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Abstract. The graph G is called a porcupine, if G [A is a complete graph for some set A, every other 
vertex has degree one, and its only edge is joined to A. In this paper a conjecture of Bollob~s is 
settled almost completely. Namely, it is proved that if G is a graph on n vertices of diameter 3 with 
maximum degree D, D > 2.31 ~n ,  D ~ (n -- 1)/2 and it has the mimimum number of edges, then 
it is a porcupine. 

1. Results  and a Conjecture 

Let d, D and n be positive integers, d, D < n. Deno te  by ~d(n, D) the set of  all (simple) 
graphs  of n vertices with d iameter  at  mos t  d, and maximal  degree at mos t  D. Put  

ea(n,D) = min{lE(G)l:  G e ~ ( n , D ) } ,  

i.e. the m i n i m u m  number  of  edges. Also, denote  by ga(n,D) the set of  extremal  
graphs,  

gd(n,D) = {G z ~d(n,D): [E(G)[ = ed(n,D)}. 

The study of the function ea(n, D) was initiated by Erd6s  and Rrnyi,  and an excellent 
survey can be found in the 4th chapter  of  Bollobfis'  b o o k  I-2]. In  this note  we deal 
with the case d = 3. 

Define the class of  graphs  ~'(n, D, a) as follows, for D _ a > 1. A graph  G e 
N(n, D, a) if its m a x i m u m  degree is at  mos t  D, and there exists a set A c V(G), 
IAI = a, IV(G)[ = n with the following properties.  The  induced subgraph  GIA is 
complete,  and  every vertex in V(G)\A has degree exactly one, and  each of them is 
jo ined to some vertex of A. Let  ~(n,D) = Ua~(n,D,a), ~(n) = ~.) ~(n,D). Some- 
times we call these graphs  porcupine. Obviously,  every m e m b e r  of  ~(n)  has d iameter  
(at mos t ) th ree ,  and for all graphs  G e ~(n,D, a) one has 

( a - l )  (1.1) [E(G)[ = n -  1 + 2 " 
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Moreover, if ~(n, D, a) ~ ~,  then D > a, and considering the degrees at A we have 

n + a 2 < a(D + 2). (12) 

Theorem 1.3. Let n, D be positive integers, n > D > (4/x/3)x/n - 2, (4/x/~ = 2.30...). 
Let a be the minimum integer satisfying (1.2). Suppose that G is a graph on n vertices 

of  diameter at most 3, maximum degree at most D. Then [E(G)I > n - 1 + 2 ' 

Moreover, for D ¢ n - 1, D ¢ (n - 1)/2, here equality holds only i f  G ~ ~(n,  D, a). 

(If D e {n - 1,(n - 1)/2}, then there is one more extremal graph, see later (2.1) 
and (2.2).) Theorem 1.3 was proved for D > (2n) 2/3 by Erd6s, R~nyi and T. S6s [3] 
(also see in [2], p. 181.). Bollobfis ([2], Problem 5.10, page 213.) raised the question 
whether the statement of the Theorem 1.3 is true for all D whenever N(n, D, a) ¢ N, 
(i.e. for D > 2x//n). The theorem is not true for (much) smaller D's, as Bollob/Ls [2] 
proved for D = [cx/~ ] 

(1) 
(2/c2)n 1 - - ~  < ea(n, c x /n )<(7 / c2 )n ,  

where 0 < c < 0.1 is fixed, and n > no(c ). 
A similar statement seems to be true for ed(n, D) if d is an odd integer. To state it 

define ¢~d(n, D, a) as the class of graphs G on n vertices with maximum degree D 
such that there exists a set A c V(G), IA[ = a, GIA is a complete subgraph, and 
removing the edges of A from E(G) one obtains trees, every tree T has a unique 
common point with A, and the distance of each vertex of T from A is not more than 
(d - 1)/2. Let Nd(n,D) = Ua~d(n,D,a) .  

Conjecture 1.4. Suppose that ¢~d(n, D) ¢ 2S and let a be minimal integer such that 
( a - l )  

Nd(n,D,a) ¢ ~ (i.e. D _> nd= (1 + O(1))(4n)2/(d+~)). Then ea(n,D) = n - 1 + 2 " 

Moreover, ~d(n,D) = Nd(n,D,a). 
This conjecture remains open even in the case d = 3 whenever 2 ~  < D < 

2.30... x//n. 

2. Proof of Theorem 1.3 

It is easy to prove the following two statements. 

e3(n,O ) = n - 1 (2.1) 

if and only if D >_ n/2, and the only extremal graphs are from ~(n, D, < 2). 

e~(n,O) = n (2.2) 

holds for n/2 > D > (n + 2)/3 if n > 8, and for n/2 > D > 2 if n = 5, 6, 7. The only 
extremal graphs are from ~(n,D,3)U {Pzo+I}, and in the case 5 _< n < 7 we have 
g 3 ( n , D )  = ~(n,D, 3)U {C,,P2o+1}, where P2o+1 is a graph on 2D + 1 vertices ob- 
tained from a pentagon having two neighbours joined to D - 2 new points each. 
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Suppose that G • 83(n, D), where 

4 
D _> ~ x / n -  2. (2.3) 

As (1.1) shows, we may suppose that 

I E ( c ; ) ! _ _ < n - 1  + 2 ' 

where a is defined by (1.2). Our aim is to prove that G • ~(n,D, a) (whenever 
v e n - 1, D ~ (n - 1)/2). 

The case D >_ n/2 is covered by (2.1). So we may suppose that D _< (n - 1)/2. 
Then (2.3) implies that n _> 15. Theorem 1.3 obviously holds for (n - 1)/2 > n _> 
(n + 2)/3 for n > 15 by (2.2). So from now on we may suppose that 

D < (n + 2)/3. (2.5) 

This and (2.3) imply that 

n > 30. (2.6) 

Since a is the smallest integer satisfying (1.2), one has that (2.3) implies 

(2.7) 

Claim 2.8. There are vertices of degree 1. 

Proof Let m = min {deg~;(p): p • V(G)}, deg(p) = m for some p • V(G). Suppose on 
the contrary that m > 2. Then 

3 1) D. (2.9) l e (G) l  _ ~ ( n -  - 

Indeed, in the case m > 3 we obtain imrnediatey that IE(G)I > 3n. In the case m = 2, 
let Ni (or Ni(p, G)) denote the set of points of G whose distance from p is exactly i. 
Let T be a spanning subtree of G such that Ni( p, G) = Ni( p, T). As [No U N 1 O N2] < 
1 + 2 + 2(/9 - 1) and No U N1 i3 Nz U N3 = V(G) we obtain that T has at least 
n - 1 - 2D leaves. All of them have degree at least two in G, hence 

1 3 
IE(C)I _ I~(T)l  + ~ ( .  - 1 - 2D) = ~ ( .  - 1) - D, 

proving (2.9). 
The right hand side of (2.9)is at least (7n - 13)/6 by (2.5). This contradicts (2.4) 

and (2.7) for n > 17. [] 

Define the following partition of V(G) = X U Y tA Z. Let X denote the set of 
vertices having a neighbour of degree 1, let Y be the set of neighbours of X 
(Y = N(X)\X), and let Z be the rest of the points, Z = V(G)\(X U Y). We use the 
notations IXI = x, I YI = Y, IZI = z. Observe, that GIX is a complete subgraph. 
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Z = ~ implies that  G contains a porcupine P E ~(n, x) as a subgraph. The 
minimality of IE(G)I implies that  actually P = G, and we are done. So from now 
on we may suppose that  Z # ~.  

Claim 2.10. [E(G)l >- n - l + Lz/2] + (2 I.  

Proof. Let z = min{IN(p)n  Y[: p s Z}, and suppose that  this minimum is taken at 
the vertex p ~ Z. Every point  of X can be reached in two steps from Z via Y, so 
N(p) N Y has at least x edges to X. Hence the number  of edges between X and Y is 

a t l e a s t x + y - z .  WehaveadditionalzzedgesfromZto Y, and ( 2 )  edges in X. 

Altogether 

Here the middle term is at least [z/2] for ~ >_ 2 (as z > 1). 
In the case ~ = 1 we proceed as in the argument  proving Claim 2.8. There are 

at least z edges from Z to Y, but  as every degree in Z is at least 2, we have that  the 
total  number  of edges adjacent to Z is at least ~z. This gives a ~z term in (2.11) 
instead of zz proving the Claim 2.10. [ ]  

> [z/2] + implying 
2 - 2 ' 

x _< a -  1, (2.12) 

and 

(a - x - 1)(a + x - 2) > 2[z/2]. (2.13) 

On the other  hand, recall that  by the minimal choice of a the inequality (1.2} 
does not  hold if we replace a by a - 1. Hence 

x + y + z + (a - 1) 2 = n + (a - 1) 2 > (a - 1)(D + 2). (2.14) 

Considering the degrees at the points of X and the number  of incoming edges from 
Y we have 

Ox > Z deg(p) > y + x 2 - x. (2.15) 
peX 

Rearranging the sum of (2.14) and (2.15) we have that  

z > ( a -  x -  1)(D + 3 -- a -  x). (2.16) 

Then  (2.13) and (2.16)imply that  

2a + 2x _> D + 5. (2.17) 

However,  (2.7) gives that  a < [,v/n/,v~] < (D + 5)/4, which together (2.12)imply 
2a + 2x < D + 3. This contradicts (2.17), completing the proof  of Theorem 1.3. 
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