A Geometric Parallel Search Problem Related To Group Testing
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Abstract. Given n real number whose sum is zero, find one of the numbers that is non-

negative. In the model under consideration, an algorithm is allowed to compute p linear
forms in each time step until it knows an answer. We prove that exactly [logn/log(p+
1)] time steps are required. Some connections with parallel group-testing problems are
polnted out.

1 Search By Boolean Functions

Karp, Upfal and Wigderson [KUW] studied the following fundamental problem
on parallel search: Every element of N = {1,..., n} is classified as either good
or bad and algorithms are considered which search and find a good element. The
algorithm can make a query which is a subset Q of N. The answer to the query is
Yes or No indicating whether or not Q contains good elements. If p queries may
be posed at each step, then the time complexity is [logn/log(p + 1] by (KUW].
(The sequential version, p = 1, is trivial.) The subject was further developed by
Impagliazzo and Tardos [IT] who considered more general answers, monotone
boolean functions, for the queries.

2  Search By Linear Forms

What happens, asked Motwani, Naor and Naor [MNN], if a query is answered in
a more informative way? The answer for a query is the number of good elements
in Q, i.e., a rank oracle. What is the time complexity, C(g,n, p), of the parallel
search problem with this kind of answers? The sequential version of the problem
is not difficult, (W] and [MNN]): C(g,n, 1) = [log2(n+ 1 — g)|. We return to
the parallel version in Section 4.
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Let z be the characteristic vector of the set of good elements (i.¢., z € R™ and
z; is 0 or 1 according to the ith element being bad or good.) A query Q C N
is replied by ) ;. z:. In other words, we receive an inner product (a, z). In the
geometric version the restriction that a and z must be 0,1 vectors is removed.

For integers n > p > 1 define L(n,p) to be the least number of rounds taken
by any algorithm to solve the following problem: the input consists of a real n-
vector = (z1,...,Z,) With Y z;,= 0. We look for an algorithm which finds
an index ¢ such that z; > 0. In each time step the algorithm presenting p vectors
al,...,a? in R™ and receiving their inner products with z, (z,a')...., (z, a?).

The obvious algorithm which worked for the combinatorial problem applies
here as well: Partition the set of coordinates into p + 1 roughly equal parts (all
part sizes are within one from each other) and let o’ be the characteristic vector of
the ith part. Note that the sum on the (p + 1)-st part can be deduced and that at
least one of the p + 1 partial sums is nonnegative. The algorithm then proceeds
with the corresponding subvector of z.

Theorem. Foranyn>p>1, L(np) = [1—6%:—5].

3. Proof Of The Lower Bound For The Time Complexity

For every algorithm, after k rounds of queries there is an affine subspace X (¥
such that the information gathered so far by the algorithm can be summarized by
saying that = belongs to X(® . Let X(? be the set of those points in R* whose
coordinate sum is zero. Define N to be those points in X (? whose ith coordinate
is negative. If the algorithm stops after s steps by singling out the coordinate 1, then
z; > 0 is equivalent to N; N X(® = @. In the beginning, not only N; N X(® #£ ¢
for all 1, but the intersection of any n— 1 of them is nonempty in X (¥ . The Lemma
below implies that the intersection of any |(n — 1)/(p + 1)¥| of the sets Nj is
non-empty in X ¥, Hence the algorithm cannot stop until (n— 1) /(p+ 1)* < 1
implying L(n,p) = s > [logn/log(p+1)]. A family of sets is d-wise intersecting
if every d sets in the family share a point, (d > 1).

Lemma. Let {N;} be a d-wise intersecting, finite family of convex sets in the
Euclidean space X , and let T' be an affine transformation from X to RP. Then for
some point y in RP, the family {N; N T~'(y) } is |d/(p + 1) | -wise intersecting.

To apply the Lemma to the kth round of the algorithm define the affine transfor-
mation T'(z): = ({a1,z), ..., {as,z)) for the query a',...,a?, T: X¥-1 _, RP,
Then the values of the answer are given by the coordinates of y supplied by the
Lemma, (a;, z) = y;. Finally, X (¥ : = T-1(y) n X -V,

Proof: For each index set I of size |d/(p+ 1) |, let N be the intersection of those
N; for which i € I, and let Y; = T(Ny). From the hypotheses, the sets {N;}
and hence {Y;} is a (p + 1)-wise intersecting family of convex sets. By Helly’s




theorem, it follows that there is a point y in all of the Y;. Then this point y satisfies
the conclusion. |

4 On The Parallel Combinhtorial Search Problem

If g > n—p, thenclearly C(g, n,p) = 1. So unlike in the previous section, there
is a genuine dependency on the total sum, g. Inthe case g = 1,C(1,n,p)= (1+
o( 1)) log, n/p and so this is an instance where optimal speed-up is attained. In the
same way we have C(g,n,p) < 1+ max{C(g, [7/27],p),C(g/2,[n/2],pP) },
which implies by induction:

logan

1
C(g,n,p) < +(1 - ;)Ing

The following upper bound follows using the Gilbert-Varshamov bound con-
cerning linear error-correcting codes [BM, p. 84] for p >> logn.

Clg,n,p) = 0(9—195—")

If p = Q(n/logz n), then it is possible in a single parallel step not only to find
a good element, but in fact, to identify completely all the good ones.

Conjecture. For every p and a large enough n there are values for g such that

_ logn
C(g,n,p) = Q (——————log(p+ 1)>.

The problems considered above belong to the field of group testing, see [HS].
Also see the monograph [AW], its 6th chapter is “Weighting problems and geo-
metric problems”.
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