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Abstract. A partial plane of order n is a family £ of n+ 1-element subsets of
an n? + n + l-element set, such that no two sets meet more than 1 element.
Here it is proved, that if £ is maximal, then || > |3n/2] + 2, and this
inequality is sharp.

1. EXAMPLES FOR MAXIMAL PARTIAL PLANES

Let n be a positive integer, P a set of n® + n + 1 elements. It will be
convenient to set P = {1,2,...,n24+n+ 1}. A family £ of (n + 1)-element
subsets of P is called a partial plane of order n if

[LNL'|<1

holds for every pair L, L’ € £. (By another terminology. (. £) is a (n® +
n+ 1,n+ 1,2)-packing, and £ is a nearly-disjoint family.) £ is mazrimal if
there is no other partial plane containing it. Let f(n) denote the minimum
number of sets in a maximal partial plane.

Let the lines Ag, Ay, ..., A, form a spread with center {n* +n+1} (e.g.,
Ai = {in+1,in+2,..;in+n}U{n’+n+ 1} for 0 < i < n), and
Bi,...,B, an orthogonal equipartition of P\ {n® + n + 1}, (e.g., B; =
{i,i+n,...,i +n?}). Then {Ao,...,An, B1,..., By} is a maximal partial
plane. Considering this example Mullin [M] conjectured that f(n) = 2n+1.
It is easy to check that f(1) = 3 and f(2) = 5. Mullin had several more
maximal partial planes of size 2n + 1 as well. However, the conjecture fails
to be true for n > 3, we have

THEOREM 1.1. f(n) = [3n/2] + 2.
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Example for n odd. Let P = PpUP,U--.UPF;,,_1);2 be a partition, where
|Pol = %(ﬂ+1)(n+2) and |Pj| = - = |Pp_1y2|l =n. Let Ly,..., Lyy2 be
a system of (n+1)-element sets over Py such that every pairwise intersection
is nonempty, and every element of Py is contained in exactly two of these
sets. Moreover, let L} = P; U {p;}, where p; € Py is choosen arbitrarily,
1<i< (n—-1)/2. Then, £ := {Ly,...,Ln42} U {L’l,,,.,L;n_””} is
a maximal partial plane. Indeed, if |C N L] < 1 for all L € £ for some
(n+ 1)-set C, then

n+2
(1.1) n+2> ) |CNLi|=2|CN P

i=1

implies that |C N Py| < [(n + 2)/2] = (n + 1)/2. Hence |C N P| =
Yi=0,..,(n-1)/2|[CO PR < n.

Example for n even. Let again P = Py U Py U---U P, _oy/2, where
|Po|l = 4(n+ 1)(n+3) — 3, |Pil = -+ = |Pu_ay/2l = n. There exists
a nearly-disjoint system of (n + 1)-element sets Li,..., L,43 C Po, such
that every element of Py is covered twice or 3 times. To see this, label the
elements of Py by sets of size 2 and 3 as follows: Py = {p(3): B € B}, where
B={{1,2,3}}u{{i,j}:1<i<j<n+3 {ij}£{4.5} {67} ....{n+
2,n+3}}. Weget Ly ={p(B):i€ B} for | <i<n+3.

Moreover, let L; = P; U {p;}, where p; € Py, 1 <@ < (n —2)/2. Then
{ Loy Dpay By vy En_z)ﬁ} is a maximal partial plane. To prove the
maximality we use (1.1) but the left hand side is replaced by n+3, and the
equality sign = by a greater-or-equal sign >.

2. THE LOWER BOUND IS SHARP

In the proof of Theorem 1.1 we will use the following result of Seymour
[S]: If D is a nearly-disjoint family over the underlying set Y, then it contains
at least |D|/|Y| pairwise disjoint members. (This theorem is a special case
of the Erdés-Faber-Lovasz conjecture [E].) As the dual of a nearly-disjoint
family is again nearly-disjoint, Seymour’s theorem gives that there is a set
I CY such that [IN D] <1 forall DeD and

(2.1) 17| > [Y'/ID].
Proof of 1.1. The upper bound on f(n) was given in the previous section.
Now suppose that £ is a maximal family over P with |£| = f(n). First we

show, that one can suppose that

(2.2) LL=-P.
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If the point p € P is uncovered, and ¢ € P is contained in at least two
lines L, L’ e L,ge LNL, then £ := L\{L}U{L\{g}U{p}}isalsoa
maximal partial plane. Indeed, if £L'U{A} is partial plane for some 4 C P,
|A| = n+ 1, then £ also can be extended by either A or by 4\ {¢} U {p}.
Repeating this operation, we either obtain an L™ cousisting ol pairwise
disjoint sets, a contradiction to its maximality, or an £* covering the whole
P, proving (2.2).

Denote by Ly, ..., Ly € L the lines having a point of degree one, 1.e. for
1< i< bone has p; € L; such that p; ¢ L for all L € £\ {L;}. The set
{p1,...,pp} intersects every L € L in at most one element, hence b < n.
Let C:= P\U{L;:1<i<b}. We have that [C|> |P|—(n+ 1)b > 0.

Considering the valencies of the points of P we obtain that

(n+1)|L|> |P|+|C| > 2(n* +n+ 1) — (n+ 1)b.
This implies that
(2.3) L] >2n+1—b.

Apply (2.1) to the restriction of £ into C. We get the points ¢i,...,q. €
C such that no pair g;q; is contained in any L € £, and ¢ > |C'|/(|£]| - b).
Then {p1,.--,P8,41,---,9qc} is nearly-disjoint to L, so

n>b4c>b+(n*+n+1—(n+1)b)/(L]-0).
Rearranging we have (n — b)(|]£] —n—1—=56) = I, implying
(2.4) L] >n+2+40.
Finally, the sum of (2.3) and (2.4) gives 2|£| > 3n + 3. finishing the proof.

3. A REMARK ON THE LOTTO PROBLEM
The above discussed question is related to the following, so-called lotto
problem (see, e.g., [BV]). For v > k > t, let [(v, k,1) denote the smallest
cardinality of a family F of k-subsets of the v-element underlying set V
such that K C V, |K| = k implies that |FFN K| > t for some F' € F. It is
easy to see, that I(n? + n+ 1,n+1,2) = n + 2, in contrast with Theorem
1.1.
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