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ABSTRACT 

Consider an integer-valued function on the edge-set of the complete graph 
K,,,. The weight of an edge-subset is defined to be the sum of the as- 
sociated weights. It is proved that there exists a spanning tree with 
weight 0 modulo rn. 

1. 0-TREES AND 0-SUM SUBSETS 

Let K,+l be a complete graph with vertex-set Vand edge-set 8. Let Z be an 
rn-element group. The binary group operation is denoted by the plus sign 
and is called addition. Let q:8 + Z be a function on the edges, which we 
call a weight function. The weight q({x, y}) of an edge {x, y }  in 8 is abbrevi- 
ated as q(xy). For a subset 9 C 8 denote 

so that q(9) is the sum of the weights of the edges in 8. (If 2 is not 
Abelian, then q(9) means all possible sums, and q(9) = 0 means that 
there is an ordering with sum 0.) 

Theorem 1.1. There is a spanning tree T of K,+l such that the sum of the 
weights of its edges is 0 modulo 2, i.e., q ( T )  = 0. 
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This statement was conjectured for the cyclic group Z = 2, by 
Bialostocki, and was proved by Bialostocki and Dierker [2] when m is a 
prime. Fan Chung [3] proved the case when cp takes only at most three 
diffent values. 

There are many results on subset sums; for a survey see Alon [l]. Theo- 
rem 1.1 implies that (,gl) elements of 2 contain an m-element 0-sum. In- 
deed, for Abelian groups much more is true. Erdos, Ginzburg, and Zvi [4] 
showed that every sequence of length 2m - 1 contains a substring of 
length m with 0 sum. The sequence consisting of m - 1 0's and 
m - 1 l's shows that their result is sharp. More on this is described in [l]. 

It would be interesting to extend the scope of Theorem 1.1 to other 
graphs. Call a graph G 0-weighted (with respect to the group Z), if every 
cp:%(G) + Z induces a 0-weighted spanning tree. It is possible that cp 
induces only one 0-tree of K,+l, for example, if cp = 0 except for the edges 
of a complete claw C(x,V\{x}), where cp f 1. (The edge-set of the claw 
C(x, A) is defined by %(C(x, A)) = {{x, y}:  y E A}.) Hence deleting any 
edge from K,+l we obtain a graph that is not 0-weighted with respect 
to 2,. 

Suppose that the graph G is 0-weighted mod m (m I 2). Let C C V(G) 
be an arbitrary k-element set (0 < k < m) and 6 U V, a partition of 
V(G)\C such that there is no edge joining 6 and V,. Then defining cp = 0 
for the edges in C U V, and cp = 1 otherwise, it is easy to see that for one 
of the following k integers, 

In the case m = 2 this constraint simple means that every 2-connected 
block of G has odd number of vertices. 

Conjecture 1.3 (Seymour [5]). G is 0-weighted mod m if and only if (1.2) 
holds for all C. 

He proved the cases m = 2,3. 

2. STABILIZERS AND QUASI-STABILIZERS 

Here we start the proof of Theorem 1.1 by introducing notations. For a set 
A C V we denote the weights of the spanning trees in A by @(A). Let 
1 = (A C V:I@(A)I 2 (A1 - 1). Suppose thatA E 1 has maximum cardi- 
nality. As all the 2-element subsets belong to 1, we may suppose that 
1Al I 2. 

IfA = V ,  then @(A) = 2, so there is a tree of weight 0, and we are done. 
From now on we suppose that V\A f 0. The edges joiningA with V\A 
are called crossing edges. We use the notation N(A)  for the set of weights of 
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crossing edges, N(A) = : {cp(ax) : a  E A, x E V\A}. Denote by C(A) the 
subgroup of 2 generated by the elements of N(A). Let r =: N\N = 
{cp(ax) - cp(by) :a ,  b E A and x ,  y E V\A}. Usually the set @(A) is abbrevi- 
ated as @. Define Stab,(A), the left stabilizer of A C Z as follows: Stab,(A) = 
{a E 2 : a  + A = A}. The definition of right stabilizers is similar, and 
finally, let Stab(A) = Stabr n Stab, = {a E 2 : A  + a = a + A = A}. 

The maximality of A implies that 

hence 

Fact 2.1. cp(ax) + @ = @ + cp(ax) holds for all a E A , x  E V\A. I 

Fact 2.2. If a, b E A andx E V\A, then cp(ax) - cp(bx) belongs to Stab(@). 

Proof: For every spanning tree ofA, we can add either the edge ax or bx 
to get a spanning tree of A U {x}. Hence @(A U {x } )  contains both 
@ + cp(ax) and @ + cp(bx). As the set A was chosen to be maximal in SP, 
we have 

[A( - 1 = 5 I(@ + cp(ax)) u (@ + cp(bx))l I (@(A u {x})l < IAl. 

Hence the two translates of @ coincide, and cp(ax) - ~ ( b x )  is a stabilizer. I 

If 2 is an Abelian group, and y E 2 is an arbitrary element, then cp in- 
duces a O-tree if and only if the function cp - y induces a O-tree. Hence we 
may suppose that there is a crossing edge ax with cp(ax) = 0. Then most of 
the technicalities in the rest of this paper are slightly simpler. 

Define QStab(A) as the set of quasi-stabilizers, a E 2 belongs to 
QStab(A) if A + a = a + A, and (A + a)\A contains at most one element. 
Let QStabr(A) = {a E Z:I(a + A)\A1 I 1); the definition of QStab, is 
analogous. Note that QStab is not necessarily the intersection of the set 
of left and right quasistabilizers, but QStab = QStab, n QStab, n C(A), 
where C(A) = {a E 2 : A  + a = a + A}. We have Stab(A) C QStab(A) but 
QStab(A) is not necessarily a subgroup of 2, unlike Stab(A). 

Fact 2.3. If a, b E A and x , y  E V\A, then p(ax) - cp(by) belongs to 
QStab(@). 

Proof: First, Fact 2.1 implies that p(ax) - cp(by) commutes CP. Next, we 
may proceed exactly as in the proof of 2.2. We have that @(A U {x, y}) con- 
tains both @ + cp(ax) + cp(xy) and @ + cp(by) + cp(xy), and the size of 
their union is at most I@[ + 1. Hence (@ + cp(ax) + p(xy))\(@ + cp(by) + 



110 JOURNAL OF GRAPH THEORY 

cp(xy)) contain's at most one element, so 

where y = q(ax)  - cp(by). This gives y E QStab,(@). I 

If A C D C V,  then @(D) contains a spanning tree T (over D)  with a 
weight that is a sum of [Dl - 1 members of N(A) ,  

Indeed, this is trivial for D\A f 0, as there is a spanning tree consisting 
of crossing edges only. For the case D = A ,  let a. E A , x  E V\A and 
consider the claw C = C(x ,A)  with center x and end points A.  Then 
E a E A ~ ( a x )  E @(A U x )  = @(A) + cp(aox), implying that 

3. A GENERAL CONSTRUCTION FOR 0-TREES 

The proof of Theorem 1.1 uses two ideas. First, we consider the maximal 
set A defined in the previous section. Second, we will see that @ (or some- 
thing similar) contains a coset of Stab(@) containing a value from 
(n  - IAI)N(A). These imply the existence of a 0-tree. We have to overcome 
some technical difficulties, namely, to handle the cosets of a subgroup 
properly we need a normal subgroup. Stab(@) is not necessarily a normal 
subgroup of Z ,  but as we will see, it is normal in C(A). The next lemma for- 
mulates these ideas. 

Lemma 3.1. Suppose thatA C D C V,  and for A C Z,  the following hold: 

(1) A c @(D), 
(2) y E Stabl(A) for all y E 
(3) A n (ID1 - l )N(A) f 0, and 
(4) u E C(A) and a E Stab,(A) n C(A) imply u + a - u E Stab,(A). 

Then there is a 0-tree with vertex set V. 

ProoJ Let I = : {a E C(A):a  + A = A} = C(A) f l  Stab,(A). Then I is 
a subgroup of C(A), and (4) implies that it is a normal subgroup, I 6 C(A). 
Consider the coset-decomposition of C(A): 
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The second constraint (more exactly, the fact r C Z) implies that all the 
members cp(ux) E N(A) are contained in the same coset. Then the normal- 
ity of I implies that for some v0 we have 

(ID1 - 1)N c (I + 770).  (3.2) 

As (n - 1)z = 0 for all z E Z, it follows that 

As I < Stabl(A), A is also a union of cosets of I, A = (I + 0,) U 
(I + &) U . . . . Then (3) and (3.2) imply that the coset I + vo is contained 
in A and (1) implies that it is contained in @(D), 

Let C = C(uo,V\D) for some u o  E A .  We have that -cp(C) E 
( -n  + IDI)N(A), and then -cp(C) E @(D) by (3.3) and (3.4). So there is a 
tree T over D with weight cp(T) = -cp(C). Then T U C is a 0-weighted 
spanning tree. I 

The usefulness of the above construction is shown by the following: 

Case 3.5. Suppose that ]Stab,(@)] > 1. Then there is a 0-tree over V. 

Prooj We are going to apply Lemma 3.1 with D = A and A = @(A). 
As @ is the union of some cosets of Stab,(@), 

@ = (vl + Stab,) U ... U (q5 + Stab,), 

we have that ((a + @)\@I is always divisible by IStab,(@)l. In our case this 
implies that QStabr(@) = Stabr(@). Then Fact 2.3 yields the second con- 
straint in Lemma 3.1. (The first one is obvious.) The third one is immedi- 
ate from (2.5). Finally, to check (4) let u E C(A),  a E Stabl(@). We obtain 
from 2.1 that 

(u + a - u) + Q, = u + a + Q, - u = u + @ - u = Q,. I 

4. TWO 0-TREES OF CROSSING EDGES 

From now on we may suppose that Stab(@) = (0). (Even more, that 
Stabr(@) = Stab,(@) = {O}.) Then Fact 2.2 implies that each claw C(x, A) is 
homogeneous (x E V\A), i.e., there is a function cp(x) : V\A -+ Z such that 
of all crossing edge {u, x} one has 
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If all the crossing edges have the weight cp(alxl), then one can easily find 
a spanning tree with all of its edges having the same weight. So from now 
on, we also suppose that r has nonzero elements as well, e.g., cpl = cp(axl) f 
cp(ax2) = 9 2 .  

Claim 4.1. If l@(A) n (JAl - 1)NJ I 1 and \A\ > 2, then cpi + cpj  = 
cp j  + (pi, 2(qj - c p i )  = 0 and 2cpi = 2cpj for all cpi,cpj E N(A) .  

Prooj This proposition is a sharpening of (2.4). Let K C A be an 
k-element subset, and let Tk be the tree consisting of the union of C(x,, K) 
and C(A\K) U {wk})  where wk E K, fork = 1,2,3. Considering the weights 
of these trees, we obtain that cp, + cp, + 8, cpl + cp, + 8, cp, + cp, + 8 and 
cp, + cp, + 8 all belong to (([A1 - l)N + cp, + 9,) n @(A U {xl, x,}), where 
8 = (IAI - 2)9, + cp,. Here /@(A U {xl,x,})\(@ + cpl + p,)l = 1, so our 
condition says that these four expressions take only at most 2 values. How- 
ever, for cp, # cp, we have 2cp, f cp, + cpI and 29, f cpI + 9,. So the right- 
hand sides must coincide, cp, + cpl = cp, + cp,. Similarly, we have 2q1 = 2q1. 
Finally, these two equations imply the third one. I 

Case 4.2. Suppose that cp, + cp, = cp, + cp,, 2cp, = 2cp, hold for all 
cp,,cp, E N(A), and (N(A)( I (A( .  Then there exists a 0-tree: 

Prooj We handle this case by the following construction: As 
2(9, - cp,) = 0, the order of 2 (= n - 1) is even. Consider the claw C = 
C(al,V\A) for some a l  E A, and let PI , .  . . , cp' E N(A)  be the elements ap- 
pearing an odd number of times as a weight of an edge of C. (The case 
{cp', . . . , cp'} = 0 is even simpler.) Let X I  E V\A be an element with 
cp(alx,) = 9,. As /A1 1 t ,  there are distinct elements a ' , .  . . , a ,  E A. Then 
the following union is a spanning 0-tree: 

Indeed, in the sum XeETcp(e) every weight cp(e) f cp' appears even times, so 
the total sum equals to (n - 1)cp' = 0. I 

Case 4.3. Suppose that N ( A )  = {cpl, c p p 2 } .  Then there is a 0-tree. 

ProoJ: Let K C A be an k-element subset (0 I k 5 IAI), and let Ti be 
the tree consisting of the union of C(x2, K) and C(xl, A\K) joining with the 
edge {xl,xz}. Consider cp(T;) = cp(xlx2) + (IAI - k)q1 + kcpz. As A is 
maximal, the above IAl + 1 weights are not all distinct, implying cql = ccp2 
for some (2 I) c I [A] .  

Suppose that the number of crossing edges {{ul,x}:x E V\A with 
weight cp2}  is lc - k, where 0 5 k < c. Let K C A, al $ A  with IKI = k. 
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Then the following union is a spanning 0-tree. 

Tk* = C(ai,V\A) U C(x2,K) U C(xl,A\K). 

The weight of q(TZ) = lcqz + (n - 1 - fc)cp, = (n - l)ql = 0. I 

5. THE STRUCTURE OF QUASI-STABILIZERS 

We are going to use Lemma 3.1 four more times. 
Suppose that p E r has maximum order, e.g., bp = 0, b 'p  f 0 for 

0 < b' < b, and for all y E r there exists some 0 < c(y) 5 b such that 
cy = 0. Let Z(p) denote the subgroup of Z generated by p; we have 
IZ(p)l = b 2 2. We may suppose that p = q(axz) - cp(axl). 

Consider the orbits Co,C1,. . . , C,  of the elements of @ in the repeated 
applications of the operation 5 + 5 + p. As p E QStab(@)\Stab(@), we 
have that all but one of these orbits are contained in @. Say, @ = Ci U 
C1 U ... U C,, where each C; is a coset of Z(p) (of the form C; = t; + 
Z(p)) and Ci C Co, 0 < ICil < b. Say, 

c; = { t o , t o  + p,...,to + (u - 110). 

Here the case s = 0 is of course possible. 
We classify three cases according to u = b - 1, u = 1 or 1 < u < b - 1. 

In this and in the next two sections the case b 2 3 is settled. First, we con- 
sider the case u = b - 1 in a more general setting. 

Case 5.1. Suppose that there is a subgroup M < Z, [MI = m 2 3, and 
a coset decomposition 

770 + M771 + M ,... , q, + M ,  (5.2) 

such that @ C UOrirr(qi + M ) ,  l@l + 1 = ( r  + 1)m. Then there is a 0-tree. 

Proof: Let a be an arbitrary left quasi-stabilizer of @. We claim that it is 
a left stabilizer of U(qi + M). Suppose, on the contrary, that the coset 
a + 77, + M does not appear among those in (5.2). Then (a + q, + M )  fl 
(Uq; + M) = 0. This and the facts [(a + v r  + M )  fl (a + @)I 2 2, @ C 
(Uqi  + M) imply /(a + @)\@I L 2, a contradiction. Hence 

QStabl(@) = Stabl(TO + M U * * U qr + M,) . (5.3) 

Even more, we have got that (a + @) C U(q; + M). This (and 2.1) implies 
that 

U(q; + M )  = @ u (@ + p ) .  
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As @(A U {x1,x2}) = @ U (@ + p )  + (pl + (p(x1x2), we have that 

Apply Lemma 3.1 withD = A U {xl, x2}, A = @(D). Then (1) is obvious, 
y f 0. The 2.3 and (5.3) 

Finally, let u E C(A) and a E StabL(A) f l  C(A). Using (5.4) we have that 

and (3) follows from (2.4). To check (2) let y E 
imply that y E StabL(Ui(qi + M ) ) .  Hence (5.4) gives y E StabdA). 

a E StabL(@ U (@ + p)) .  By 2.1 we have 

(u + a - u) + (@ u (@ + p))  3 (u  + a - u + @) = u + a + @ - u .  
(5.5) 

Here @ = (U,(q, + M))\x for some x E @ U (@ + p) ,  so 

a + @ = a + (@ u (@ + P)\x) = @ u (@ + P)\(a + x) 3 @\(a + x). 
Continuing the right-hand side of ( 5 3 ,  we have 

3 ( u  + @ - u)\(u + a + x - u) = @\(u + a + x - u ) .  

Hence (u  - a + u) + (@ U (@ + p))  contains at least I@I - 1 elements of 
@, so it contains at least I@ u (@ + p)I - 2 elements of @ U (@ + p).  So 
it intersects all of the cosets of @ U (@ + p) .  But it consists of the same 
number of cosets, so it is a left stabilizer of @ U (@ + p).  Then, by (5.4), it 
is a left stabilizer of @(A U {x1,x2}) as well. I 

6. THE CASE u = 1. 

Here we deal with the case u = 1, b 2 3 in a more general form. 

Case 6.1. Suppose that there is a subgroup M < Z ,  IMI = m 1 3, and a 
coset decomposition 

such that @ 3 Ulaisr(qr  + M ) ,  I@[ = rm + 1. Then there is a 0-tree. 

ProoJ: Let T~ denote the element @\(Ui=l,.. . ,r(~l + M ) ) .  For an arbitrary 
a E QStabr(@), we have that (a  + qo + M )  r l  (Ui,o(qi + M ) )  = 0. Hence 
in this case a is a left stabilizer of Ui,o(ql + M )  = @\{qo}, 
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Apply Lemma 3.1 with D = A ,  A = @(A)\{T~}. Then (1) is obvious, and 
(2) is implied by 2.3 and (6.2). 

To check (3) we use Claims 4.1 and 4.2. As IAl 2 2 and rn I 3, we have 
that (A1 2 1 + rn L 4. Suppose, on the contrary, that @\{v0} contains no 
element of ([A1 - l)N(A). Then Claim 4.1 implies that cpt + rp, = rp, + rpt 
and 2rp, = 2rp, hold for all rp,, rp, E N(A) .  Equation (6.2) implies that 

"(A)[ = [{(Pi - 9 1 : C p i  E N(A)}(  I Irl I IQStabl(@)l I I@[  - 1 < [A( .  

Then Claim 4.2 yields a 0-tree. 
The proof of (4) is similar to the proof given in the previous section. Let 

u E C(A) and a E Stabl(@\{To}) n C(A). First observe, that (u + a - u) + 
(@\{qo}) consists of the same number of cosets of the form x + Z(p) as 
@\{TO}; hence 

~[@\{TO}]\[(U + a - u) + (@\{T~})]( is divisible by 6.  (6.3) 

By 2.1 we have 

(u + a - u) + (@\{To}) = (u  + a - u + @)\{u + a - u + To} 

= u + (a  + @) - u\{u + a - u + To}. 

(6.4) 

a + @ = a + (@\{To} u {To}) = @\{To} u {a + To}. 

Continuing the right-hand side of (6.4) we have 

= u + (@\{To} u {a + To}) - u\{u + a - u + To} 

= (u  + @ - u)\{u + To - u} 

u {u + a + To - u}\{u + a - u + To}. 

Here the first term is @, hence (u  - a + u) + (@\{v0}) C (@\{v0}) U {TO, 
u + a + 70  - u}. So it intersects all the cosets of @\{v0}. Then, (6.3) im- 
plies that u - a + u is a left stabilizer of @\{qo}. I 

7. THE CASE 1 < u < b - 1. 

In this section we finish the case 6 2 3. 

Case 7.1. Suppose that p E r with order 6 > 2 such that l@l 3 u(mod 6) 
for some 2 I u < 6 - 1. Then there is a 0-tree. 
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Proof: Consider the decomposition 

where Ch C (to + Z(p)), and Ch = {50,50 + p,. .  . , t o  + (u - 1)p). As 
u > 1 (and b 2 3), for an arbitrary a E QStab,(@) we have that (a + t1 + 
Z(p)) C UiBo(5i + Z(p)). Hence in this case a is a left stabilizer of 
Ul,o(51 + Z(p)). Moreover, u I b - 2 implies that a + 50 + Z(p) f li + 
Z(p) for some i 2 1, hence a + to + Z(p) = to + Z(p). Equivalently, we 
have -to + a + to + Z(p) = Z(p), i.e., -to + a + to = g(a)p for some 
integer 0 I g =: g(a)<b. Then a = to + g(a)p - to. Consider a + Cli = 
(to + g(a)p  - to) + {to + i p : i  = 0,. . . , u - 1). We have 

This implies that g E {O,l,  -l}, i.e., QStab,(@) C { O , l 0  + p - t o , E 0  - 
P - 50). As p E C and 50 + p - to = -(to - p - to), we have that 

As 1 < u < b - 1, we have 

b 1 4  

Proposition 7.4. N(A)  = {ql,  9 2 ) .  

(7.3) 

Proof. Suppose that there are three distinct members cpl, q2, and cp3 of 
N(A).  Equation (7.2) implies that 403 - cpl = -p. Consider 0 f c p 2  - q3 E 
r C {O,p, -p). The 9 2  - p3 = p (with c p 2  - p1 = p) implies (p3 = cpl, a 
contradiction. 

If ( p 2  - (p3 = -p, then (together with the previous two equations), we 
have 

P = 9 2  - cp1 = (92 - 9 3 )  + ( 9 3  - cpl) = -2p. 

This gives b = 3, contradicting (7.3). I 

Finally, 7.4 and Case 4.3 finish the proof of 7.1. I 
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8. THE CASE OF ORDER 2 

From now on we may suppose that b = 2, i.e., for every y E r we have 
2y = 0. This implies that 

holds for all qi, q, E N(A). 

Proposition 8.2. y1 + y2 = y2 + y1 for all y l ,  y2 E r. 

Prooj Let y1 = (pi - cpj and y2 = ( P k  - qI. Equation (8.1) implies that 
-cpi + Vk = - ( p k  + q j .  We have 

p + (cp u (cp + p)) = (p  + @) u ( p  + cp + p) = (@ + p) u cp. 
(8.3) 

Similarly, p + (@\{to}) is a union of cosets of the form 7 + Z(p), and 
p + (@\{to}) C p + @ = @ + p = {to + p} U C1 U a . 0  U C,. These im- 
ply that P E Stabd@\{td), 

Proposition 8.5. y + (Co U C1 U . . . C,)  = (Co U C1 U . . .Cs)  + y for 
all y E 

Proposition 8.6. y + (Cl U . . . , C s )  = (Cl U . . . C , )  + y holds for all 
y E r  

Proofs. We have that 

Equation (8.2) implies that Z(p) + y = y + Z(p); hence 
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As y + @ = @ + y ,  the above two equations yield y + to = to + y for all 
y E I: Then 

y + (C, u c1 u ... u C,)  = y + (@ u { t o  + p}) 
= (y  + @I u {r + t o  + P} = (@ + 7 )  u (50 + P + 71 
= (C, u c1 u . * *  u C , )  + y .  

The proof of the second statement is similar. I 

As 4.3 covers the case IN(A)I I 2, we may suppose the opposite. Hence 
Irl ’ 2, 

for some 0 # y # p. Let M be the subgroup generated by p and y. By (8.1) 
and 8.2 we have that M =: {O,p, y,P + y}, /MI = 4. 

Case 8.7. Suppose that IT1 > 2. Then, there is a O-tree. 

Pro05 Suppose, first, that y + Co E {Co,C1,. . . ,C,}. Then, as y a 
quasi-stabilizer of @, we obtain that y E Stabr(Co U C1 U . . . U C,) .  The 
same holds for p by (8.3). Then 8.5 implies that p, y E Stab,(Co U 
C1 U -. .  U C,). Since @ U (@ + p) is a union of cosets of the form 7 + 
M ,  one can use Case 5.1. 

If (y  + C , )  n (C, U C1 U ... U C,) = 0, then y (and p, by (8.4)) are 
left stabilizers of C1 U ... U C,.  Then 8.6 implies that p , y  E 
Stab,(C1 U -. .  U C,). Since @\{to} is a union of cosets of the form 7 + M ,  
one can use Case 6.1. I 

This last case completes the proof of Theorem 1.1. 

9. QUASI-STABILIZERS IN A GROUP 

Actually, we proved the following statement, which holds for any finite 
Abelian group 2 and subset @: 

Proposition 9.1. 
one of the following cases holds: 

Let QStab(@) be the set of quasistabilizers of @. Then 

(S) /Stab(@)\ > 1, and then QStab(@) = Stab(@). 
(0) @ = {a, a + p,. . . ,a + b‘p}, where the order of p E 2 is larger 

than b’ + 1 > 1 and QStab(@) = {O,p, -p}. 
(1) For some 6 E @ one has QStab(@) = Stab(@\{S}). 
(2) For some S E Z\@ one has QStab(@) = Stab(@ U {S}). I 
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Especially, JQStab(Q)l > 3 implies that it is a subgroup. 
It would be interesting to characterize the set of quasistabilizers for every 

group. 

10. COMPLEXITY QUESTIONS 

One can ask, How difficult is it to find a 0-tree given a weighting of K,+l? 
The construction given makes use of a maximum cardinality set such 

that the number of weights of spanning trees in it has cardinality at least 
one less than that of the set. The same construction can be applied to a 
maximal set, or even to an “apparently maximal set,” namely, one of cardi- 
nality k + 1 for which there is a set of k tree weight sums (not necessarily 
all) that cannot be extended by adding more vertices. This gives a polyno- 
mial algorithm for constructing such a tree, by extending such a set and 
weight set or using the argument of the theorem here to produce a 0-tree if 
the set is unextendable. 

Theorem 10.1. There is an algorithm to find a 0-tree with running time of 
O(I %I 1. 

Prooj Suppose we already know a k + 1 element set A C I/ and 
spanning trees {T1,.  . . ,Tk} over A with distinct weights, i.e., Qo = 
{cp(T,):l I i 5 k} ,  IQol = k .  (In the beginning of the algorithm k = 1.) 

If we can find an x E V\A and a,b  E A with cp(ax) f cp(bx), then 
either there are at least k + 1 distinct values among {cp(T, U {u ,x} ) }  U 
{cp(T, U {b, x})} and then we can have k + 1 tree values over A U {x}, or 
Fact 2.2 holds for (Po. 

Similarly, either there exist a E A and x,y E V\A such that 1% + 
cp(ax) + cp(xy)) U (Qo + cp(bx) + cp(xy))l 2 k + 2, and then we can extend 
A intoA U {x,y}, or Fact 2.3 holds, too, for Qo. 

The rest of the proof is just to check the proof of Theorem 1.1, that all 
the constructions given by 4.1-4.3 and finally by Lemma 3.1 can be also 
constructed effectivelly using the T,’s on A. 

To achieve linear running time for Z = Z ,  requires a slightly careful 
database handling. I 

Whether finding such a tree is in NC an open question. 
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