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Abstract. The graph G is called a porcupine, if G| 4 is a complete graph for some set A4, every other
vertex has degree one, and its only edge is joined to A. In this paper a conjecture of Bollobas is
settled almost completely. Namely, it is proved that if G is a graph on n vertices of diameter 3 with

maximum degree D, D > 2.31ﬁ, D # (n — 1)/2 and it has the mimimum number of edges, then
it is a porcupine.

1. Results and a Conjecture

Letd, D and n be positive integers, d, D < n. Denote by #;(n, D) the set of all (simple)
graphs of n vertices with diameter at most d, and maximal degree at most D. Put

e,(n, D) = min{|E(G)|: G € #;(n, D)},

ie. the minimum number of edges. Also, denote by &(n, D) the set of extremal
graphs,

&4(n, D) = {G € #;(n,D): |E(G)| = e(n, D)}.

The study of the function e,(n, D) was initiated by Erdés and Rényi, and an excellent
survey can be found in the 4th chapter of Bollobas’ book [2]. In this note we deal
with the case d = 3.

Define the class of graphs #(n, D, a) as follows, for D > a > 1. A graph Ge
#P(n, D, a) if its maximum degree is at most D, and there exists a set 4 = V(G),
|A] = a, IV(G)I = n with the following properties. The induced subgraph G|A4 is
complete, and every vertex in V(G)\4 has degree exactly one, and each of them is
joined to some vertex of 4. Let #(n, D) = | ), #(n, D, a), Z(n) = | ) #(n, D). Some-
times we call these graphs porcupine. Obviously, every member of 2(n) has diameter
(at most) three, and for all graphs G € 2(n, D, a) one has

E(G)|=n—1+ <“; 1). (1)
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Moreover, if ﬂ(n, D, a) # &, then D > g, and considering the degrees at A we have
n+a’<a(D+2) (1.2)

Theorem 1.3. Let n, D be positive integers,n > D > (4/\/?;) n—2,(4/,/3=230..).
Let a be the minimum integer satisfying (1.2). Suppose that G is a graph on n vertices
—1

2
Moreover, for D # n — 1, D # (n — 1)/2, here equality holds only if G € 2(n, D, a).

(If D € {n — 1,(n — 1)/2}, then there is one more extremal graph, see later (2.1)
and (2.2)) Theorem 1.3 was proved for D > (2n)*® by Erdés, Rényi and T. Sés [3]
(also see in [2], p. 181.). Bollobas ([2], Problem 5.10, page 213.) raised the question
whether the statement of the Theorem 1.3 is true for all D whenever #(n, D, a) # &,
(i.e. for D > 2,/n). The theorem is not true for (much) smaller D’s, as Bollobas [2]
proved for D = [c\/ﬁj

(2/c2)n<1 - n—}ﬁ) < es(me/n) < (1/c)n,

where 0 < ¢ < 0.1 is fixed, and n > no(c).

A similar statement seems to be true for e4(n, D) if d is an odd integer. To state it
define #%(n, D, a) as the class of graphs G on n vertices with maximum degree D
such that there exists a set 4 = V(G), |4| = a, G|4 is a complete subgraph, and
removing the edges of 4 from E(G) one obtains trees, every tree T has a unique
common point with 4, and the distance of each vertex of T from A is not more than
(d — 1)2. Let #’(n, D) = | ), 2(n, D, a).

Conjecture 1.4. Suppose that #%(n, D) # & and let a be minimal integer such that
—1
P0.0.0)# 316D 2 = (1 + o)), Them D) =n— 1.+ (* ) 1),

Moreover, &,(n, D) = #%(n, D, a).
This conjecture remains open even in the case d = 3 whenever Zﬁ <D<
230.../n.

of diameter at most 3, maximum degree at most D. Then |E(G)| > n — 1 + 4

2. Proof of Theorem 1.3

It is easy to prove the following two statements.

es(n,D)=n—1 (2.1)
if and only if D > n/2, and the only extremal graphs are from 2(n, D, < 2).
es(n,D)=n (22)

holds for n/2>D > (n + 2)/3if n > 8,and for n/2 > D > 2if n =5, 6, 7. The only
extremal graphs are from 2(n,D,3)U{P,p,}, and in the case 5 < n < 7 we have
&3(n, D) = P(n,D,3)U{C,, P,p+1}, where P,p ., is a graph on 2D + 1 vertices ob-
tained from a pentagon having two neighbours joined to D — 2 new points each.
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Suppose that G € &;(n, D), where
p>t ju-2 23)

NE

As (1.1) shows, we may suppose that

IMGMSn—1+<w;v, (24)

where a is defined by (1.2). Our aim is to prove that G € #(n,D,a) (Whenever
D#n—1,D#(n—1)2)

The case D > n/2 is covered by (2.1). So we may suppose that D < (n — 1)/2.
Then (2.3) implies that n > 15. Theorem 1.3 obviously holds for (n — 1)/2 > n >
(n + 2)/3 for n > 15 by (2.2). So from now on we may suppose that

D <(n+2)3. (2.5)
This and (2.3) imply that
n > 30. (2.6)

Since a is the smallest integer satisfying (1.2), one has that (2.3) implies

a=[gp+z_vﬁi:ﬁt:@]skﬁg. )

Claim 2.8. There are vertices of degree 1.

Proof. Let m = min{degg(p): p € V(G)}, deg(p) = mfor some p € V(G). Suppose on
the contrary that m > 2. Then

E(G) 23— 1)~ D. 29)
Indeed, in the case m > 3 we obtain immediatey that | E(G)| > 3n. In the case m = 2,
let N; (or N(p, G)) denote the set of points of G whose distance from p is exactly i.
Let T be a spanning subtree of G such that Nj(p, G) = Ny(p, T). As [Ny UN,; UN,| <
1+2+2(D—1) and NoUN, UN,UN; = V(G) we obtain that T has at least
n — 1 — 2D leaves. All of them have degree at least two in G, hence

E(G)) 2 IE(T)] + 3(n~ 1~ 2D) = >(u— 1) = D,

2
proving (2.9).
The right hand side of (2.9) is at least (7n — 13)/6 by (2.5). This contradicts (2.4)
and (2.7) forn > 17. O

Define the following partition of ¥(G) = XU YU Z. Let X denote the set of
vertices having a neighbour of degree 1, let Y be the set of neighbours of X
(Y = N(X)\X), and let Z be the rest of the points, Z = V(G)\(X U Y). We use the
notations | X| = x, | Y| = y, | Z| = z. Observe, that G| X is a complete subgraph.
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Z = g implies that G contains a porcupine P € 2(n,x) as a subgraph. The
minimality of | E(G)| implies that actually P = G, and we are done. So from now
on we may suppose that Z # .

Claim 2.10. |E(G)| > n — 1 + | z/2] + (’2‘)

Proof. Let © = min{|N(p) N Y|: p € Z}, and suppose that this minimum is taken at
the vertex p € Z. Every point of X can be reached in two steps from Z via Y, so
N(p)NY has at least x edges to X. Hence the number of edges between X and Y is

at least x + y — 7. We have additional tz edges from Z to Y, and <;> edges in X.
Altogether

|E(G)|zx+y—r+zz+(;>=n—1+(r—1)(z—1)+<’2‘>. (2.11)

Here the middle term is at least | z/2] for © > 2 (as z > 1).

In the case 1 = 1 we proceed as in the argument proving Claim 2.8. There are
at least z edges from Z to Y, but as every degree in Z is at least 2, we have that the
total number of edges adjacent to Z is at least $z. This gives a 3z term in (2.11)
instead of 17z proving the Claim 2.10. O

—1
Finally, (2.4) and 2.10 give that (“ ; ) > 12/2] + (;) implying

x<a-1, (212)
and
(a—x—1)(a+x—2)=2|z2] (2.13)

On the other hand, recall that by the minimal choice of a the inequality (1.2)
does not hold if we replace a by a — 1. Hence

x+y+z+(a—1P=n+(a—12>(a—1)D+2) (2.14)

Considering the degrees at the points of X and the number of incoming edges from
Y we have

Dx> Y deg(p)=y+x*—x (2.15)

peX
Rearranging the sum of (2.14) and (2.15) we have that
z>@—x—1)(D+3—a—x) (2.16)
Then (2.13) and (2.16) imply that
2a+2x=2D+5. (2.17)

However, (2.7) gives that a < [\/ﬁ/\/ﬁ < (D + 5)/4, which together (2.12) imply
2a + 2x < D + 3. This contradicts (2.17), completing the proof of Theorem 1.3.
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