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Abstract 

ErdGs, P., Z. Fiiredi and Z. Tuza, Saturated r-uniform hypergraphs, Discrete Mathematics 98 

(1991) 95-104. 

The following dual version of Turin’s problem is considered: for a given r-uniform hypergraph 

F, determine the minimum number of edges in an r-uniform hypergraph H on n vertices, such 

that F + H but a subhypergraph isomorphic to F occurs whenever a new edge (r-tuple) is 

added to H. For some types of F we find the exact value of the minimum or describe its 

asymptotic behavior as n tends to infinity; namely, for H,(r + 1, r), H,(2r - 2, 2) and 

H,(r + 1, 3), where H,@, q) denotes the family of all r-uniform hypergraphs with p vertices 
and q edges. Several problems remain open. 

1. Introduction 

A hypergraph H is a pair (V, X), where X is a family of subsets of V. The 

elements of V are called vertices, the H E X are called edges (hyperedges). A 

hypergraph is called r-uniform, or an r-graph, if (H( = r holds for every H E 3%‘. 

The 2-graphs are called graph. For X c V we set X[X] = {H: X c H E SY}. The 

degree deg(H, X), or briefly deg(X), of a set X is the cardinality of %?[X]. 

deg({x}) is abbreviated as deg(x). The family of all r-subsets of a k-set is called 

the complete r-graph and is denoted by K:. For brevity, H usually is identified 

with %‘. The hypergraph F = (U, 9), 9 = {F,, . . . , F,} is called a subhypergraph 
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of H if there are edges Hi E X and a bijection Q, : (tJlsiss l$)+- (U Hi) such that 
~(6) = His The number of such injections is denoted by NSub(F, H). If 
NSub(F, H) > 0, then we write F c H. 

Let F be a given r-graph. An r-uniform hypergraph H = (V, X) is called 
F-saturated if F 4 H and whenever a new edge H (an r-tuple of V) is added to 
H, then X U {H} contains a subhypergraph isomorphic to F. We are interested in 
the behavior of the function sat(n, F), defined as the minimum number of edges 
in an F-saturated hypergraph on n vertices. 

Although the first result of this type was published as early as in 1964 [3], very 
little is known about sat@, F) for arbitrary F. The first attempt to describe 
general properties of sat@, F) for graphs was made by Kaszonyi and Tuza [6] 
who gave a linear upper bound sat(n, F) s cn for every graph F, where c = c(F) 

is a constant, depending on F but not on n. The corresponding conjecture 

sat(n, F) s O(nr-‘) (?) 

for the r-uniform case has not yet been proved-this seemingly rather simple 
problem is open even for 3-uniform hypergraphs. For ‘weakly’ and ‘monotoni- 
cally’ saturated hypergraphs, however, the analogous inequalities follow from a 
more general recent result of the third author [lo]. (Those definitions will be 
given later.) 

Those few examples of graphs for which the exact value of sat(n, F) is known, 
are surveyed in [9] where several problems are raised as well. For hypergraphs, 
however, there is just one theorem of this type (with its extensions under weaker 
assumptions): Bollobas [l] proved that sat(n, K:) = (:) - (” -: +‘). In the present 
paper we investigate some further particular cases, when F has few edges. 

First of all, let us note that the problem can be raised in a more general setting, 
namely when F stands for a (finite or infinite) collection of r-uniform hyper- 
graphs. Then F-saturated means that H contains no member of F, but this 
property does not hold anymore when any new edge is added to H. (This natural 
generalization was useful in [6] proving the linear upper bound for graphs.) 

Denote by H,.(p, q) the family of all r-uniform hypergraphs with p vertices and 
q edges. If p = r + 1, then H,(r + 1, q) consists of just one hypergraph. Note that 
if p is relatively large with respect to q and r, then the problem becomes trivial. 
As a matter of fact, for n 2 p 

sat(n, H,(p, q)) = q - 1 whenever q - 1 G 

A surprising result of Ruzsa and Szemeredi [7] states that the maximum 

number of edges in a 3-uniform hypergraph on n vertices, not containing any 
member of H,(6, 3) is at most o(n’) but it grows faster than n’-‘, for all E > 0. 
Our first result shows that the minimum has a simpler behavior. 

Theorem 1. For n 2 5, sat(n, H,(6, 3)) = [(n - 1)/21. 
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There are several H,(6, 3)-saturated structures with a minimum number of 

edges. As it can be seen from the proof, all but at most two connected 

components of them are isomorphic to H,(4,2). 

In the case when the forbidden hypergraph F is ‘almost complete’, we have the 

following asymptotic result. 

Theorem 2. For n > r Z= 2, sat(n, H,.(r + 1, r)) = (4 - 0(1))(~cl i). 

We conjecture that the construction given in the proof is best possible; it would 

yield sat(n, H,.(r + 1, r) = Cial (:I:). This equality is trivial for graphs (r = 2), 

and we can prove it for r = 3 as well. 

Theorem 3. For n 2 4, sat(n, H,(4, 3)) = [(n - 1)*/4]. Moreover, there are 2 or 1 

extremal hypergraphs according as n is odd or even. 

The case of H,(4, 2) is relatively simple and its solution can be extended for 

r-uniform hypergraphs as follows. Denote by t(n, r) the minimum number of 

edges in a graph of order n that does not contain an independent set of r vertices. 

The complementary form of Turan’s theorem [8] states that the unique n-vertex 

graph of t(n, r) edges without an independent set of size r consists of I - 1 

complete subgraphs of almost equal sizes as connected components, i.e. 

r-2 n+i 

t(n) r) = C 

( 1 

L-l r-l 
i=O 

=&O(n). 

2 

Theorem 4. t(n, r)/(i) s sat(n, H,(2r - 2, 2)) c t(n, r)/(i) + O(n), and the lower 
bound is sharp for infinitely many values of n. 

Note that the latter three results remain valid for so-called monotonically 
saturated hypergraphs, too, i.e. those which may contain F (or some members of 

F when F is a hypergraph family) and the requirement is that the addition of any 

new edge increases the number of subhypergraphs isomorphic to F (or 

c GtF NSub(G, H) < CGEF NSub(G, W U {H}), respectively). 

Using the terminology of [2], call H weakly F-saturated if the complement fi of 

H (i.e. the r-tuples not belonging to H) can be ordered, say %= {Hi, . . . , H,}, 

in such a way that for every i (1 c i 4s) the number of subhypergraphs 

isomorphic to (some members of) F in X U {Hj: i s i} is strictly larger than that 

in X U {~j: j < i}; i.e. 

C NSub(G, X U {Hj: i =Z i}) > C NSub(G, 2 U {~j: i < i}). 
GEF GEF 

Denote by wsat(n, F) (msat(n, F)) the minimum number of edges in a weakly 

(monotonically) F-saturated hypergraph on n vertices. It is easy to see that in 

general 

wsat(n, F) C msat(n, F) S sat(n, F). 
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Theorem 5. For II > r 3 2, wsat(n, H,(r + 1, 3)) = n - r + 1. 

In a more general form, a conjecture of the third author [9] states that 

wsat(n, H,(r + 1, k)) = ( Iz -L 1 t + “) (?). 

We note that the argument presented in the proof for k = 3 is purely 

combinatorial. For the other solved case k = r + 1, however, the proofs in [4] and 

[S] both use algebraic techniques. 

It remains open to describe the extremal hypergraphs in Theorem 5. 

2. Proofs 

Proof of Theorem 1. The simplest example proving the upper bound for n 2 5 is 

the collection H of ](n - 1)/2] triplets that contain a fixed vertex v E V and are 

pairwise disjoint outside V. This H is easily seen to be H,(6, 3)-saturated. 

To prove the upper bound, let H be an H,(6, 3)saturated hypergraph on IZ 

vertices. If H has two edges H, H’ with IH fl H’I = 2, then H U H’ does not meet 

any further edge of H. Moreover, it is easy to see that H\ {H, H’} is 

H,(6, 3)-saturated on the remaining II - 4 vertices. Thus, in this case we can apply 

induction from n - 4 to it, since the lower bound max(2, ](n - 1)/2] } is trivial for 

4~ns6. 

Suppose that any two edges of H share at most one vertex. Denote by 

v,, . . . , V, the vertex sets of the connected components of H. (If u is an isolated 

vertex, then {v} is considered to be a component.) If t 2 3, pick a vertex zli E v 

for i = 1, 2, 3. The hypergraph H U {ul, v2, v3} does not contain any member of 

H,(6, 3), contradicting the assumption that H is saturated. Thus, t G 2. Since H is 

3-uniform, a connected component on n’ vertices must have at least ](n’ - 1)/2] 

edges. Consequently, 1x13 [(jV,l - 1)/2] + [(lV,l - 1)/2] 3 ](n - 2)/2] = L(n - 

1)/2]. (For t = 1, we artificially put V, = 0.) El 

By a more careful analysis of the above proof, one can describe the structure of 

all H,(6, 3)-saturated hypergraphs H having ](n - 1)/2] edges. For n even, II 3 6, 

H = tH,(4, 2) + S, + Sb with a, b 3 1, t 3 0, 4t + 2a - 1 + 2b - 1 = II, where + in 

the definition of H means vertex-disjoint union of those hypergraphs, and S, is a 

star with 2a - 1 vertices and a - 1 triples having a common element (the center). 

Let S, and S, be stars with centers c,, cb over V, and Vb. If IV, n V,l = 1, then 

YO U Yb is called a double star, and is denoted by Scd). For n odd n Z= 5, every 

extremal H consists of the (vertex-disjoint) union of some copies of H,(4, 2) and a 

double star Seq. 



Saturated r-uniform hypergraphs 99 

Proof of Theorem 2. The upper bound 

is shown by the following construction. Consider the n-element set V = 

iv,, . . . , v,}, and for i < rr - r + 1 set 4 = {F c V: IFJ = r, {vi, v~+~} c F, and 

vir$F for j<i}. Note that I%l=(“;L;l) and gfl$=8 for i#j. Define 

9= IJiai &;;2i-_1. We claim that F = (V, 9) is H,(r + 1, r)-saturated. 

First, we show that F is H,.(r + 1, r)-free. Let Y c V be any (I + 1)-tuple, and 

let vj be the first element of Y. If i is even, then 9 fl s = 0, so that 

Yn {Vi+,, . . . 7 v,} can be the only r-tuple of F contained in Y. A similar 

situation holds when i is odd and v;+~ $ Y. Finally, if i is odd and vi+i E Y, then Y 

contains r - 1 members of 6, but it cannot contain any F E .9j for j > i. 

We show that F is saturated. Put e = {v~~-~, vzi}. For each r-tuple H 4 % there 

is a minimum i such that Pi fl H # 0. It follows that Pi t#H (otherwise H E 9&i c 

3 holds). Then P; U H is an (r + l)-tuple containing r - 1 members of Fzi_,. 

Hence, H,(r + 1, r) c F U {H}, implying sat(n, H,(r + 1, r)) G 191. 

To prove the lower bound, let H be an H,(r + 1, r)-saturated (monotonically 

H,(r + 1, r)-saturated) r-uniform hypergraph on the n-element vertex set V with 

sat(n, H,.(r + 1, r)) edges (with msat(n, H,.(r + 1, r)) edges, respectively. For 

every edge H E 2 define 9(H) as the set of r-tuples F c V, F $ 2, such that H is 

contained in a subhypergraph H’ c H U {F}, H’ = H,(r + 1, r). Such an H’ 

shares precisely r - 1 edges with H (at least r - 1 edges in the monotonic case). 

(From now on we do not mention the monotonic case separately.) 

Denote the collection of (r - 1)-element subsets of a set H by dH, and set 

IzJx = UHEX dH. For EcV, jEJ=r-1, let ~(E)=J{H’EX:ECH’}J= 

IX[E]l. We have 

Every r-tuple not belonging to X can have at most one (r - l)-element subset 

E $ 3X. Hence, there are no two E, E’ $ 6’2 with IE fl E’I = r - 2, so (rlt ,) - 

lZ#‘l G (r!!2)/(r - 1). This gives la%‘1 = (1 - o(l))(,!! ,). 

Choose a function k = k(n) tending to infinity with n and also satisfying 

k(n)ln += 0 (say, k = jh). Take a subhypergraph %, c X, maximal under 

inclusion, such that 19(&)( s k lXc,(, where 9(%$) =:lJHEF, 9(H). Setting 

X1 =: X\%$, we have 19(H)\9(Xo)I > k for all HE 5Y,. 

Since 19(X)J = (:) - IX1 3 (:) - $(, !!& by the assumptions k = o(n) and 

I%$[ < I%[ G O(rq we obtain IS(X,)\S(X,,)( = (1 -o(l))(:). 

Next, we show Ia9(X)\aX11 = o(n’-’ ). Indeed, suppose to the contrary that 

the difference A of those two collections of sets has cardinality at least c,rzr-’ for 

some constant c, > 0. Then the average number of sets D E A containing an 

(r - 2)-tuple is at least c2n (c2 > 0). Observe that D U D’ $ i%?, U (S(ZX,)\ .F( 8,)) 



100 P. Erdtis et at. 

for any D, D’ E A, ID n D’( = r - 2, since in every F E 9(X,)\ 9(X,,) we have 

ld9tl dX[ 2 r - 1 by the saturatedness of Z’. Using the inequality between 

arithmetic and quadratic means, now we have at least c3(:) r-tuples not belonging 

to X, U (9(X,)\ 9(X,,)). This contradicts the fact IS( XI)\ %(&)I = (1 - o(l))(:) 

and proves 1 Al = o(n’-‘) 

For E E 3X,,, put m,(E) = J{H’ E XI: E c H’}J. Choose an H E X, and let 

dH= {E,, . . . , E,}. We claim that all but at most two of the ml(Ei)‘S are larger 

than k/2r. Suppose that t = : max ,GiGrm,(Ej) = m,(E,). Since I9(H)\9(&)( > k, 
E, is contained in >k/r sets F E 9(H)\ 9( XC,). Let those sets F be E, U {v,} 

(1 ~j < t, t > k/r). Each vj defines r - 2 additional edges of XI (those forming a 

H,.(r + 1, r) with H and E, U {Vi}). Hence, m,(E,) + . . * + m,(E,_,) 2 (r - 2)t. 

Since no term is larger than t, all but at most two exceed t/2. 

We conclude that 

EZH& < 2 + (r - 2) $ = 2 + o(1) 

for all H E XI. Thus 

la&l = c (x&) s (2 + o(l)) I&l. 
HEX, 

Taking into account that 

we obtain that 

(I- o(l))(r ” J 5 I~~Il zG (2 + 4)) I%17 

implying the theorem. q 

Proof of Theorem 3. For r = 3 the construction given in the previous proof yields 

sat(H,(4, 3)) s Clsis ln12~(n - 29 = L(n - 1)‘/41. 
To prove the lower bound, let H be an H3(4, 3)-saturated 3-uniform hyper- 

graph on the n-element vertex set V with sat(n, H,(4, 3)) edges. For each pair 

{v, v’} c V, denote by m(v, v’) the number of triples HE X containing both v 

and v’; m(v, v’) is the multiplicity of this pair. A special pair is a pair that either 

has zero multiplicity or is contained in an edge H E X the other two pairs of 

which have multiplicity 1. (If all pairs of H have multiplicity 1, then we fix one of 

them and call it a special pair, but the other two pairs will not be considered 

special ones.) 

Claim. The special pairs are pairwise disjoint. 
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Proof. Suppose to the contrary that some vertex u forms a special pair with two 

distinct vertices ul, v2 E V. First we define two pairs E, , Ez containing v as 

follows. If {v, vi} has multiplicity 1, then we put Ej =: {v, vi}. Otherwise, choose 

an Hi = {v, vi, xi} E X such that both {Xi, v} and {xi, vi} have multiplicity 1, and 

put Ej = {u, xi}. In either case, adding the 3-element set El U E2 to X no &(4, 3) 

can occur, contradicting saturatedness. Hence the Claim follows. 0 

Denote by 8 the collection of 2-element subsets E c V which are not special 

pairs. For E E 8 we put w(E) = l/m(E). Moreover, define the weight w(H) of an 

edge HEXas w(H)=C{w(E):EcHand EE%}. Observe that w(H)62for 

every H E X. Indeed, if H contains a special pair, then w(H) has just two terms, 

both equal to 1. If H does not contain any special pair, then at most one of its 

pairs can have multiplicity 1, so w(H) G (l/l) + (l/2) + (l/2) = 2. 

The previous Claim implies that there are at most ln/2] special pairs. Since 

every E E 8 is contained in l/w(E) edges of X, we obtain 

This implies the lower bound for 1X1 = sat(n, H,(4, 3)). 0 

We note that the extremal hypergraphs in Theorem 3 are not always unique. In 

the case n = 5, V = (1, 2, 3, 4, 5}, the following triple-systems both are J&(4, 3)- 

saturated: 

{123,124,125,345} and {135, 145, 235, 245). 

The first example is isomorphic to the construction given at the beginning of the 

proof of Theorem 2, and the special pairs can be chosen in three different ways, 

but (12) always is a special pair. In the second example both special pairs (12) 

and (34) have multiplicity 0. 

Considering an extremal &(4, 3)-saturated hypergraph on the underlying set 

{u,, . . . , v,} and adding to it s1 (= { {V,V*Vi}: 3 4 i G n}) one obtains again an 

extremal construction. In this way, the above two examples on 5 vertices yield 2 

extremal configurations for all odd n. Below we prove that there are no more 

Z&(4, 3)-saturated hypergraphs with n vertices and L(n - 1)‘/4] edges. 

Proof of the extremal cases. Denote by % the set of special pairs. Let m = m/2]. 

In the case when n is even, the special pairs C,, . . . , C, define a partition of V. 
In the case when n is odd, let C,=:V\(lJ %T), and % = {C,, . . . , Cm_,}. 

Split %!? into two parts ZX = X1 U %$, where each HI E Xl contains a pair 

C(H,) E %’ (the other two of its pairs have multiplicity l), and each H2 E X2 
intersects three C,‘s. Then every H2 contains a pair U(H2) with multiplicity 1, 

while the other two pairs contained in it have multiplicity 2. Observe that 

JH, fl Hz] s 1 for all H, E Xl and H2 E i&. Hence, any four-element subset of V 
can contain only one type of triples. 
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(1) If {ab}, {cd} E %, {abc} E X, , then {abd} E Xi. Suppose to the contrary 

that {abd} $ X. Then {&cd} contains just one triple. So SYU {bed} induces a 

&(4,3) on {bcde} (e $ {abdc}). As {bee} $ X, we have that {bde} and 

{cde} E X. Then m(de) 3 2, contradicting the fact {cde} E Xi. 

(2) If {xa} E % and {abc} E X2 with m(ub) = 1, then {xbc} E X2. Indeed, 

{xub} $ X. Consider N U {xub}. There is an {x&y} containing two members of 

X. If y # c, then m(ub) = 1 implies {xyu}, {xyb} E X. Since {xu} E %, we have 

{xyu> E Xl, m(xr) = 1, a contradiction. Thus y = c, and {xbc} E X2. 

(3) If ff, H’ E 9Zz and IH I~H’J =2, then they meet the same three Ci’s. 

Indeed, suppose to the contrary that H = {ubc}, H’ = {bed} with x E C, 

(X E {ubcd}). We may suppose that m(ub) = 1 and C, = {au’}. Then (2) implies 

that {u’bc} E X, which yields the contradiction m(bc) 2 3, unless a’ = d, proving 

(3). 
If there exists an H E X,, and H n Ci, H tl Cj, H II C, # 0, then {xixjxk} E X2 

for all xi E Ci, Xi E C,, xk E Ck. Indeed, consider u U {xixjxk}. There exists an x 

such that {xx$jxk} contains two edges of H. (1) implies x 4 (Ci U Cj U C,) and (3) 

implies x 4 (V \(Ci U Cj U Ck)), a contradiction. 

If there exists an H E %“, H c (Ci U Cj U Ck), then one of these C’s is a 

singleton, namely the one not meeting the pair {a, b} c H, m(d) = 1. Hence, in 

this case n is odd, and n %$ = C,,,. 

Define the following partial ordering of the members of %: Ci < C, if for some 

x E Cj one has (Ci U {x}) E Xl. We have that (Cj U (C,\(x))) E Xl, too, by (1). 

It is easy to see that the relation ‘<’ really is a partial order, i.e. Ci < C,, 

C, < Ck imply Ci < Ck. (By adding a triple T which intersects all these three pairs 

we first can rule out the case Ci > C,, and then we can exclude the case when 

Ci U C, is intersected in two elements by a three-tuple of X..) From now on we 

may suppose that the ordering {C,, Cz, . . .} is a linear extension of the partial 

order “<” (i.e. Ci > Cj is impossible for i <j). 

If X2 = 0, then the partial order ‘<’ is a complete ordering of the pairs, so that 

X is isomorphic to the example given at the beginning of the proof of Theorem 2. 

Finally, consider the case 9i$ # 0. Suppose that there is a triple T E X2 such that 

Tc(C,UC,,UC,), u<v<m. Let i${~vm}. Then Ci<Cu (and Ci<C”). 

(This can be seen by adding a triple to X which intersects Ci, C,, and C,.) 

This implies that all members of 9i$ are contained in C, U C, U C,. Moreover, 

we obtain u = m - 2, v = m - 1, i.e. X is isomorphic to the second example. Cl 

Proof of Theorem 4. The lower bound can easily be seen: If H is H,(2r - 2, 2)- 

saturated, then every r-element subset of the vertex set V meets some edge of H 

in at least two vertices. Thus, the edges of H should cover at least t(n, I) pairs. 

Since each edge covers (5) of them, the estimate follows. 

To prove the upper bound we apply Wilson’s theorem [ 111. It states that for 

any given r and sufficiently large t (t > to(r)), if (r - 1) ( (t - 1) and r(r - 1) 1 t(t - 

l), then the edges of the complete graph K; can be partitioned into edge-disjoint 
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complete subgraphs isomorphic to K;. For those t that satisfy the divisibility 

conditions we consider n = (r - 1)t. Dividing the n-element vertex set into r - 1 

t-element parts and taking a decomposition guaranteed by Wilson’s theorem in 

each of those parts, we obtain an H,(2r - 2,2)-saturated hypergraph with 

t(n, r)/(s) edges. This example settles the case t = ur(r - 1) + 1, i.e. n = ur(r - 

1)2 + r - 1, u > u,(r). 

For the other rr’s the upper bound follows from the following 

Claim. sat(n + 1, H,(2r - 2, 2)) 6 sat(n, H,(2r - 2, 2)) + nl(r - 1). 

Proof. Let H = (V, 5Y) be an extremal H,.(2r - 2, 2)-saturated hypergraph with 

IVI = n, VF#V. Let E ,,..., f$ be a maximal family of pairwise disjoint 

(r - 1)-element subsets of V such that IH fl Eil 4 1 holds for all H E X and i. 

Then XU{EjU{u}:l < i G s} is also a saturated family on V n {w } _ 0 

Proof of Theorem 5. Let H be the collection of the rz - r + 1 r-tuples containing 

a fixed (r - 1)-element subset Y of an n-element underlying set V. We claim that 

His a weakly H,(r + 1, 3)-saturated hypergraph. Indeed, it is easily seen, that any 

ordering of the edges H of the complement of H, in which the cardinalities 

IY n HI form a decreasing sequence, satisfies the requirements. 

To prove the lower bound, suppose to the contrary that there is a weakly 

H,(r + 1, 3)-saturated r-uniform hypergraph H on the n-element vertex set V with 

at most n - r edges. Define a partition of the edge set X = X, U . - . U %” with the 

properties: 

(1) II.J Xi( c 1ql + r - 1 for 1 <i CS, and 

(2) s is minimal with respect to (1). 

As there are such partitions (e.g., when each part contains just one edge), 

there is a minimal one. Moreover, s > 1, otherwise (1) implies JVJ = IU Xl c 

(XI+r-l<n. 

Let V, = U pi. (2) implies that ) Ui n HIS r - 2, otherwise replacing Xi and 3 

by their union one can get an appropriate partition with a smaller number of 

parts. Let .%?* be the d,%, i.e. 

X* =: {E c V: (E( = r, E c U, for some i}. 

By definition, X c X*. If (E fl (/,I = r - 1 (E c V, (E( = r), then E is not con- 

tained in any Ui, E $ X*. 

Now consider an ordering of the edges of the complement 5%’ that establishes 

weak saturatedness. Let E be the first r-tuple not contained in any U;. Since H is 

weakly saturated, there are H’, H” E X* such that {E, H’, H”} is isomorphic to 

H,(r + 1, 3). Then, IH’ fl H”I = r - 1 implies that H’ and H” are covered by the 

same Uj. However, E c (H’ U H”), so that E c Ui, a contradiction. 0 

To describe the extremal families, the following reformulation of Theorem 5 

might be useful: suppose that H is an r-uniform hypergraph with n vertices and 
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n - r + 1 edges such that W,(r + 1, 3) c H. Then H is not weakly saturated. The 
reason is the following simple observation. 

Proposition. Let H be a weakly F-saturated hypergraph on n vertices with 
wsat(n, F) edges. Then F q! H. 

Proof. Assuming F E 9 c X, the hypergraph X\ {F} is weakly saturated, as 
well. Hence, 1%‘[ cannot be minimal. 0 
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