GRAPHS WITH MAXIMUM NUMBER OF STAR-FORESTS

Z. FÜREDI

Abstract

Let **H** denote the vertex disjoint union of stars of a_1, \ldots, a_t edges. Here it is proved that if $a_i > \log_2(t+1)$ for all $1 \le i \le t$ and e is sufficiently large $(e > e_0(a_1, \ldots, a_t))$, then a star-forest of e edges and t components contains the largest number of (not necessarily induced) copies of **H**. A simple construction shows that the constraint $a_i = \Omega(\log t)$ cannot

This (partly) settles a conjecture of Noga Alon.

 $= n(n-1) \dots (n-m+1)$. Let

be omitted.

1. Notations, preliminaries

Let G and H be simple graphs (i.e. undirected, finite, no loops and multiple edges) without isolated vertices. In this paper we investigate N(G, H), the number of subgraphs of G isomorphic to H. For simplicity, we suppose that the *edges* of the graphs are labelled, so, e.g., $N(K^n, K^m)$ =

$$N(e, \mathbf{H}) = \max\{N(\mathbf{G}, \mathbf{H}) : |E(\mathbf{G})| = e\},\$$

the maximum number of ways as **H** can be embedded as a subgraph. **G** is called maximal with respect to **H** if $N(\mathbf{G}, \mathbf{H}) = N(|E(\mathbf{G})|, \mathbf{H})$.

A star $\mathbf{H}(a)$ is a graph of a edges, a+1 vertices with a degree a. The vertex disjoint union of $\mathbf{H}(a_1), \ldots, \mathbf{H}(a_t)$ is denoted by $\mathbf{H}(a_1, \ldots, a_t)$, and called a star-forest of type (a_1, \ldots, a_t) . The vector (a_1, \ldots, a_t) is abbreviated

called a star-forest of type (a_1, \ldots, a_t) . The vector (a_1, \ldots, a_t) is abbreviated as **a**. In this paper we always suppose that $a_i \geq 2$ for all i, and that $t \geq 2$, except if otherwise stated.

Alon [1] determined the order of magnitude of $N(e, \mathbf{H})$ whenever \mathbf{H} is an arbitrary given graph and $e \to \infty$.

CONJECTURE 1.1 (Alon [2]). If H(a) is a star-forest and G is maximal with respect to H, then G is a star-forest, too.

He proved the case $t \leq 2$. The aim of this paper is to prove 1.1 for a large class of additional cases.

This research was supported in part by the Hungarian National Science Foundation under Grant No. 1812.

Denote the polynomial

by
$$p(a_1, \ldots, a_t, x_1, \ldots, x_n)$$
 or briefly by $p(\mathbf{a}, \mathbf{x})$, where i_1, \ldots, i_t run over all the $n(n-1)\cdots(n-t+1)$ ordered t-tuples of $\{1, 2, \ldots, n\}$. Let $p(\mathbf{a}, n)$ denote

$$(t+1)$$
 ordered t -tuples of $\{1, 2, \dots, n\}$

$$\max \Big\{ p(\mathbf{a}, \mathbf{x}) : \mathbf{x} \ge 0 \text{ and } \sum_{i=1}^{n} x_i = 1 \Big\}.$$

 $\sum x_{i_1}^{a_i} x_{i_2}^{a_2} \cdots x_{i_t}^{a_t}$

Finally, let $p(\mathbf{a}) = \sup_{n \ge t} p(\mathbf{a}, n)$.

During the proof $\varepsilon_1, \varepsilon_2, \ldots$ and c_1, c_2, \ldots denote (explicitly computable) positive constants depending only on a.

2. An asymptotic result

Theorem 2.1. Suppose that $a_i \ge 2$ for all i and $\sum a_i = A$. Then $N(e, \mathbf{H}(\mathbf{a})) = p(\mathbf{a})e^A + O(e^{A-1})$, as e tends to infinity.

 $N(e, \mathbf{H}(\mathbf{a})) = p(\mathbf{a})e^{x} + O(e^{x-1})$, as e tends to infinity. PROOF. First we show that for some $n_0 = n_0(\mathbf{a})$ one has $p(\mathbf{a}, n_0) = p(\mathbf{a}, n)$ for all $n > n_0$, whenever all $a_i \ge 2$. Suppose that \mathbf{x} is a maximum point with $\mathbf{x} > 0$. Lagrange's multiplicator method gives that

(2.1)
$$\frac{\partial p(\mathbf{a}, \mathbf{x})}{\partial x_j} = \lambda$$

for all $1 \le j \le n$. As every term in the polynomial $(\partial/\partial x_j)p(\mathbf{a},\mathbf{x})$ has degree A-1 and has a factor x_j (by $a_i \ge 2$) we obtain

$$\frac{\lambda}{x_j} = \frac{1}{x_j} \frac{\partial}{\partial x_j} p(\mathbf{a}, \mathbf{x}) \le (\max a_i - 1) \left(\sum x_i\right)^{A-2} = \max_i a_i - 1$$

implying

(2.2) $\lambda \leq x_j(\max a_i - 1).$ On the other hand, summing λx_j for all j (2.1) gives a lower bound for λ

(2.3)
$$\lambda = \lambda \left(\sum x_j \right) = \sum x_j \frac{\partial}{\partial x_j} p(\mathbf{a}, \mathbf{x}) = (A - t) p(\mathbf{a}, \mathbf{x}) \ge 1$$

 $\geq (A-t)p(\mathbf{a}, (\frac{1}{t}, \dots, \frac{1}{t}, 0, 0, \dots, 0)) = (A-t)\frac{t!}{t^A}.$

If $n \ge t^A/t!$ and $x_i \le 1/n$, then (2.2) and (2.3) contradict each other.

Suppose that $p(\mathbf{a}) = p(\mathbf{a}, x_1, \dots, x_n)$ where $\mathbf{x} \geq 0$, $\sum x_i = 1$. Then the graph $\mathbf{H}(\lfloor x_1 e \rfloor, \dots, \lfloor x_n e \rfloor)$ contains $p(\mathbf{a})e^A - O(e^{A-1})$ copies of $\mathbf{H}(\mathbf{a})$.

graph $\mathbf{H}([x_1e], \dots, [x_ne])$ contains $p(\mathbf{a})e^{A} - O(e^{A-1})$ copies of $\mathbf{H}(\mathbf{a})$. To prove the upper bound, consider an $\mathbf{H}(\mathbf{a})$ -maximal graph \mathbf{G} of e edges. First we claim that there is a set $C \subset V(\mathbf{G})$, $|C| \leq c_1$ (= $c_1(\mathbf{a})$), such that C

intersects all edges of **G** and
$$\deg_G(v) \ge \varepsilon_1 e$$

holds for all $v \in C$ for some $\varepsilon_1 = \varepsilon_1(\mathbf{a}) > 0$. For an edge $E \in E(\mathbf{G})$ denote its multiplicity by M(E), i.e. the number of occasions it appears in a subgraph of \mathbf{G} isomorphic to $\mathbf{H}(\mathbf{a})$. Set $M_{\max} = \max\{M(E): E \in E(\mathbf{G})\}$, and let $\{u,v\} \in E(\mathbf{G})$ be an edge with maximal multiplicity, $M(\{u,v\}) = M_{\max}$. As $p(\mathbf{a}) \geq t^{-A}$ we have that

$$(2.5) M_{\text{max}} > \varepsilon_2 e^{A-1}$$

holds (for all $e \ge A$).

Consider an arbitrary edge $\{p,q\} \in E(\mathbf{G})$ and suppose that $M(\{p,q\}) < \frac{1}{3}M_{\text{max}}$. At least $\frac{2}{3}M_{\text{max}}$ copies of $\mathbf{H}(\mathbf{a})$ contains $\{u,v\}$ but not $\{p,q\}$. At least half of these (i.e. $\geq M/3$) has u as a center of a star. Then delete $\{p,q\}$ from \mathbf{G} and add a new edge $\{u,w\}$ where $w \notin V(\mathbf{G})$. This operation

 $\{p,q\}$ from **G** and add a new edge $\{u,w\}$ where $w \notin V(\mathbf{G})$. This operation increased $N(\mathbf{G}, \mathbf{H}(\mathbf{a}))$, a contradiction. We obtained that $M(E) > \varepsilon_3 e^{A-1}$

all adms
$$F \in F(C)$$
. Denote the dec

holds for all edges $E \in E(G)$. Denote the degrees of the end points of the edge E by d_1 , d_2 , and let $d = \max\{d_1, d_2\}$. Then E is contained in at most

$$\sum_{\alpha=1,2} \sum_{i} \binom{d_{\alpha}}{a_{i}-1} a^{A-a_{i}} < 2ta^{A-1} \left(\frac{d}{e}\right)^{\min a_{i}-1} \leq 2tde^{A-2}$$

star-forests of G. Then (2.6) implies that at least one end point of E must have degree at least $(\varepsilon_3/2t)e$, yielding (2.4).

Finally, let G' be the bipartite graph obtained by deleting all edges inside $C, C = \{v_1, \ldots, v_n\}, (n \le c_1)$. We get

$$N(\mathbf{G}, \mathbf{H}(\mathbf{a})) \leq N(\mathbf{G}'(\mathbf{a}), \mathbf{H}) + {c_1 \choose 2} (A-t)e^{A-1}.$$

It is quite clear that for $x_i := \deg_{G'}(v_i)/e$ one has

$$N(\mathbf{G}', \mathbf{H}(\mathbf{a})) \leq p(\mathbf{a}, \mathbf{x})e^A + O(e^{A-1})$$

yielding the desired upper bound

(2.7)
$$N(G, H(a)) \le p(a,x)e^A + O(e^{A-1}).$$

3. An exact statement

THEOREM 3.1. Suppose that $a_i > \log_2(t+1)$ for all $1 \le i \le t$ and G is an $\mathbf{H}(\mathbf{a})$ -maximal graph with e edges. If $e > e_0(\mathbf{a})$, then G is the union of t stars.

This is not true in general. E.g., if $\mathbf{a} = (a, a, \dots, a)$, then

$$p(\mathbf{a}(x_1,\ldots,x_t)) = \frac{t!}{t^{at}} < p(\mathbf{a},(x_1,\ldots,x_{t+1})) = \frac{(t+1)!}{(t+1)^{at}}$$

whenever $a \leq \ln(t+1)$.

The main tool of the proof of 3.1 is the following technical lemma about $p(\mathbf{a},\mathbf{x})$. This lemma will be proved in the next section.

LEMMA 3.2. Suppose that $a_i > \log_2(t+1)$ for all $1 \le i \le t$, $A = \sum a_i$. Suppose further that $x_1, \ldots, x_n \ge \varepsilon$ where n > t. Then

$$p(\mathbf{a}) \ge p(\mathbf{a},\mathbf{x}) + \frac{\varepsilon^A}{t}.$$

 $=\{v_1,\ldots,v_n\}\subset V(\mathbf{G})$ of large degrees $(\geq \varepsilon_1 e)$. Denote the degree sequence of C by x_1e,\ldots,x_ne . Then (2.7) implies that $|p(\mathbf{a},\mathbf{x})-p(\mathbf{a})|=O(1/e)$. Then Lemma 3.2 gives that n=t.

PROOF OF THEOREM 3.1. As we have seen in (2.4), there is a set C =

There is no edge outside C, so each component of $\mathbf{H}(\mathbf{a})$ must intersect C. Hence each edge inside C has multiplicity 0, that is, C does not contain any edge by (2.6). Finally, it is clear that all vertices outside C must be of degree exactly one.

4. The proof of Lemma 3.2

Suppose that $x_1 \ge x_2 \ge \ldots \ge x_n \ge \varepsilon$. Denote the sum of all terms of $p(\mathbf{a},\mathbf{x})$ containing x_i by p_i , and let $p_{n-1,n}$ denote the sum of terms containing both x_{n-1} , x_n . As x_n is the smallest of the x_i we have that $p_n \le (t/n)p(\mathbf{a},\mathbf{x})$. Similarly, as x_{n-1} is the second smallest of the x_i we obtain that

$$(4.1) p_{n-1,n} \le \frac{t-1}{n-1} p_n \le \frac{t-1}{t} p_n.$$

Consider the ratio of the sum of distinct terms in p_n and p_{n-1} and use (4.1). We obtain

$$(4.2) p_{n-1} - p_{n-1,n} \ge (p_n - p_{n-1,n}) \left(\frac{x_{n-1}}{x_n}\right)^a \ge \frac{p_n}{t} \left(\frac{x_{n-1}}{x_n}\right)^a,$$

where $a = \min a_i$. Now define

$$y_i = \begin{cases} x_i & \text{for } i = 1, 2, \dots, n-2 \\ x_{n-1} + x_n & \text{for } i = n-1 \\ 0 & \text{for } i = n. \end{cases}$$

Consider $p(\mathbf{a},\mathbf{y}) - p(\mathbf{a},\mathbf{x})$. We have that the increase of p is at least

$$(4.3) \qquad (-p_n - p_{n-1} + p_{n-1,n}) + (p_{n-1} - p_{n-1,n}) \left(\frac{x_n + x_{n-1}}{x_{n-1}}\right)^a.$$

Using (4.2) we have that the expression in (4.3) is at least

$$-p_n + \frac{p_n}{t} \left(\frac{x_{n-1}}{x_n}\right)^a \left(\left(\frac{x_n + x_{n-1}}{x_{n-1}}\right)^a - 1\right).$$

Here the coefficient of p_n/t is $(1+c)^a - c^a$ where $c = x_{n-1}/x_n \ge 1$. So this coefficient is at least $2^a - 1 \ge t + 1$. This implies that

$$p(\mathbf{a}) \ge p(\mathbf{a}, n-1) \ge p(\mathbf{a}, \mathbf{y}) \ge p(\mathbf{a}, \mathbf{x}) + \frac{p_n}{t} \ge p(\mathbf{a}, \mathbf{x}) + \frac{\varepsilon^A}{t}.$$

Remarks, problems

It is probably not too difficult to give an asymptotic formula like in Theorem 2.1 for all $\mathbf{H}(\mathbf{a})$, when some $a_i = 1$ appear.

Another step to prove Conjecture 1.1 would be to get rid of the constraint $a_i > \log_2(t+1)$ in Theorem 3.1. It is easy to prove that if all $a_i \geq 3$, then in a $\mathbf{H}(\mathbf{a})$ -maximal \mathbf{G} all the vertices outside C (see (2.4)) have degree 1.

It also seems to me a solvable question to investigate $N(\mathbf{G}, \mathbf{H})$ where now

G and H are multigraphs.

REFERENCES

- [1] Alon, N., On the number of subgraphs of prescribed type of graphs with a given number of edges, Israel J. Math. 38 (1981), 116-130. MR 82b: 05078
- [2] Alon, N., On the number of certain subgraphs contained in graphs with a given number of edges, Israel J. Math. 53 (1986), 97-120. MR 87j: 05090

(Received February, 1989, in revised form September, 1990)