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Decomposition of a convex region by lines 

By 

ZOLTAN FOREDI *) 

1. Definitions, results. For  two points x, y 6 R2 denote by l(x, y) (or l(xy)) the line 
through them, [xyI their Euclidean distance, xy the closed segment with these end- 
points. For  a pointset P c R2 let us denote its diameter by diam (P), i.e. diam (P) 
= sup {[xy[:x, y e P } .  The width of P, w(P), is the infimum of the widths of the 
parallel strips containing P. For  the distance we also use the notation d(A, B), i.e. 
d(A, B) = : i n f  {[ab] : a ~ A, b E B}. bd (R) denotes the boundary of R, and • (AOB) stands 
for the angle between the segments OA and OB. 

Let R be a convex, closed region with non-empty interior. Suppose that the (distinct) 
lines 5s = {ll . . . . .  I,} cut R, (i.e. they intersect its interior Int R). 5r defines a cell-decom- 
position, cg, in the following natural way. C e cg if Int C + 0, C c~ li = 0 for all li, and it is 
the intersection of Int R and some of the open halfplanes defined by the l~'s. (Actually, cg 
is not really a partition of Int R, but I hope it does not cause any confusion.) 

Theorem 1.1. I f  the number of cutting lines n > 20 d, then there exists a cell C ~ cg of 
width less than 1. 

The main tool will be an upper bound on the area of the x-ring of R, (it is defined before 
Theorem 1.6). The proof of 1.1 is postponed to Section 5. 

Figure 1.1 Figure 1.2 

Let n (R) denote the maximum number of cutting lines such that all the members of the 
cell-decomposition have width at least 1. Using cutting lines orthogonal to a diameter xy, 
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it is obvious that n (R) > d - (2 d/w), where w stands for the width. Even more, if we first 
use the parallel segments x ly  i, and then the segments xi y~+ 1, then one can obtain that  

10d 
(1.2) n(R) > 2d - wl/~ 

(see Fig. 1.1). The same type of construction gives for the regular triangle of sides d that  

(see Fig. 1.2) n(T)  > (3 x/3/2) d - 20d 2/3 2.598.. .d.  

Conjecture 1.3. Theorem 1.1 holds for n > (3 w/3/2)d, as well. 

It is not true, however, that the maximum number  of cutting lines can be constructed 
by using noncrossing segments in R. E.g., the triangular cell-decomposition of the regular 
triangle shows that 

(1.4) n (T) > ~ d - O (1), 

(see Fig. 1.3). Using lines with slopes 0, ~/4, re/2 and 3 ~/4 a lattice like construction gives 
(see Fig. 1.4) that  for the square S one has 

3 
(1.5) n (S) > ~ diam (S) - O (1). 

It  seems to me that these are the best constructions (at least if d is large enough), both 
in (1.4) and (1.5) equality holds. 

Figure 1.3 
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Figure 1.4 

The x-ring, R (x), of the region R is defined as the set of the points having a cutting 
segment of length at most  x, i.e. R ( x ) = : { p ~ R : 3 u ,  v E b d R  such that  p ~ u v ,  and 
[uv[ <= x}. So R(0) is bdR,  and R(x)  = R for x _-> w. 

The area of R (x) is abbreviated as ] R (x) [. For  example, in the case 0 _< x ___ d the x-ring 

of a circular disc D a of diameter d is a circular ring of ring-width �89 (d - x / / ~  - x2). Then 
[D a (x)[ = x 2 n/4, independent of d. We will see that this is not an accident, one can obtain 
an upper  bound on [R (x)[ depending only on x 2 and on the excentricity of R (the ratio 
of the diameter and the width). 

Theo=,6 ,R,x,, 10)x2 
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IR(x)l 
Theorem 1.7. n ( R ) <  3 ~ x ~ - d x .  

Theorem 1.1 will be an easy corollary of 1.6 and 1.7. 

2. Basic properties and a lower bound on [R (x)[. For p e R let 

w o (p, R) = :inf {[uv[ : p e uv, u, v e bd (R)}, 

the length of the shortest cutting segment through p. With a little effort one can prove 
that Wo (p, R) is a concave, continuous function on Int R. This implies that R \ R  (x) is a 
bounded, convex, open region, so R (x) has area, the notation ]R (x)] was justified. It also 
follows that 0 =< x < y and R (x) :t: R imply [R (x) l < [ R (y) l. Define the cut-width, w o (R), 

as inf { y : R (y) = R}. So the function mR (x) l is continuous and strictly monotone increas- 
ing in the interval [0, wo). 

It is well-known [1] that every convex region of width w contains a circle k of radius 
such that 

W 
(2.1) o > - .  

= 3  

2 > 2 w. From now on 0 = P (R) For  the center 0 of k we have w o (0, R) __> g w, hence Wo = 
stands for the maximum radius of an (open) circular disc inscribed in R. 

Theorem 2.2. 0 > xf~ = ~ - W o -  

4 
Theorem 2.3. Wo > - - w .  

= 3 x f 3  

Here xf3/4 = 0.433... and 4/(3 ~ )  = 0.7698 ... .  Both bounds are best possible, and 
their proofs postponed to Sections 7 and 8, resp. Theorems 2.2 and 2.3 together imply (2.1) 
yielding a new (and more complicated) proof. 

Theorem 2.4. For 0 < x < Wo one has 4 x2 < mR (x) l. 

This does not hold in general for x > w 0, because area (R) > 0r/4)w 2 is not true. For  
the regular triangle T one has 

W2 ~ W 2 0 .577  < w 2 ~ W 2 0.785 area T = x/~ . . .  ~ . . . . .  

The main tool of the proof of 2.4 is the following lemma. Suppose that O s C c R, 
where O is the center of the coordinate system, and C is a convex, open region, (see 
Fig. 2.1). For  0 __< c~ < 2 ~ let h (e) be the halfline starting from 0 and with direction c~. Let 
s (c 0 be the cutting segment of R such that it is perpendicular to h (cQ, the line of s (c 0 meets 
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h(c 0 and touches C. Finally, let T(ct)E bd C c~ s(ct) (in at most  countably  many  e's T(cQ 
is not  uniquely determined, but  this does not  cause any problem), and let s + (e) be the 
subsegment of s (c0 start ing at T(c 0 with direction c~ + n/2. 

1 2~z 
Lemma 2.5. area ( R \ C ) = ~  ! IS+ (o0[2dct. 

The proof  is straightforward. Some hint can be seen on Fig. 2.1. 

h (~) 

Figure 2.1 

P r o o f o f 2.4. The case of x = w 0 follows from the monotonic i ty  of JR (x)[, so we 
may suppose that  x < w o. Then 0 =~ R \ R ( x ) = : C ,  so one can apply  Lemma 2.5 with 
both  s + (e) and with s -  (c 0 = : s ( c 0 \ s  + (~). Using the inequali ty u 2 + v 2 > (u + v)Z/2 for 
u, v > 0, and the fact that  I s (ct)l _-> x we have that  

1 2n 
area R(x)  = ~ I ([ s+ (e)[2 + Is-  (e)[2)de 

b 

1 2~ 1 1 x2 
> ~ [ s ( ~ ) 1 2 & >  - 2~ .  [] 
= 4  o Z = 8  

It is clear that  equali ty can hold only if s + (~) = x/2 for almost  all e. Then C is strictly 
convex, bd  (C) is smooth,  s + (e) - x/2, and with a short  analysis one can show that  C and 
R are both circular discs. 

3. Upper estimate on the area of the x-ring. In this section we prove Theorem 1.6 in the 
following slightly stronger form. 

( 4) Theorem 3.1. ]R(x)[ < + 9.4 x 2. 
w + ~  

First,  two lemmas on the area of 2 cuts. 
F r o m  now on we always suppose that  x < w. Fo r  a segment AB, [ AB] = x, A, B e bd R 

the region C (AB) is defined as the intersection of the (closed) halfplane H and R, where 
bd  H = t(AB), and H ~ ( R \ R ( x ) )  = 0. The region C(AB) has been cut by AB. 
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Lemma 3.2. Suppose that A1, B1, A2, B 2 E bd (R) are such that ]A t Bl l  = [A2B2] 
= x and these two segments are parallel. (To avoid trivialities we also suppose that 

l ( A t  B1) + I(A2 B2).) Then 

d 
area C (A t B1) + area C (A 2 B2) ~ _ _  X 2 . 

W ~- N ~ - -  X 2 

P r o o f. Suppose that l~ is the touching line of C (A~ B~) parallel to A~ B~ and avoiding 
Int R, i = 1, 2. Let A B  be the longest segment parallel to A t B1 such that A, B ~ bdR.  (We 
may also suppose that not only their slopes but the directions of the segments A 1 B1, A B  
and A 2 B E are identical. Moreover, that these three lines are distinct.) 

Then C (A i Bi) is contained in the trapezoid with sides A i B~, l (AAI), l(BBi),  and l i. Let 
M i = d (l i, AB), and u i the length of the shorter base of the trapezoid (lying on li). Then 
the area of the trapezoid containing C (A~ Bi) is 1 2 M i  (x - u2)/([AB] - ui). Considering 
this fraction as a function of u~ it takes its maximum over 0 < u~ < x at the value 
u~ = IABI - x / ~  2 - x 2. Using the facts that lAB[ > w, and M~ + M 2 < d the state- 
ment follows. []  

Lemma 3.3. Suppose that the disjoint regions C 1 and C 2 have been cut by the segments 

A 1 B1,  A 2 B E o f  lengths at most  x. Then 

d 1 2 
a r e a C  l + a r e a C  2 <  x 2 + ~ x . 

P r o o f. Consider the convex quadrilateral A 1 B 1 B2 A2, and let P = I(A1A2) ~ I(B1B2). 
(One can proceed a similar way if these lines are parallel.) Suppose that A 2 lies between 
A 1 and P, and B 2 lies between B 1 and P. Consider the lines I(A2) and I(B2) through Az 
and B 2 parallel to A 1 B 1 . We may suppose that I(A2) lies closer to P then I(B2). Let A 2 B; 
be a cutting segment of R parallel to A t Bt,  and let B~ be the intersection of l (A 2 B;) with 
I(B 1 P). If B;  lies between A 2 and B~, then I A2 B;[ < ]A 2 B~I < [A1 B 1] < x, and 

C (A 2 B2) = C (A 2 B~) w Conv (A 2 B 2 B~). 

The area of this triangle is at most x2/2, and for the regions C1 and C ( A  2 B'2) one can 
apply Lemma 3.2. Finally, if A 2 lies between B~ and B~, then C (A2 B2) c Cony (A2 B2 B~), 
so we get the same upper bound. []  

P r o o f o f T h e o r e m 1.6. As in the previous section, let O e R \R  (x) be the origin 
of the coordinate system, and let h (c0 be a halfline starting from O with slope ~, where 
0 < c~ < 2 ~. Let A (~) B (~) be the cutting segment of R such that A (c0, B (c 0 ~ bd R, 
I A (~) B (~)[ = x, the slope of the (directed) line l (A (c0 B (c~)) is c~ + 7r/2, and it meets h (c 0. 
(For finitely many ~'s the definition of A (~)B (~) might be not unique.) The lines a (~) 
and b(c0 touching R at A (~) and B(c~), resp., meet at the point M(c 0. The angle 
/- (A (~) M (~) B (~)) is denoted by • (c0, and called the angle of the segment A (~) B (~). If, 
e.g. at the point A (ct) there are more touching lines, then a (c 0 is defined in such a way that 

(~) is maximal. The segment A (c 0 B (~) is abbreviated as s (~), and C (A (c0 B (~)) as C (cQ. 
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The cutting segment s (~) is called maximal if C(c 0 c C(fl) implies e = ft. (Every cutting 
segment has length x except if otherwise stated.) Every C (e) is either maximal, or a part 
of a maximal one. It is obvious that C(c 0 c C(fl) (and c~ * fl) implies that 

(3.4) K(fl) < ~r/2. 

Let Int C (cq) (i e 1) be a family of maximal cuts with pairwisedisjoint interiors, having 
~c(~) < ~/2. By definition, R to {Cony (a(ai )B(e i )M(o~i) ) : ie  I} is a convex region as 
well. As no convex region has more than three acute angles we obtain that 

111<3.  

Let ~ > 0, and 0 < 71 < --- < 7~ < 2~ and arbitrary 8-fine pointset on [0, 2z), (i.e. 
T1 < e, ?j+l - ?j < e, and 27r - T,~ < ~). The endpoints ofsj =:s(Tj) are abbreviated as Aj 
and Bj. We are going to give an upper bound for the area of 

/7 = : t o  {C(~I): i e I} <o {Conv(AjBjAj+ 1Bj+I): 1 =<j < m}. 

First of all, if sj c~ sj+ 1 =t = O, then area Cony (AjBj Aj+ 1 B j +  1) < ('~j+ 1 - -  Yj)  x2/2, SO 

(3.5) area Ho = : a r e a ( w { C o n v ( A j B j A j + l B j + l ) : A j B j c ~ A j + l B j + l * O } ) < x 2 ~ .  

Suppose that ~(cq) < ~c(e2) < ~c(e3) (in the case of I I I =  3). Then ~(ea) > ~/3, so 

(3.6) area C(%) < X/?x2.  
~ 4  

Let D i =:  {p e R\C(ei ) :  d(p, s(ei)) < x( l  + 6)}. Here 6 will tend to 0 when e --+ 0. Then 

(3.7) areaDi< x2(l  + 6 ) +  x2(l  + 6 ) z ~ c ( e i ) < x  2 1 + ~ + 3  . 

We claim that the union of the C(cq)'s, Di's and /7o covers H. Indeed, if 
p e Cony (Aj Bj Aj+ a B~+ 1), and sj c~ sj+ a = 0, then one of these two cut regions contains 
the other, say, C (T j+ ~) c C (T j). Hence ~c (T j) < re/2 by (3.4). Then either C (T j) c C (cq) for 
some i e I, and we are done, or s (T j) intersects s(e~), because of the maximality of the 
system {cq: i e I }. Then Conv (Aj Bj Aj + 1 Bj + 1) c C (cq) u Di. (Eventually, there might be 
finitely many exceptions, but that does not cause any problem.) Here we used that the 
function A (c0 (and B (e)) is piecewise continuous for given x and R, so d (Aj § 1, A j) < 3, 
and d(Bi+l,  Bj) < 3 whenever e is sufficiently small (with at most 4 d/x exceptions). 

Using Lemma 3.3 for the area C (%) + area C (ca) and adding the upper bounds for the 
parts o f /7  obtained in (3.5)-(3.7), one has 

a r e a / / < - -  _ _ x 2 +  + ~ +  + 3  1 +  + 9 3  x 2. 
w + V/w z - x 2 

Here the coefficient of x z in the second term is 9 .430. . .  + 9 6. 
Finally, it is clear that lim a r e a / / =  area R (x), as e ~ 0. []  

Archiv der Mathematik 56 20 
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4. Remarks and problems on R (x). If for given w and x one looks for the smallest 

possible coefficients yielding a general upper  bound  of the form ]R (x)] < (a  d b~ = - -  ~- X 2  
\ W / 

then a could not  be smaller than w/(w + , ~ -  x2), as we have seen in the proof  of 
Lemma 3.2. In this sense Theorem 3.1 is sharp. However,  there is a room to improve b. 

Considering a t rapezoid of bases about  w, and w - ~ 2  _ x 2, and sides of length ~ d, 
one can see that b could' not  be smaller than 1.03 . . . .  

I t  is easy to prove with the above methods that  if • (~) > 7r/2 for all c~, then 

I R (x) l ~ 2 x2. 

Fo r  example, if R is a rectangle of sides a < b, and x <= a/2, then 

3g  2 
IR(x)l = ~ - x  

the area of the astroid. 

Proposition 4.1. Suppose that the boundary of R is sufficiently smooth. Then 
lim I R (x)]/x 2 = re~4. 
x--+0 

This proposi t ion,  as I. B/tr~ny pointed out, can be proved by s tandard  methods for 
regions having continuous curvature. 

Rounding with very small quarter-circles the corner of a rectangle, one can see that  the 
function IR (x)[/x 2 is not  necessarily monotone  increasing or decreasing. 

Is it true that  I R (x)l/x e is monotone  increasing? Is it a convex function of x? 
Can we obtain a similar upper bound  for non-convex regions? 
Is there an analog of Theorem 3.1 in higher dimensions? The volume of the points of 

a ball  with radius r having a secant of length at most  x (for 0 _< x _< 2 r) is 

rC 2 ( r 2 - - ( x 2 / 4 )  ~ rc 2 
x r + r + x / r  z - ( x 2 / 4 ) / ~ 2 r x  

whenever x = o (r). 

5. Upper bounds on the number of cutting lines. Here we prove Theorem 1.7 and 1.1. 
Suppose that  11 . . . . .  I, cut R with each obtained cell having width at least 1. Then by 

(2.1) each cell C contains a circle of radius at least 1/3, so we have 

1 per C, (5.1) area C > g 

where per C stands for the length of bd C. We may suppose that  hi = ] l~ c~ R] is ordered 
monotone  increasingly, 0 < h 1 < . . .  < h,. 
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C l a i m  5.2. ~2 hi < 3lR(x)l .  
hi<x 

P r o o f. Consider the cell-decomposition obtained by {li:hi < x} without the cell 
containing R \ R  (x). Then for the area of these cells we have 

3 ] R ( x ) ] >  Z 3 a r e a C > 5 2 � 8 9  
C=R(x) 

= � 8 9  + Z hi - ~1 per (the cell containing R\R(x) )  => Z hi. 
hi <=x hi <=x 

Lemma 5.3. Suppose that 0 < Yl < Y2 <= " ' "  <= Yn, and ~, Yi < fk hold for all k. Then 
n <= E ( f k  - - f k - 1 ) / Y k ,  (fo =:0). i<k 

k<n 

P r o o f. We have that 32 (fk -- fk-  O/Yk = Y~ fk (Yk 1 _ yk+11) + L/Y, .  Here the right 
k<n 

hand side is larger then i<=,~--'Yi/Yn+ k<n~-'(~<=kYl) ( y ~ l - y ~ + l l ) = n ' i  [] 

P r o o f  o f  T h e o r e m  1.7. By Claim 5.2 we have that 

Y, h i <= 3 ]R (hk) ] . 
i n k  

Then Lemma 5.3 gives that 

I R ( h k ) l -  IR(h~_l)l 
(5.4) n < 3 2 

k<n hk  

b 
Rearranging the right hand side and using the equation S x -2  dx = ( l / a ) -  (l/b) for 
0 < a < b, we obtain that  a 

n < 3 \  + 2 ]R(hk)l 
k = l  hk-+l 

? tR(h.)l . -a h~§ tR(hk) 1 ~ IR(x)t 
= 3  j ~ - d x  + 3 ~, S - - d x  < 3 J X2 dx. 

hn k= 1 hr., X2 ~ 0 

In the last step we used the monotonici ty of [R(x)]. []  

P r o o f  o f  T h e o r e m  1.1. It is well-known that 

(5.5) area R < dw. 

(Even more, area R < area (D n S), where D is a circular disc of diameter d, and S is a strip 
of width w with a common symmetry.) Then first Theorem 1.7, then the following corol- 
lary of 1.6 

]R(x)] __( 11 d x2 
W 

20* 
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and finally the inequality I R (x) l ~ I RI give that 

T ~ dw n < 3 I R (x) l dx < 3 11 -d dx + 3 j ~.2 dx 
0 X 2 ~ 0 W cw X 

= 3 3 c d + 3 - = 3 d  1 1 c +  . 
C 

Choosing c = l /x /H- we obtain that the right hand side is at most 6 ~ d < 20 d. []  

6. Another measure for small cuts. Suppose that {l l , . . . ,  1,} are cutting lines having 
cells with inscribed circle radius at least 1/2. Let a(R) denote the largest possible a. 
Similarly to (1.2), 1.7 and 1.1 we have that 

10d 
a(R) > 2 d -  wl/~, 

a(R) < 2 S ]R(X) l dx 
0 X 2 

a(R) < 13d. 

For  example, for the circle D of diameter d, for the square S of sidelength s, and for the 
rectangle R with sides a > b we have 

2 d -  o(d) < a(D) < )zd, 

2, , /2s < a(S) < 4.35s, 

2a  3~ 
2a 2 b ~ < a ( R ) < 2 a + ~ - b .  

7. Cutting segments and the largest inscribed circle. In this section we prove Theo- 
rem 2.2. 

Suppose that k is the largest inscribed circle of the closed convex region R. Denote its 
center by O, its radius by ~. If there are two opposite points of bd (k) touching bd (R), then 
w o(R) = 2~(R), and we are done. So we may suppose that there are three points 
A1, B~, C 1 ~ bd(k) c~ bd (R) such that 0 ~ Int Cony(A1B~ C1). The three lines touching 
k at the points A1, B~ and C~ form a triangle ABC such that A~ ~ BC, etc. Then the 
ABC triangle contains R, so Wo (Cony ABC) >= w o (R). So it is sufficient to prove that 
w o (ABC) < (4/x/3) Q. 

Denote the angles of the ABC triangle by 2~, 2fi, 2y, e.g., Z_ (ACB) = 2y. Consider- 
ing the lines orthogonal to OX at the point X, where X ~ {A, B, C}, one can obtain an 
(acute) triangle A 2 B 2 C 2 such that C E A 2 B2.. .  , 0 is the meeting point of the three 
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heights  AA2,  B B  2 and  C C  2. (See Fig. 7.1.) Then  /_ (OB 2 C) = 0r and  /_ (OC2A) = fl, so 
we have 

(7.1) ICC2[ = [CB2[ co t f i  = lOCI cotc~ co t f i  = o(s in7)  -1 cotc~ co t f l .  

Of  course,  s imi lar  equa t ions  ho ld  for the o ther  two heights  of A 2 B 2 C 2. 

A2 

A1 

9 2 
Figure 7.1 

B 

C2 

S A 

c s,  

2~ A 

Figure 7.2 

Suppose  tha t  P e Conv  (ABC)  is a po in t  (actual ly,  the only  point )  hav ing  no secants  
t h rough  it shor te r  t han  Wo = : w o ( A B C ) .  Then  there are three segments  sa, sB and  Sc 
t h rough  P of length w o, such tha t  the endpo in t s  of  s c lie on CA and  CB and  it is para l le l  
to A 2 B z, and  so on for s A and  s c, (see Fig. 7.2). The  d is tance  of P f rom A 2 B 2 is �89 w o cot  7- 
I t  is easy to p rove  tha t  for an a rb i t r a ry  t r iangle  X Y Z  with P e In t  (X YZ) ,  one has  

d(P, I (XY) )  d(P, l (YZ) )  d(P, l (ZX) )  
+ + - - 1 ,  

hz hx hr 

where  h x is the height  of the t r iangle  f rom X, etc. A p p l y i n g  this to A 2 B 2 C2 and  P (7.1) 
implies  tha t  

cot  7 sin 7 cot  a sin a cot  fl sin fl 2 Q 

(7.2) cot  c~ cot  fl + cot  fl cot  7 + cot  7 cot  a w o 

So we are done  if we p rove  tha t  the left h a n d  side is at  least  x /3 /2 .  This  is equ iva len t  to  
the fol lowing 

(7.3) (cos y) 2 (cos a)2 (cos fi)2 x / ~  
-} > - -  cot  cr cot  fl cot  7. 

s in?  + s i n e  s inf l  = 2 

As a + fl + 7 = ~/2 we have tha t  

cot  e cot  fl cot  7 = cot  c~ + cot  fl + cot  7- 

Hence,  (7.3) is equiva len t  to 

f (cO + f (fl) + f ( 7 )  > 0,  
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where 

(cos ~)2 
f (~z) - X/3 cot ~z. 

sin e 2 

The second derivative of f (c 0 is f "  (c 0 = (sin c 0 -  3 (u 4 _ u 2 _ x/~ u + 2), where u = cos e. 
This is positive for u < 1, so f (~) is strictly convex for 0 < e < n. Jensen's inequality 

yields 

f(c0 + f ( f l )  + f ( 7 )  > 3 f ( e  + fl + ~ : 3 f ( n / 6 ) =  O. []  

% 

= \ 3 / 

B 

C A B1 

Figure 7.3 

Equality holds only if e = fl = 7 = n/6. It is easy to see that w o = (4fi,/3) Q implies that 
R1 c R ~ Conv (ABC), where the triangle ABC is regular, and the boundary of the 
region R 1 consists of the middle third of the sides of the A BC (see Fig. 7.3), and of three 

shell-lines, where e.g. B c B a =" {P : 3 X ~ AC such that I PXI  = (4/xf3) ~, O e P X  }. 

8. Width and cutting width. In this section we prove Theorem 2.3 in the following 
slightly stronger form. Let 0 be the center of the largest inscribed circle k into R, the 
radius of k is ~. 

4 
Theorem 8.1. Wo (0, R) => ~ w. 

, , /33  

P r o o f. If ~ > (2/3 ,,/3) w, then we are done, because w o (0, R) => 2 ft. So from now on 
we may suppose that 

(8.1) w > (3,,f3/23 0 > 2.598. . .0 .  

There are points Ai,  Bi and C1 ~ bd k c~ b d R  such that O e Int Conv (A 1 Ba Ca). The 
three lines touching k at the points Aa, B1 and Ca form a triangle A ' B ' C '  such that 
A 1 e B'  C', etc. (See Fig. 8.1.) The triangle A' B'  C'  contains R. 

Let A be a point of R such that d(A, l(B' C')) is maximum. Then A lies in the triangle 
B 1 A' C1. Consider the secants of k from A, denote their touching points by AB and A c 
and their angle by c~. We have 

(8.2) w ~ Q + l O A l = ~ o + ~ o  in . 
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By (8,1) we have that  IOA[ > 1.5 6, so c~ < re/2. One can define B and C in a similar way. 
The region R 1 bounded  by the six secants and the arcs BaA B, AcC A and CsB c is 
contained in R. 

C' CA 

Figure 8.1 

B' 

B 

Be, 

Ac A' 

Obviously,  Wo (O, R) > w o (O, R1). As e, fl and ? are acute angles, w o (O, Ri)  > 2 6. Even 
more, it is easy to show that  a shortest cutting segment s of R 1 intersects two secants, say 
BB c and AA c in the same angle 6. (This follows from the fact that  ifs is the shortest  secant 
segment through a point  0 lying on the bisector, then s is perpendicular  to this bisector.) 
Suppose that  a >_- ft. Then, as 2 ~ __< c~ + fl < 2 ~ we have that  

(8.3) wo(O, R1) > [sl = 2Q(sin6) -1 > 2r  - i .  

The ratio of (8.3) and (8.2) gives 

(8.4) w o_> 2 ( s i n e ) - 1  _ 2 

w I + sin ~ + 2 cos 2 

Here the denomina tor  takes its maximum over 0 < e < rc at the value e = ~/3, so the 

right hand side of (8.4) is at least 4/(3 x/3). [ ]  

I t  is quite clear that  equali ty is possible only in the case c~ = fl -- 7 = ~/3, then R is a 
regular triangle. 

9. A c k n o w 1 e d g e m e n t s. The author  is grateful to I. Bfir~tny for Proposi t ion  4.1, 
to N. Alon for the simple proof  of Lemma 5.3, and to the referee for helpful sugges- 
tions. 
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