3(6, 3)$ -saturated hypergraphs H having $\lfloor (n-1)/2 \rfloor$ edges. For n even, $n \ge 6$, $H = tH_3(4, 2) + S_a + S_b$ with $a, b \ge 1$, $t \ge 0$, 4t + 2a - 1 + 2b - 1 = n, where + in the definition of H means vertex-disjoint union of those hypergraphs, and S_a is a star with 2a - 1 vertices and a - 1 triples having a common element (the center).

Let S_a and S_b be stars with centers c_a , c_b over V_a and V_b . If $|V_a \cap V_b| = 1$, then $\mathcal{S}_a \cup \mathcal{S}_b$ is called a *double star*, and is denoted by $S^{(d)}$. For n odd $n \ge 5$, every extremal H consists of the (vertex-disjoint) union of some copies of $H_3(4, 2)$ and a double star $S^{(d)}$.

Proof of Theorem 2. The upper bound

$$\operatorname{sat}(n, \boldsymbol{H}_r(r+1, r)) \leq \sum_{i \geq 1} {n-2i \choose r-2}$$

is shown by the following construction. Consider the *n*-element set $V = \{v_1, \ldots, v_n\}$, and for $i \le n - r + 1$ set $\mathscr{F}_i = \{F \subset V : |F| = r, \{v_i, v_{i+1}\} \subset F, \text{ and } v_j \notin F \text{ for } j < i\}$. Note that $|\mathscr{F}_i| = \binom{n-i-1}{r-2}$ and $\mathscr{F}_i \cap \mathscr{F}_j = \emptyset$ for $i \ne j$. Define $\mathscr{F} = \bigcup_{i \ge 1} \mathscr{F}_{2i-1}$. We claim that $F = (V, \mathscr{F})$ is $H_r(r+1, r)$ -saturated.

First, we show that F is $H_r(r+1, r)$ -free. Let $Y \subset V$ be any (r+1)-tuple, and let v_i be the first element of Y. If i is even, then $\mathcal{F} \cap \mathcal{F}_i = \emptyset$, so that $Y \cap \{v_{i+1}, \ldots, v_n\}$ can be the only r-tuple of F contained in Y. A similar situation holds when i is odd and $v_{i+1} \notin Y$. Finally, if i is odd and $v_{i+1} \in Y$, then Y contains r-1 members of F_i , but it cannot contain any $F \in \mathcal{F}_i$ for j > i.

We show that F is saturated. Put $P_i = \{v_{2i-1}, v_{2i}\}$. For each r-tuple $H \notin \mathcal{F}$ there is a minimum i such that $P_i \cap H \neq \emptyset$. It follows that $P_i \not\subset H$ (otherwise $H \in \mathcal{F}_{2i-1} \subset \mathcal{F}$ holds). Then $P_i \cup H$ is an (r+1)-tuple containing r-1 members of F_{2i-1} . Hence, $H_r(r+1, r) \subset F \cup \{H\}$, implying sat $(n, H_r(r+1, r)) \leq |\mathcal{F}|$.

To prove the lower bound, let H be an $H_r(r+1, r)$ -saturated (monotonically $H_r(r+1, r)$ -saturated) r-uniform hypergraph on the n-element vertex set V with sat $(n, H_r(r+1, r))$ edges (with msat $(n, H_r(r+1, r))$) edges, respectively. For every edge $H \in \mathcal{H}$ define $\mathcal{F}(H)$ as the set of r-tuples $F \subset V$, $F \notin \mathcal{H}$, such that H is contained in a subhypergraph $H' \subset H \cup \{F\}$, $H' \cong H_r(r+1, r)$. Such an H' shares precisely r-1 edges with H (at least r-1 edges in the monotonic case). (From now on we do not mention the monotonic case separately.)

Denote the collection of (r-1)-element subsets of a set H by ∂H , and set $\partial \mathcal{H} = \bigcup_{H \in \mathcal{H}} \partial H$. For $E \subset V$, |E| = r - 1, let $m(E) = |\{H' \in \mathcal{H}: E \subset H'\}| = |\mathcal{H}[E]|$. We have

$$|\partial \mathcal{H}| = \sum_{H \in \mathcal{H}} \left(\sum_{E \in \partial \mathcal{H}} \frac{1}{m(E)} \right).$$

Every r-tuple not belonging to \mathcal{H} can have at most one (r-1)-element subset $E \notin \partial \mathcal{H}$. Hence, there are no two E, $E' \notin \partial \mathcal{H}$ with $|E \cap E'| = r - 2$, so $\binom{n}{r-1} - |\partial \mathcal{H}| \leq \binom{n}{r-2}/(r-1)$. This gives $|\partial \mathcal{H}| = (1 - o(1))\binom{n}{r-1}$.

Choose a function k = k(n) tending to infinity with n and also satisfying $k(n)/n \to 0$ (say, $k = \sqrt{n}$). Take a subhypergraph $\mathcal{H}_0 \subset \mathcal{H}$, maximal under inclusion, such that $|\mathcal{F}(\mathcal{H}_0)| \le k |\mathcal{H}_0|$, where $\mathcal{F}(\mathcal{H}_0) = : \bigcup_{H \in \mathcal{H}_0} \mathcal{F}(H)$. Setting $\mathcal{H}_1 = : \mathcal{H} \setminus \mathcal{H}_0$, we have $|\mathcal{F}(H) \setminus \mathcal{F}(\mathcal{H}_0)| > k$ for all $H \in \mathcal{H}_1$.

Since $|\mathcal{F}(\mathcal{H})| = \binom{n}{r} - |\mathcal{H}| \ge \binom{n}{r} - \frac{1}{2}\binom{n}{r-2}$, by the assumptions k = o(n) and $|\mathcal{H}_0| \le |\mathcal{H}| \le O(n^{r-1})$ we obtain $|\mathcal{F}(\mathcal{H}_1) \setminus \mathcal{F}(\mathcal{H}_0)| = (1 - o(1))\binom{n}{r}$.

Next, we show $|\partial \mathcal{F}(\mathcal{H}) \setminus \partial \mathcal{H}_1| = o(n^{r-1})$. Indeed, suppose to the contrary that the difference Δ of those two collections of sets has cardinality at least $c_1 n^{r-1}$ for some constant $c_1 > 0$. Then the average number of sets $D \in \Delta$ containing an (r-2)-tuple is at least $c_2 n$ $(c_2 > 0)$. Observe that $D \cup D' \notin \mathcal{H}_1 \cup (\mathcal{F}(\mathcal{H}_1) \setminus \mathcal{F}(\mathcal{H}_0))$

for any D, $D' \in \Delta$, $|D \cap D'| = r - 2$, since in every $F \in \mathcal{F}(\mathcal{H}_1) \setminus \mathcal{F}(\mathcal{H}_0)$ we have $|\partial \mathcal{F} \cap \partial \mathcal{H}| \ge r - 1$ by the saturatedness of \mathcal{H} . Using the inequality between arithmetic and quadratic means, now we have at least $c_3(r)$ r-tuples not belonging to $\mathcal{H}_1 \cup (\mathcal{F}(\mathcal{H}_1) \setminus \mathcal{F}(\mathcal{H}_0))$. This contradicts the fact $|\mathcal{F}(\mathcal{H}_1) \setminus \mathcal{F}(\mathcal{H}_0)| = (1 - o(1))(r)$ and proves $|\Delta| = o(n^{r-1})$

For $E \in \partial \mathcal{H}_1$, put $m_1(E) = |\{H' \in \mathcal{H}_1 : E \subset H'\}|$. Choose an $H \in \mathcal{H}_1$ and let $\partial H = \{E_1, \ldots, E_r\}$. We claim that all but at most two of the $m_1(E_i)$'s are larger than k/2r. Suppose that $t = :\max_{1 \le i \le r} m_1(E_i) = m_1(E_r)$. Since $|\mathcal{F}(H) \setminus \mathcal{F}(\mathcal{H}_0)| > k$, E_r is contained in >k/r sets $F \in \mathcal{F}(H) \setminus \mathcal{F}(\mathcal{H}_0)$. Let those sets F be $E_r \cup \{v_j\}$ $(1 \le j \le t, t > k/r)$. Each v_j defines r-2 additional edges of \mathcal{H}_1 (those forming a $H_r(r+1,r)$ with H and $E_r \cup \{v_j\}$). Hence, $m_1(E_1) + \cdots + m_1(E_{r-1}) \ge (r-2)t$. Since no term is larger than t, all but at most two exceed t/2.

We conclude that

$$\sum_{E \in \partial H} \frac{1}{m_1(E)} \le 2 + (r - 2) \frac{2r}{k} = 2 + o(1)$$

for all $H \in \mathcal{H}_1$. Thus

$$|\partial \mathcal{H}_1| = \sum_{H \in \mathcal{H}_1} \left(\sum_{E \in \partial H} \frac{1}{m_1(E)} \right) \leq (2 + \mathrm{o}(1)) |\mathcal{H}_1|.$$

Taking into account that

$$(1-o(1))\binom{n}{r-1} \le |\partial \mathcal{F}(\mathcal{H})| \le |\partial \mathcal{H}_1| + o\left(\binom{n}{r-1}\right),$$

we obtain that

$$(1 - o(1)) \binom{n}{r - 1} \leq |\partial \mathcal{H}_1| \leq (2 + o(1)) |\mathcal{H}_1|,$$

implying the theorem. \Box

Proof of Theorem 3. For r = 3 the construction given in the previous proof yields $sat(H_3(4,3)) \le \sum_{1 \le i \le \lfloor n/2 \rfloor} (n-2i) = \lfloor (n-1)^2/4 \rfloor$.

To prove the lower bound, let H be an $H_3(4, 3)$ -saturated 3-uniform hypergraph on the n-element vertex set V with $\operatorname{sat}(n, H_3(4, 3))$ edges. For each pair $\{v, v'\} \subset V$, denote by m(v, v') the number of triples $H \in \mathcal{H}$ containing both v and v'; m(v, v') is the multiplicity of this pair. A special pair is a pair that either has zero multiplicity or is contained in an edge $H \in \mathcal{H}$ the other two pairs of which have multiplicity 1. (If all pairs of H have multiplicity 1, then we fix one of them and call it a special pair, but the other two pairs will not be considered special ones.)

Claim. The special pairs are pairwise disjoint.

Proof. Suppose to the contrary that some vertex v forms a special pair with two distinct vertices $v_1, v_2 \in V$. First we define two pairs E_1 , E_2 containing v as follows. If $\{v, v_i\}$ has multiplicity 1, then we put $E_i = \{v, v_i\}$. Otherwise, choose an $H_i = \{v, v_i, x_i\} \in \mathcal{H}$ such that both $\{x_i, v\}$ and $\{x_i, v_i\}$ have multiplicity 1, and put $E_i = \{v, x_i\}$. In either case, adding the 3-element set $E_1 \cup E_2$ to \mathcal{H} no $H_3(4, 3)$ can occur, contradicting saturatedness. Hence the Claim follows. \square

Denote by $\mathscr E$ the collection of 2-element subsets $E \subset V$ which are not special pairs. For $E \in \mathscr E$ we put w(E) = 1/m(E). Moreover, define the weight w(H) of an edge $H \in \mathscr H$ as $w(H) = \sum \{w(E): E \subset H \text{ and } E \in \mathscr E\}$. Observe that $w(H) \le 2$ for every $H \in \mathscr H$. Indeed, if H contains a special pair, then w(H) has just two terms, both equal to 1. If H does not contain any special pair, then at most one of its pairs can have multiplicity 1, so $w(H) \le (1/1) + (1/2) = 2$.

The previous Claim implies that there are at most $\lfloor n/2 \rfloor$ special pairs. Since every $E \in \mathcal{E}$ is contained in 1/w(E) edges of \mathcal{H} , we obtain

$$\left\lfloor \frac{(n-1)^2}{2} \right\rfloor = \binom{n}{2} - \left\lfloor \frac{n}{2} \right\rfloor \leq |\mathcal{E}| = \sum_{H \in \mathcal{H}} w(H) \leq 2 |\mathcal{H}|.$$

This implies the lower bound for $|\mathcal{H}| = \text{sat}(n, H_3(4, 3))$.

We note that the extremal hypergraphs in Theorem 3 are not always unique. In the case n = 5, $V = \{1, 2, 3, 4, 5\}$, the following triple-systems both are $H_3(4, 3)$ -saturated:

The first example is isomorphic to the construction given at the beginning of the proof of Theorem 2, and the special pairs can be chosen in three different ways, but {12} always is a special pair. In the second example both special pairs {12} and {34} have multiplicity 0.

Considering an extremal $H_3(4, 3)$ -saturated hypergraph on the underlying set $\{v_3, \ldots, v_n\}$ and adding to it \mathcal{F}_1 (= $\{\{v_1v_2v_i\}: 3 \le i \le n\}$) one obtains again an extremal construction. In this way, the above two examples on 5 vertices yield 2 extremal configurations for all odd n. Below we prove that there are no more $H_3(4, 3)$ -saturated hypergraphs with n vertices and $\lfloor (n-1)^2/4 \rfloor$ edges.

Proof of the extremal cases. Denote by \mathscr{C} the set of special pairs. Let $m = \lceil n/2 \rceil$. In the case when n is even, the special pairs C_1, \ldots, C_m define a partition of V. In the case when n is odd, let $C_m =: V \setminus (\bigcup \mathscr{C})$, and $\mathscr{C} = \{C_1, \ldots, C_{m-1}\}$.

Split \mathcal{H} into two parts $\mathcal{H} = \mathcal{H}_1 \cup \mathcal{H}_2$, where each $H_1 \in \mathcal{H}_1$ contains a pair $C(H_1) \in \mathcal{C}$ (the other two of its pairs have multiplicity 1), and each $H_2 \in \mathcal{H}_2$ intersects three C_i 's. Then every H_2 contains a pair $U(H_2)$ with multiplicity 1, while the other two pairs contained in it have multiplicity 2. Observe that $|H_1 \cap H_2| \le 1$ for all $H_1 \in \mathcal{H}_1$ and $H_2 \in \mathcal{H}_2$. Hence, any four-element subset of V can contain only one type of triples.

- (1) If $\{ab\}$, $\{cd\} \in \mathcal{C}$, $\{abc\} \in \mathcal{H}_1$, then $\{abd\} \in \mathcal{H}_1$. Suppose to the contrary that $\{abd\} \notin \mathcal{H}$. Then $\{abcd\}$ contains just one triple. So $\mathcal{H} \cup \{bcd\}$ induces a $H_3(4, 3)$ on $\{bcde\}$ ($e \notin \{abdc\}$). As $\{bce\} \notin \mathcal{H}$, we have that $\{bde\}$ and $\{cde\} \in \mathcal{H}$. Then $m(de) \ge 2$, contradicting the fact $\{cde\} \in \mathcal{H}_1$.
- (2) If $\{xa\} \in \mathcal{C}$ and $\{abc\} \in \mathcal{H}_2$ with m(ab) = 1, then $\{xbc\} \in \mathcal{H}_2$. Indeed, $\{xab\} \notin \mathcal{H}$. Consider $\mathbf{H} \cup \{xab\}$. There is an $\{xaby\}$ containing two members of \mathcal{H} . If $y \neq c$, then m(ab) = 1 implies $\{xya\}$, $\{xyb\} \in \mathcal{H}$. Since $\{xa\} \in \mathcal{C}$, we have $\{xya\} \in \mathcal{H}_1$, m(xy) = 1, a contradiction. Thus y = c, and $\{xbc\} \in \mathcal{H}_2$.
- (3) If $H, H' \in \mathcal{H}_2$ and $|H \cap H'| = 2$, then they meet the same three C_i 's. Indeed, suppose to the contrary that $H = \{abc\}$, $H' = \{bcd\}$ with $x \in C_x$ $(x \in \{abcd\})$. We may suppose that m(ab) = 1 and $C_a = \{aa'\}$. Then (2) implies that $\{a'bc\} \in \mathcal{H}$, which yields the contradiction $m(bc) \ge 3$, unless a' = d, proving (3).

If there exists an $H \in \mathcal{H}_2$, and $H \cap C_i$, $H \cap C_j$, $H \cap C_k \neq \emptyset$, then $\{x_i x_j x_k\} \in \mathcal{H}_2$ for all $x_i \in C_i$, $x_j \in C_j$, $x_k \in C_k$. Indeed, consider $H \cup \{x_i x_j x_k\}$. There exists an x such that $\{x x_i x_j x_k\}$ contains two edges of H. (1) implies $x \notin (C_i \cup C_j \cup C_k)$ and (3) implies $x \notin (V \setminus (C_i \cup C_j \cup C_k))$, a contradiction.

If there exists an $H \in \mathcal{H}_2$, $H \subset (C_i \cup C_j \cup C_k)$, then one of these C's is a singleton, namely the one not meeting the pair $\{a, b\} \subset H$, m(ab) = 1. Hence, in this case n is odd, and $\bigcap \mathcal{H}_2 = C_m$.

Define the following partial ordering of the members of \mathscr{C} : $C_i < C_j$ if for some $x \in C_i$ one has $(C_i \cup \{x\}) \in \mathscr{H}_1$. We have that $(C_i \cup (C_i \setminus \{x\})) \in \mathscr{H}_1$, too, by (1).

It is easy to see that the relation '<' really is a partial order, i.e. $C_i < C_j$, $C_j < C_k$ imply $C_i < C_k$. (By adding a triple T which intersects all these three pairs we first can rule out the case $C_i > C_k$, and then we can exclude the case when $C_i \cup C_k$ is intersected in two elements by a three-tuple of \mathcal{H}_2 .) From now on we may suppose that the ordering $\{C_1, C_2, \ldots\}$ is a linear extension of the partial order "<" (i.e. $C_i > C_j$ is impossible for i < j).

If $\mathcal{H}_2 = \emptyset$, then the partial order '<' is a complete ordering of the pairs, so that \mathcal{H} is isomorphic to the example given at the beginning of the proof of Theorem 2.

Finally, consider the case $\mathcal{H}_2 \neq \emptyset$. Suppose that there is a triple $T \in \mathcal{H}_2$ such that $T \subset (C_u \cup C_v \cup C_m)$, u < v < m. Let $i \notin \{uvm\}$. Then $C_i < C_u$ (and $C_i < C_v$). (This can be seen by adding a triple to \mathcal{H} which intersects C_i , C_u , and C_v .)

This implies that all members of \mathcal{H}_2 are contained in $C_u \cup C_v \cup C_m$. Moreover, we obtain u = m - 2, v = m - 1, i.e. \mathcal{H} is isomorphic to the second example. \square

Proof of Theorem 4. The lower bound can easily be seen: If H is $H_r(2r-2, 2)$ -saturated, then every r-element subset of the vertex set V meets some edge of H in at least two vertices. Thus, the edges of H should cover at least t(n, r) pairs. Since each edge covers $\binom{r}{2}$ of them, the estimate follows.

To prove the upper bound we apply Wilson's theorem [11]. It states that for any given r and sufficiently large t $(t > t_0(r))$, if (r-1) | (t-1) and r(r-1) | t(t-1), then the edges of the complete graph K_2^t can be partitioned into edge-disjoint

complete subgraphs isomorphic to K_2' . For those t that satisfy the divisibility conditions we consider n = (r - 1)t. Dividing the n-element vertex set into r - 1 t-element parts and taking a decomposition guaranteed by Wilson's theorem in each of those parts, we obtain an $H_r(2r - 2, 2)$ -saturated hypergraph with $t(n, r)/\binom{r}{2}$ edges. This example settles the case t = ur(r - 1) + 1, i.e. $n = ur(r - 1)^2 + r - 1$, $u > u_0(r)$.

For the other n's the upper bound follows from the following

Claim.
$$sat(n+1, H_r(2r-2, 2)) \le sat(n, H_r(2r-2, 2)) + n/(r-1).$$

Proof. Let $H = (V, \mathcal{H})$ be an extremal $H_r(2r - 2, 2)$ -saturated hypergraph with |V| = n, $v \notin V$. Let E_1, \ldots, E_s be a maximal family of pairwise disjoint (r-1)-element subsets of V such that $|H \cap E_i| \le 1$ holds for all $H \in \mathcal{H}$ and i. Then $\mathcal{H} \cup \{E_i \cup \{v\}: 1 \le i \le s\}$ is also a saturated family on $V \cap \{v\}$. \square

Proof of Theorem 5. Let H be the collection of the n-r+1 r-tuples containing a fixed (r-1)-element subset Y of an n-element underlying set V. We claim that H is a weakly $H_r(r+1, 3)$ -saturated hypergraph. Indeed, it is easily seen, that any ordering of the edges H of the complement of H, in which the cardinalities $|Y \cap H|$ form a decreasing sequence, satisfies the requirements.

To prove the lower bound, suppose to the contrary that there is a weakly $H_r(r+1, 3)$ -saturated r-uniform hypergraph H on the n-element vertex set V with at most n-r edges. Define a partition of the edge set $\mathcal{H} = \mathcal{H}_1 \cup \cdots \cup \mathcal{H}_s$ with the properties:

- (1) $|\bigcup \mathcal{H}_i| \le |\mathcal{H}_i| + r 1$ for $1 \le i \le s$, and
- (2) s is minimal with respect to (1).

As there are such partitions (e.g., when each part contains just one edge), there is a minimal one. Moreover, s > 1, otherwise (1) implies $|V| = |\bigcup \mathcal{H}| \le |\mathcal{H}| + r - 1 < n$.

Let $U_i = \bigcup \mathcal{H}_i$. (2) implies that $|U_i \cap U_j| \le r - 2$, otherwise replacing \mathcal{H}_i and \mathcal{H}_j by their union one can get an appropriate partition with a smaller number of parts. Let \mathcal{H}^* be the $\partial_r \mathcal{U}_i$, i.e.

$$\mathcal{H}^* = : \{E \subset V : |E| = r, E \subset U_i \text{ for some } i\}.$$

By definition, $\mathcal{H} \subset \mathcal{H}^*$. If $|E \cap U_i| = r - 1$ $(E \subset V, |E| = r)$, then E is not contained in any U_i , $E \notin \mathcal{H}^*$.

Now consider an ordering of the edges of the complement $\bar{\mathcal{H}}$ that establishes weak saturatedness. Let E be the first r-tuple not contained in any U_i . Since H is weakly saturated, there are H', $H'' \in \mathcal{H}^*$ such that $\{E, H', H''\}$ is isomorphic to $H_r(r+1, 3)$. Then, $|H' \cap H''| = r-1$ implies that H' and H'' are covered by the same U_i . However, $E \subset (H' \cup H'')$, so that $E \subset U_i$, a contradiction. \square

To describe the extremal families, the following reformulation of Theorem 5 might be useful: suppose that H is an r-uniform hypergraph with n vertices and

n-r+1 edges such that $H_r(r+1, 3) \subset H$. Then H is not weakly saturated. The reason is the following simple observation.

Proposition. Let H be a weakly F-saturated hypergraph on n vertices with wsat(n, F) edges. Then $F \not\subset H$.

Proof. Assuming $F \in \mathcal{F} \subset \mathcal{H}$, the hypergraph $\mathcal{H} \setminus \{F\}$ is weakly saturated, as well. Hence, $|\mathcal{H}|$ cannot be minimal. \square

References

- [1] B. Bollobás, On generalized graphs, Acta Math. Acad. Sci. Hungar. 16 (1965) 447-452.
- [2] B. Bollobás, Extremal Graph Theory (Academic Press, New York, 1978).
- [3] P. Erdős, A. Hajnal and J.W. Moon, A problem in graph theory, Amer. Math. Monthly 71 (1964) 1107-1110.
- [4] P. Frankl, An extremal problem for two families of sets, European J. Combin. 3 (1982) 125-127.
- [5] G. Kalai, Intersection patterns of convex sets. Israel J. Math. 48 (1984) 161-174.
- [6] L. Kászonyi and Zs. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10 (1986) 203-210.
- [7] I.Z. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, Combinatorics (Keszthely, 1976) Proc. Colloq. Math. Soc. János, Bolyai 18, Vol. II. (North-Holland, Amsterdam, 1978) 939-945.
- [8] P. Turán, On an extremal problem in graph theory (in Hungarian), Math. Fiz. Lapok 48 (1941) 436-452.
- [9] Zs. Tuza, Extremal problems on saturated graphs and hypergraphs, Ars Combin. 25B (1988) 105-113.
- [10] Zs. Tuza, Asymptotic growth of sparse saturated structures is locally determined, Discrete Math., to appear.
- [11] R.M. Wilson, Decomposition of complete graphs into subgraphs isomorphic to a given graph, in; Proc. 5th British Comb. Conf., Aberdeen, 1975, Congr. Numer. 15 (1976) 647-659.