NOTE

PERFECT ERROR-CORRECTING DATABASES

Zoltán FÜREDI*

Mathematical Institute of the Hungarian Academy of Sciences, 1364 Budapest, P.O. Box 127, Hungary

Received 3 January 1989

An $n \times m$ matrix is called a *t*-error-correcting database if after deleting any *t* columns one can still distinguish the rows. It is perfect if after omitting any t+1 columns two identical rows are obtained. (Stating with another terminology, the system of minimal keys induced by A is the system of all (n-t)-element subsets of an n-element set.)

Let $f_t(n)$ denote the minimum number of rows in a perfect t-error-correcting database of length n. We show that $f_2(n) = \Theta(n^2)$, and in general $\Omega(n^{(2t+1)/3}) \le f_t(n) \le O(n^t)$ for $t \ge 3$, whenever $n \to \infty$.

1. Preliminaries

Let $n > t \ge 0$ be integers. A set V of sequences of length n (or the matrix A formed by these sequences, as rows) is called a *database*. A sequence $\alpha \in V$ can be considered as a function $\alpha: X \to Y$, where sometimes X is identified by the set of the first n integers, X = [n]. $D(\alpha, \beta)$ denotes the set of distinct coordinates, $D(\alpha, \beta) = \{i: \alpha(i) \ne \beta(i)\}$. The Hamming distance, $H(\alpha, \beta)$, of two sequences $\alpha, \beta \in V$ is the number of distinct coordinates, $H(\alpha, \beta) = |D(\alpha, \beta)|$. V is t-error-correcting if the Hamming distance between any two sequences is greater than t. In other words, after deleting any t of the columns of A, one can still distinguish the rows.

A is perfect t-error-correcting if the deletion of any t+1 columns leads to identical rows, i.e., for all $T \subset X$, $|T| \ge t+1$ one can find α , $\beta \in V$, $\alpha \ne \beta$ such that $\alpha(i) = \beta(i)$ for all $i \in X \setminus T$. (Warning! This definition differs from the usual one concerning error-correcting codes.)

For $t \ge 1$ one can define a perfect *t*-error-correcting database as follows (see [1, 3]). Let E_1, E_2, \ldots denote the *t*-element subsets of X, and

$$\alpha_j(i) = \begin{cases} 0, & \text{if } i \notin E_j, \\ j, & \text{if } i \in E_i. \end{cases}$$
 (1.1)

Then $V^{(t)} = \{\alpha_j : 1 \le j \le {n \choose t}\}$ is a *t*-error-correcting database. Moreover, $V^{(1)}$ completed with the full 0-sequence forms a perfect 0-error-correcting database.

^{*} Research supported partly by the Hungarian National Science Foundation grant No. 1812.

172 Z. Füredi

Denote by $f_t(n)$ the minimum number of sequences in a perfect t-error-correcting database of length n. It was proved in [5] that $f_0(n) = n + 1$, $f_1(n) = n$ and the extremal databases are isomorphic to the above example. For $t \ge 1$ we have

$$f_t(n) \le \binom{n}{t} \tag{1.2}$$

by (1.1). On the other hand, it is easy to see [5] that

$$f_t(n) > \sqrt{2\binom{n}{t+1}} = \Omega(n^{(t+1)/2}).$$
 (1.3)

The aim of this paper is to give a better lower bound for $f_t(n)$, namely for t=2 we will show that $f_2(n) = \Theta(n^2)$.

2. A note on relational databases

Every database V determines a closure operation, a system of functional dependencies. (The definition of relational databases see [2], or the book of [8]. More definitions and notions see [9].) One of the basic notions is the following. A set $N \subset X$ is called a *nonkey* if it could not distinguish between the distinct rows, i.e., there are α , $\beta \in V$, $\alpha \neq \beta$ such that $\alpha \mid N = \beta \mid N$. Otherwise the set is called a *key*. The family of maximal nonkeys is denoted by \mathcal{N} .

Let \mathcal{K}_k^n be the hypergraph of the all k-subsets of an n-set. The determination of $f_l(n)$ is equivalent to the following problem. What is $s(\mathcal{K}_{n-l}^n)$, the minimum number of rows in a matrix A inducing \mathcal{K}_{n-l}^n as a system of minimal keys? It is known [6, 4], that if k is fixed and n tends to infinity, then the order of magnitude of the lower bound in (1.3) is correct, namely $s(\mathcal{K}_k^n) = \Theta(n^{(k-1)/2})$.

3. Results

Theorem 3.1. $\frac{1}{12}n^2 < f_2(n) < \frac{1}{2}n^2$.

Theorem 3.2. For $n > n_0(t)$, $t \ge 1$ one has

$$\frac{1}{(t+1)!} n^{(2t+1)/3} < f_t(n) < \frac{1}{t!} n^t.$$

Using the terminology of relational databases we can obtain the more general theorem:

Theorem 3.2'. Suppose that V is a database inducing \mathcal{N} as the system of maximal nonkeys, $\max\{|N|: N \in \mathcal{N}\} = n - t + 1$, $\mathcal{N}_i = \{N \in \mathcal{N}: |N| = i\}$. Then

$$|V| \ge \frac{1}{(t+1)!} |\mathcal{N}_{n-t+1}|^{2/3} n^{-1/3}.$$

4. Lemmas. The structure of the minimum distance graph

Let $\mathscr G$ be a graph with the vertex set V. (Usually we identify a graph with its edge set.) Suppose that $\mathscr G$ does not contain the complete bipartite graph $\mathscr K(2, p)$ as a subgraph. Then for the number of edges $e(\mathscr G)$ we have that

$$e(\mathscr{G}) < \sqrt{\frac{p-1}{2}} |V|^{3/2} + \frac{|V|}{2},$$
 (4.1)

as it was shown by Kővári, Sós and Turán [7].

Let V be a perfect t-error-correcting database of length n. Define the *minimum distance graph*, \mathcal{G} , with the vertex set V as follows. (α, β) is joint by an edge if and only if $H(\alpha, \beta) = t + 1$. The edge $(\alpha, \beta) \in \mathcal{G}$ has color D (where $D \subset X$, |D| = t + 1) if $D = D(\alpha, \beta)$. We will use the standard notations of graph theory, i.e., $\deg(\alpha, \mathcal{G})$ (or briefly $\deg(\alpha)$) stands for the *degree*. $\Gamma(\alpha, \mathcal{G})$ (or briefly $\Gamma(\alpha)$) denotes the *neighborhood* of α .

For every (t+1)-element set $D \subset X$ choose an edge of \mathscr{G} of color D. These $\binom{n}{t+1}$ (or in the proof of Theorem 3.2', these $|\mathscr{N}_{n-t+1}|$) pairs form the *reduced* minimum distance graph \mathscr{G}_0 . This graph is not necessarily unique in general. The notations \deg_0 , Γ_0 indicate that we are speaking about \mathscr{G}_0 .

Lemma 4.1. Suppose that $(\alpha, \beta) \notin \mathcal{G}$. Then $|\Gamma(\alpha) \cap \Gamma(\beta)| < 3^{2t+2}$.

Lemma 4.2. For all α , β one has $|\Gamma_0(\alpha) \cap \Gamma_0(\beta)| < n3^t$.

Proofs of Lemmas 4.1 and 4.2. We prove these lemmas simultaneously. Let $C = \{x \in X : \alpha(x) \neq \beta(x)\}$, i.e., $|C| = H(\alpha, \beta)$. We may suppose that $|C| \leq 2t + 2$, otherwise both lemmas are trivial, there is no $\gamma \in V$ with $\{\alpha, \gamma\} \in \mathcal{G}$, $\{\beta, \gamma\} \in \mathcal{G}$.

Suppose that $\gamma, \gamma' \in \Gamma(\alpha) \cap \Gamma(\beta)$, $\gamma \neq \gamma'$. As $\gamma(x)$ differs from $\alpha(x)$ or $\beta(x)$ for all $x \in C$ we have

$$C \subset D(\alpha, \gamma) \cup D(\beta, \gamma).$$
 (4.2)

Moreover $D(\alpha, \gamma) \setminus C = D(\beta, \gamma) \setminus C$.

Proposition 4.3. Suppose that $D(\alpha, \gamma) \cap C = D(\alpha, \gamma') \cap C$ and $D(\beta, \gamma) \cap C = D(\beta, \gamma') \cap C$. Then |C| = t + 1, and $(D(\alpha, \gamma) \setminus C) \cap (D(\alpha, \gamma') \setminus C) = \emptyset$.

174 Z. Füredi

This proposition says that γ is (almost) determined by the traces of $D(\alpha, \gamma)$ and $D(\beta, \gamma)$ on C.

Proof. (4.2) gives

$$D(\gamma, \gamma') \subset D(\alpha, \gamma) \cup D(\alpha, \gamma')$$
.

 γ and γ' agree on $C \setminus (D(\alpha, \gamma) \cap D(\beta, \gamma))$, hence we have

$$H(\gamma, \gamma') \le |D(\alpha, \gamma) \cap D(\beta, \gamma) \cap C| + |D(\alpha, \gamma) \setminus C| + |D(\alpha, \gamma') \setminus C|. \tag{4.3}$$

As $|D(\alpha, \gamma') \setminus C| = |D(\beta, \gamma) \setminus C|$ we have that the right-hand side of (4.3) equals 2(t+1) - |C|. If |C| > t+1, then this leads to the contradiction $H(\gamma, \gamma') < t+1$. So |C| = t+1, and equality holds in (4.3). Thus the sets $D(\alpha, \gamma) \setminus D$ and $D(\alpha, \gamma') \setminus D$ are disjoint. \square

Proof of Lemma 4.1. Proposition 4.3 implies that the number of $\gamma \in \Gamma(\alpha) \cap \Gamma(\beta)$ is not more than the number of set pairs $A, B \subset C = D(\alpha, \beta)$ such that |A| = |B|, $A \cap B = \emptyset$ and $|A| \ge |C| - t - 1$. (Here $A = D(\alpha, \gamma) \setminus D(\beta, \gamma)$ and $B = D(\beta, \gamma) \setminus D(\alpha, \gamma)$.) Hence

$$|\Gamma(\alpha) \cap \Gamma(\beta)| \le \sum_{i \ge |C|-t-1} {|C| \choose 2i} {2i \choose i} < 3^{|C|} \le 3^{2t+2}.$$

Note that in the case t=2 we obtain the following bounds

$$|\Gamma(\alpha) \cap \Gamma(\beta)| \le \begin{cases} 18, & \text{if } |C| = 4, \\ 30, & \text{if } |C| = 5, \\ 20, & \text{if } |C| = 6 = 2t + 2. \end{cases}$$
 (4.4)

Proof of Lemma 4.2. Let again $C = D(\alpha, \beta)$. Now |C| = t + 1. Choose the subsets $A, B \subset C$ such that |A| = |B| = i, $A \cap B = \emptyset$, and consider all $\gamma \in \Gamma_0(\alpha) \cap \Gamma_0(\beta)$ with $A = D(\alpha, \gamma) \setminus D(\beta, \gamma)$ and $B = D(\beta, \gamma) \setminus D(\alpha, \gamma)$. For an arbitrary $\gamma \in \Gamma_0(\alpha)$ we have $D(\alpha, \gamma) \setminus C \neq \emptyset$, by the definition of \mathscr{G}_0 , so $i \geq 1$. Proposition 4.3 implies that the number of such γ is at most (n - |C|)/i. Hence

$$|\Gamma(\alpha) \cap \Gamma(\beta)| \leq \sum_{i \geq 1} {\binom{|C|}{2i}} {\binom{2i}{i}} \frac{n-t-1}{i}$$
$$< n \sum_{i \geq 1} {\binom{t+1}{2i}} {\binom{2i}{i}} \frac{1}{i} < n3^{t}. \qquad \Box$$

5. The proof of Theorem 3.2

Consider the graph \mathcal{G}_0 defined in Section 4. Lemma 4.2 gives that \mathcal{G}_0 does not contain a complete bipartite graph $\mathcal{K}(2, n3^t)$. Then (4.1) yields that

$$\binom{n}{t+1} = |\mathscr{G}_0| \le \sqrt{\frac{n3^t}{2}} |V|^{3/2} + \frac{|V|}{2},$$

implying Theorem 3.2.

The proof of Theorem 3.2' is similar.

6. The proof of Theorem 3.1

Consider the graph \mathscr{G}_0 . We are going to estimate $\sum_{\alpha,\beta\in\mathcal{V}} |\Gamma_0(\alpha)\cap\Gamma_0(\beta)|$. By Jensen's inequality

$$\sum_{\alpha,\beta\in V} |\Gamma_0(\alpha)\cap\Gamma_0(\beta)| = \sum_{\alpha\in V} \left(\frac{\deg_0(\alpha)}{2}\right)$$

$$\geq |V| \left(\frac{2e(G_0)/|V|}{2}\right) = 2\frac{e(G_0)^2}{|V|} - e(G_0). \tag{6.1}$$

To obtain an upper bound we split the sum into two parts. First, Lemma 4.1, more exactly (4.4) gives that

$$\sum_{\substack{\alpha, \beta \in V \\ \{\alpha, \beta\} \in \mathscr{G}}} |\Gamma_0(\alpha) \cap \Gamma_0(\beta)| \le \left(\binom{|V|}{2} - |\mathscr{G}| \right) 30 < 15|V|^2. \tag{6.2}$$

Rearranging the rest of the sum we have

$$\sum_{\substack{\alpha, \beta \in V \\ \{\alpha, \beta\} \in \mathscr{G}}} |\Gamma_0(\alpha) \cap \Gamma_0(\beta)| = \sum_{\substack{C \subset X \\ |C| = t+1}} \left[\sum_{\substack{\alpha, \beta \in V \\ D(\alpha, \beta) = C}} |\Gamma_0(\alpha) \cap \Gamma_0(\beta)| \right]. \tag{6.3}$$

Proposition 6.1. For any fixed $C \subset X$, |C| = t + 1 one has

$$\sum_{\substack{\alpha,\beta\in V\\D(\alpha,\beta)=C}} \left| \Gamma_0(\alpha) \cap \Gamma_0(\beta) \right| < 3^t \binom{n}{\lfloor (t+1)/2 \rfloor}.$$

Proof. The left-hand side is the number of triples α , β , γ such that $\{\alpha, \gamma\}$, $\{\beta, \gamma\} \in \mathcal{G}_0$ and $D(\alpha, \beta) = C$. Associate to this triple the sets $D(\alpha, \gamma)$, $D(\beta, \gamma)$. These sets determine α , β and γ , hence, by Lemma 4.1, the left-hand side in Proposition 6.1 is not more than the number of pairs $A, B \subset X$ such that |A| = |B| = t + 1, $A \cup B \supset C$ and $A \setminus C = B \setminus C \neq \emptyset$. The number of such pairs is at most

$$\frac{1}{2} \sum_{i \ge 1} {n-t-1 \choose i} {t+1 \choose 2i} {2j \choose j} < {n \choose \lfloor (t+1)/2 \rfloor} 3^t. \tag{6.4}$$

In the case t=2 the left-hand side of (6.4) is less than 3n. \square

176 Z. Füredi

Hence the right-hand side of (6.3) is at most $\binom{n}{3}3n$. Using this and (6.1), (6.2) we have that

$$2\frac{\binom{n}{3}^2}{|V|} - \binom{n}{3} \le 15|V|^2 + \binom{n}{3}3n.$$

This inequality gives $|V| > 0.089...n^2$.

The combination of the proofs might give $f_t(n) \ge \Omega(n^{(2t+2)/3})$, but the real question is that whether the upper bound $O(n^t)$ can be decreased.

References

- [1] W.W. Armstrong, Dependency structures of database relationship, Inform. Process. Lett. 74 (1974) 580-583.
- [2] E.F. Codd, A relational model of data for large shared data banks, Comm. ACM 13 (1970) 377-387.
- [3] J. Demetrovics, Candidate keys and antichains, SIAM J. Algebraic Discrete Methods 1 (1980) 92.
- [4] J. Demetrovics, Z. Füredi and G.O.H. Katona, Minimum matrix representation of closure operations, Discrete Appl. Math. 11 (1985) 115-128.
- [5] J. Demetrovics and G.O.H. Katona, Extremal combinatorial problems in relational data base, in: Lecture Notes in Computer Science 117 (Springer, Berlin, 1981) 110-119.
- [6] Z. Füredi, Minimum relational databases, Alkalmaz. Mat. Lapok 9 (1983) 23-28 (in Hungarian).
- [7] T. Kővári, V.T. Sós and P. Turán, On a problem of K. Zarankiewicz, Colloq. Math. 3 (1959) 50-57.
- [8] D. Maier, The Theory of Relational Databases (Computer Science Press, Rockville, MD, 1987).
- [9] R. Wille, Restructuring lattice theory: An approach based on hierarchies of concepts, in: I. Rival, ed., Ordered Sets (Reidel, Dordrecht, 1982).