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An n X m matrix is called a t-error-correcting database if after deleting any ¢ columns one can
still distinguish the rows. It is perfect if after omitting any 7+ 1 columns two identical rows are
obtained. (Stating with another terminology, the system of minimal keys induced by A4 is the
system of all (n — f)-element subsets of an n-element set.)

Let f,(n) denote the minimum number of rows in a perfect f-error-correcting database of
length 7. We show that f,(n) = ©(n?), and in general Q(n?'* Y3) < f.(n) =O(n') for r=3, when-
ever n— .

1. Preliminaries

Let n>t=0 be integers. A set V of sequences of length # (or the matrix 4 formed
by these sequences, as rows) is called a database. A sequence a € V can be considered
as a function a: X — Y, where sometimes X is identified by the set of the first »
integers, X=[n]. D(a, ) denotes the set of distinct coordinates, D(q, )=
{i: a(@)=B()}. The Hamming distance, H(a, ), of two sequences @, e V is the
number of distinct coordinates, H(a, 8)=|D(a, 8)|. V is t-error-correcting if the
Hamming distance between any two sequences is greater than 7. In other words,
after deleting any ¢ of the columns of A, one can still distinguish the rows.

A is perfect t-error-correcting if the deletion of any ¢+ 1 columns leads to identical
rows, i.e., for all TC X, |T|=¢+ 1 one can find &, B€ V, @+ f such that a(/) = 8(i)
for all ie X\ T. (Warning! This definition differs from the usual one concerning
error-correcting codes.)

For ¢=1 one can define a perfect ¢-error-correcting database as follows (see [1, 3]).
Let E, E,, ... denote the f-element subsets of X, and

(0, ifi¢E,,
“f(’)‘{j, if icE,. a.n

Then V= {a;:1=j<(})} is a t-error-correcting database. Moreover, VD com-
pleted with the full 0-sequence forms a perfect 0-error-correcting database.
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Denote by f;(n) the minimum number of sequences in a perfect -error-correcting
+ .
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tremal databases are isomorphic to the above example. For =1 we have
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f,(n)5<t> 1.2

by (1.1). On the other hand, it is easy to see [5] that

f>12( ") =ame 0, (1.3)
|\
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The aim of this paper is to give a better lower bound for f,(n), namely for =2 we
will show that f,(n) = ©(n?).

2. A note on relational databases

Every database V determines a closure operation, a system of functional

denendencies. (The H finition of relational databases see 21 or the book of [8]1
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More definitions and notions see [9].) One of the basic notions is the following. A
set NC X is called a nonkey if it could not distinguish between the distinct rows, i.e.,
there are o, f € V, a# B such that « | N= | N. Otherwise the set is called a key. The
family of maximal nonkeys is denoted by 7.

Let &¢;' be the hypergraph of the all k-subsets of an n-set. The determination of
fi(n) is equivalent to the following problem. What is s(,_,), the minimum
number of rows in a matrix 4 inducing &,_, as a system of minimal keys? It is
known [6, 4], that if k is fixed and » tends to 1nf1nity, then the order of magnitude

of the lower boun 1 is correct Iv s{a ™y = 6(; (k—1)/2y
of the lower bound in (1.3) is correct, namely s(o4)=6(n ).

3. Results
Theorem 3.1. Sn’<fy(n)<in’
Theorem 3.2. For n>ng(t), t=1 one has

1
n(21+1)/3<j;(n)< }Tnt'
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Theorem 3.2". Suppose that V is a database inducing 4 as the system of maximal
nonkeys, max{|N|: Ne #}=n—t+1, #;={NeN:|[N|=i}. Then

V|= P L

@+ 1!

4. Lemmas. The structure of the minimum distance graph

Let % be a graph with the vertex set V. (Usually we identify a graph with its edge
set.) Suppose that ¢ does not contain the complete bipartite graph (2, p) as a sub-
graph. Then for the number of edges e(%) we have that

e(9)< I/’—’—;—IW|3/2+ |2ﬁ “.1)

as it was shown by KOvari, Sés and Turan [7].

Let V be a perfect t-error-correcting database of length n. Define the minimum
distance graph, 4, with the vertex set V as follows. (&, f) is joint by an edge if and
only if H{a, f)=t+ 1. The edge (e, ) € ¢ has color D (where DC X, |D|=¢+1) if
D=D(e, B). We will use the standard notations of graph theory, i.e., deg(a, ¢) (or
briefly deg(er)) stands for the degree. I'(ar, ) (or briefly I'(«)) denotes the neighbor-
hood of a.

For every (r+ 1)-element set DC X choose an edge of ¢ of color D. These (,})
(or in the proof of Theorem 3.2, these |4, _,.|) pairs form the reduced minimum
distance graph %,. This graph is not necessarily unique in general. The notations
deg,, I, indicate that we are speaking about %,.

Lemma 4.1. Suppose that (a, B)& €. Then |['(a)N\I'(f)|<3%*2,
Lemma 4.2. For all o, B one has |I'y(a)NIy(B)| <n3’.

Proofs of Lemmas 4.1 and 4.2. We prove these lemmas simultaneously. Let C=
{xreX:ax)#p(x)}, i.e., |C|=H(a, #). We may suppose that |C|=2¢+2, other-
wise both lemmas are trivial, there is no ye V with {a,y} € ¥, {8, v} @.

Suppose that y, y’e [a)NI(B), y#y’. As y(x) differs from a(x) or B(x) for all
x € C we have

CC D(a, y)UD(B, ). 4.2)

Moreover D(a, )\ C=D(f, y)\ C.

Proposition 4.3. Suppose that D(o,y)NC=D(a, y)NC and D(B,y)NC=
D(B,y)NC. Then |Cl=t+1, and (D(a, Y\ C)ND(ar, yI\C) =9.
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This proposition says that y is (almost) determined by the traces of D(e, y) and
D(p,y) on C.

D(y, y")CD(a, )UD(a, y).
y and y’ agree on C\ (D{(e, y)ND(B, ¥)), hence we have
4.3)
As |D(a, yY\C|=|D(B, )\ C| we have that the right-hand side of (4.3) equals
2(t+1)—|CJ. If |C|>1t+1, then this leads to the contradiction H(y, y’)<t+ 1. So
|C|=t+ 1, and equality holds in (4.3). Thus the sets D(e, y)\ D and D(¢, y')\ D are
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H(y, y")=|D(a, ND(B »N

mma 4, osition 4.3 imnlipc that the number of ye (n’n"r( R)
th

1
= Ol (V4
is not more than the number of set pairs A,BCC=D(e, §) such that =|B|,
ANB=@and |A|z=|C|-t—1. (Here A=D(a, Y)\ D(B,y) and B=D(8, y)\D(a, y).)

Hence
v (1CIN/20 _ c3lclagez O
izicTei—1 \ 20 J\ i

lA

Note that in the case r=2 we obtain the following bounds

(18, if |C|=
\F@)NI(B) << 30, if|C|=5, (4.4)
20, if |[C|=6=2¢+2.

Proof of Lemma 4.2. Let again C=D(g, ). Now |C|=1+1. Choose the subsets

A,BCC such that |4|=|B|=i, ANB=@, and consider all yeIa)NIH(F) with

A=D(a, Y)\D(B,y) and B=D(p, v)\ D(«, y). For an arbitrary yeI"O(oc) we have
NN X P N T T - R b e T 2 Pat s A2 cennling that

tha
D{a, yy\C+##8, by the definition of %, so i=1. Proposition 4.3 implies that the

number of such y is at most (n—|C|)/i. Hence

C 2i ~t-1
r@nr@)ls g (' '>< )=

2i i

t+1\ /2
ny < >< l> <n3, O
i1\ 21 i

5. The proof of Theorem 3.2

Consider the graph %, defined in Section 4. Lemma 4.2 gives that 4, does not
contain a complete bipartite graph #(2,n3"). Then (4.1) yields that
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n n3 [V]
=G| = |—|V|*+—,
<z+1> %ol |/2I | 2

implying Theorem 3.2.
The proof of Theorem 3.2’ is similar.

6. The proof of Theorem 3.1

Consider the graph ¢,. We are going to estimate } ﬂeylfo(a)ﬂfo(ﬁﬂ. By
Jensen’s inequality

d
Y (@Nyp)= Y < ego(a))
o, eV o= 5
2
z|V|<2"‘G°’/'V')=2@

) Vi —e(Gy). (6.1)

To obtain an upper bound we split the sum into two parts. First, Lemma 4.1, more
exactly (4.4) gives that

V
L Iﬁ)(a)ﬂfo(ﬂ)ls«'z,)—I@|>30<15|Vf2- 6.2)

a, pe
{0, 8} e%

Rearranging the rest of the sum we have

Y [@nripl= X [ ) !1“0(01)“1?)(,3)@ . 6.3)
o eV ccx o, feV
{a, B} e ¥ IC|=t+1 { D(g, p)=C

Proposition 6.1. For any fixed CCX, |C|=t+1 one has

P n
3, In@N7p)<3 (L(,H) p J>-
D, f)=C

Proof. The left-hand side is the number of triples @, 8, y such that {a, ¥}, {8, v} € %,
and D(a, §)=C. Associate to this triple the sets D(e, y), D(B, y). These sets deter-
mine @, § and y, hence, by Lemma 4.1, the left-hand side in Proposition 6.1 is not
more than the number of pairs A4, BC X such that |4|=|B|=t+1, AUBDC and
A\C=B\C##. The number of such pairs is at most

%jgl <n—;— 1><t;jl><2jj><<|_(z+’;)/2j>3t‘ 6.4)

In the case #=2 the left-hand side of (6.4) is less than 3n. [
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Hence the right-hand side of (6.3) is at most (;)3n. Using this and (6.1), (6.2) we
have that

(&)
3 n , [N
2———< >515|V| +( )3n
v \3 3
This inequality gives |V|>0.089...n°%.

The combination of the proofs might give f,(n)=Q(n% *?73), but the real ques-
tion is that whether the upper bound O(n') can be decreased.
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