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GRAPHS WITH MAXIMUM NUMBER OF STAR-FORESTS

Z. FUREDI

Abstract

Let H denote the vertex disjoint union of stars of aj,... ,a; edges. Here it is proved
that if a; >loga(t+1) forall 1S ié t and e is sufficiently large (e > eg(a1,...,at)), then
a star-forest of e edges and ¢ components contains the largest number of (not necessarily
induced) copies of H. A simple construction shows that the constraint a; = Q(log t) cannot
be omitted.

This (partly) settles a conjecture of Noga Alon.

1. Notations, preliminaries

Let G and H be simple graphs (i.e. undirected, finite, no loops and mul-
tiple edges) without isolated vertices. In this paper we investigate N (G, H),
the number of subgraphs of G isomorphic to H. For simplicity, we suppose
that the edges of the graphs are labelled, so, e.g., N(K",K™) =
=n(n—-1)...(n—=m+1). Let

N(e,H)=max{N(G,H):|E(G)|=e},

the maximum number of ways as H can be embedded as a subgraph. G is
called maximal with respect to H if N(G,H) = N(|E(G)|,H).

A star H(a) is a graph of a edges, a + 1 vertices with a degree a. The
vertex disjoint union of H(a,),...,H(a;) is denoted by H(ay,...,a;), and
called a star-forest of type (ay,...,a;). The vector (ay, ... ,a;)is abbreviated
as a. In this paper we always suppose that a; 2 2 for all 4, and that ¢ > 2,
except if otherwise stated.

Alon [1] determined the order of magnitude of N (e, H) whenever H is an
arbitrary given graph and e — oo.

ConiecTURE 1.1 (Alon [2]). If H(a) is a star-forest and G is mazimal
with respect to H, then G is a star-forest, too.

He proved the case t £ 2. The aim of this paper is to prove 1.1 for a large
class of additional cases.
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Denote the polynomial

Z 3:‘1 ‘2

by p{ai, ... »@e Z1,.-. ,y) orf briefly by p(a x), where 4;,... ,% run over all
the n(n—1)- --(n—t—l—l) ordered t-tuples of {1, 2 w5 b ps Let p(a, n) denote

T
ma.x{p(a,x):xg 0 and Z:c,-: 1}.
=1

Finally, let p(a) =sup p(a,n).
n>t

During the proo} €1,€2,... and ¢y, cg,... denote (explicitly computable)
positive constants depending only on a.

2. An asymptotic result

THEOREM 2.1. Suppose that a; 2 2 for all i and Y a; = A. Then
N(e,H(a)) =p(a)ed + O(eA™1), as e tends to infinity.

ProoF. First we show that for some ng = ng(a) one has p(a, no) = p(a, n)
for all n > ng, whenever all a; > 2. Suppose that x is a maximum point with
x > 0. Lagrange’s multiplicator method gives that

3})(&,1)

(2.1) =

for all 1< j < n. As every term in the polynomial (8/8z;)p(a,x) has degree
A —1 and has a factor z; (by a; 2 2) we obtain

A = ::—Jb?—p(a,x) < (maxa; — 1)(2 )A_2 =maxa; - 1

zj
implying
(2:2) A L zj(maxa; — 1).

On the other hand, summing Az; for all j (2.1) gives a lower bound for A

A=A(T55) = X o gponle0) = (4= (a0) 2
g(A—t)p(a, (%, ,%,0,0,... ,0)) :(A—t):—i

If n2>t4/t! and z; £ 1/n, then (2.2) and (2.3) contradict each other.

(2.3)
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Suppose that p(a) = p(a, z1,...,z,) where x 2 0, Z-"?s =1. Then the
graph H(|z1e],...,|zne]) contams p(a)e”‘ O(eA“l) copies of H(a).

To prove the upper bound, consider an H(a)-maximal graph G of e edges.
First we claim that there is a set C C V(Q), |C| £ ¢1 (=ci(a)), such that C
intersects all edges of G and

(2.4) degg(v) 2 €16

holds for all v € C for some ¢; =¢;1(a) > 0.

For an edge F € E(G) denote its multiplicity by M(E), i.e. the number
of occasions it appears in a subgraph of G isomorphic to H(a). Set Mpax =
=max{M(E): E € E(G)}, and let {u,v} € E(G) be an edge with maximal
multiplicity, M({u,v}) = Mmax. As p(a) > ¢~ we have that

(2.5) me>£28A_1

holds (for all e 2 A).

Consider an arbltrary edge {p,q} € E(G) and suppose that M({p,q}) <
< 3Mpax. At least 2My,.x copies of H(a) contains {u,v} but not {p,q}.
At least half of these (i.e. > M/3) has u as a center of a star. Then delete
{p, ¢} from G and add a new edge {u,w} where w ¢ V(G). This operation
increased N(G,H(a)), a contradiction. We obtained that

(2.6) M(E) > eze™!

holds for all edges E € E(G). Denote the degrees of the end points of the
edge F by di, d3, and let d =max{d;,d;}. Then F is contained in at most

Y. Z(a °’1) A=ai £ 9¢qA- l(d) M'_lgzwfate““2
a=1,2 1 L

star-forests of G. Then (2.6) implies that at least one end point of E must
have degree at least (£3/2t)e, yielding (2.4).

Finally, let G’ be the bipartite graph obtained by deleting all edges inside
CsC={Uls'” sUn}s (ng cl)‘ We get

N(G,H(a)) < N(G'(a),H) + (':21) (A-t)et™1.

It is quite clear that for z;:= degg/(v;)/e one has
N(G',H(a)) S p(ax)e” + O(e"7)

yielding the desired upper bound

(2.7) N(G,H(a)) < p(a,x)e? + O(eA71).
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3. An exact statement

THEOREM 3.1. Suppose that a; >logy(t+1) for all1$i<t and G is
an H(a)-mazimal graph with e edges. If e > eo(a), then G is the union of t
stars.

This is not true in general. E.g., if a=(q,aq,... ,a), then

(t+1)!

p(a(z1,... 7)) = T

tﬂ* <P(a= (Z1y -0, Be41)) =

whenever a SIn(t+1).
The main tool of the proof of 3.1 is the following technical lemma about
p(a,x). This lemma will be proved in the next section.

LEMMA 3.2. Suppose that a; >logy(t+1) for all 1SiSt, A=) a;.
Suppose further that z1,... ,Tn 2 € where n>t. Then

A
p(a) 2 p(ax) + ET

PRroOF OF THEOREM 3.1. As we have seen in (2.4), there is a set C' =
= {v1,...,9a} CV(GQ) of large degrees (2 £1€). Denote the degree sequence
of C by z1e,... ,zqe. Then (2.7) implies that |p(a,x) — p(a)| = O(1/e). Then
Lemma 3.2 gives that n =t.

There is no edge outside C, so each component of H(a) must intersect
C'. Hence each edge inside C has multiplicity 0, that is, C does not contain
any edge by (2.6). Finally, it is clear that all vertices outside C' must be of
degree exactly one.

4. The proof of Lemma 3.2

Suppose that z; > 29 > ...2 2z, 2 €. Denote the sum of all terms of
p(a,x) containing z; by pi, and let p,,..l » denote the sum of terms containing
both z,_1, Zn. As z, is the smallest of the z; we have that p, < (t/n)p(a,x).
Similarly, as z,-; is the second smallest of the z; we obtain that

t—1 t—-1

(4-1) Prn-1,n § e lpn § 7 Pn.
Consider the ratio of the sum of distinct terms in p, and p,_; and use (4.1).
We obtain
Tp_1 T
(4.2) Pn-1— pn-—l,ﬂ é (pn _pn—l,n)( ) ; P_( - 1) 3
Tpn i
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where @ = min a;. Now define

x; fori=1,2,...,n—2
Yi=4 Zp-1+2z, fori=n-—1
0 for i=n.

Consider p(a,y) — p(a,x). We have that the increase of p is at least

Tn +~Trn—l )a

(43) (_pn — Pn-1 + pn—l.n) + (pn—l S pn—l,n)( p »
n—

Using (4.2) we have that the expression in (4.3) is at least

e B (22 ((BakEmy )

Here the coefficient of p,/t is (14 ¢)® — ¢* where c=2z,_1/2, 2 1. So this
coefficient is at least 2® — 1 2 ¢+ 1. This implies that

A
£
p(a) 2 p(a,n — 1) 2 p(ay) 2 p(a) + 2 2 p(ax) + -

Remarks, problems

It is probably not too difficult to give an asymptotic formula like in
Theorem 2.1 for all H(a), when some a; =1 appear.

Another step to prove Conjecture 1.1 would be to get rid of the constraint
a; >log,(t+ 1) in Theorem 3.1. It is easy to prove that if all a; > 3, then in
a H(a)-maximal G all the vertices outside C (see (2.4)) have degree 1.

It also seems to me a solvable question to investigate N (G, H) where now
G and H are multigraphs.
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