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An n x m matrix is called a t-error-correcting database if after deleting any t columns one can 

still distinguish the rows. It is perfect if after omitting any t + 1 columns two identical rows are 

obtained. (Stating with another terminology, the system of minimal keys induced by A is the 

system of all (n - t)-element subsets of an n-element set.) 

Let ft(n) denote the minimum number of rows in a perfect t-error-correcting database of 

length n. We show that fi(n) = O(n’), and in general B(,(2’+‘)‘3 )<fr(n)sO(n’) for ts3, when- 

ever n+m. 

1. Preliminaries 

Let n > t 2 0 be integers. A set Vof sequences of length n (or the matrix A formed 

by these sequences, as rows) is called a database. A sequence a E Vcan be considered 

as a function a :X+ Y, where sometimes X is identified by the set of the first n 

integers, X= [n]. D(a, p) denotes the set of distinct coordinates, D(a, p)= 

{i: a(i)#/3(i)}. The H amming distance, H(a, p), of two sequences a, /3~ V is the 

number of distinct coordinates, H(a, p) = ID(a, p)J. V is t-error-correcting if the 

Hamming distance between any two sequences is greater than t. In other words, 

after deleting any t of the columns of A, one can still distinguish the rows. 

A is perfect t-error-correcting if the deletion of any t + 1 columns leads to identical 

rows, i.e., forall TCX, ITjrt+l onecanfinda,PEV, a#psuchthat a(i)=p(i) 
for all i EX\ T. (Warning! This definition differs from the usual one concerning 

error-correcting codes.) 
For t 2 1 one can define a perfect t-error-correcting database as follows (see [l, 31). 

Let E,, E2, . . . denote the t-element subsets of X, and 

if i$E,, 
if ieEj. (1.1) 

Then V@) = {aj: 1 ~jl (T)} is a t-error-correcting database. Moreover, V(l) com- 

pleted with the full O-sequence forms a perfect O-error-correcting database. 
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Denote by ft(n) the minimum number of sequences in a perfect t-error-correcting 

database of length n. It was proved in [5] that Jo(n) = n + 1, fi(n) = n and the ex- 

tremal databases are isomorphic to the above example. For t 2 1 we have 

n 
f,(n) 5 0 t (1.2) 

by (1.1). On the other hand, it is easy to see [5] that 

(1.3) 

The aim of this paper is to give a better lower bound for fi(n), namely for t = 2 we 

will show that &(n) = 0(n2). 

2. A note on relational databases 

Every database V determines a closure operation, a system of functional 

dependencies. (The definition of relational databases see [2], or the book of [8]. 

More definitions and notions see [9].) One of the basic notions is the following. A 

set NC X is called a nonkey if it could not distinguish between the distinct rows, i.e., 

there are cr, p E V, a #fi such that a 1 N=/? 1 IV. Otherwise the set is called a key. The 

family of maximal nonkeys is denoted by JV. 

Let .YCL be the hypergraph of the all k-subsets of an n-set. The determination of 

fr(n) is equivalent to the following problem. What is s(X:_,), the minimum 

number of rows in a matrix A inducing .Xz_[ as a system of minimal keys? It is 

known [6,4], that if k is fixed and n tends to infinity, then the order of magnitude 

of the lower bound in (1.3) is correct, namely s(X[)= Q(,(kP1)‘2). 

3. Results 

Theorem 3.1. &n2<f2(rz)<+n2. 

Theorem 3.2. For n > no(t), tr 1 one has 

1 
---P+1)‘3<f,(n)< +. 
(t + l)! 

Using the terminology of relational databases we can obtain the more general 

theorem: 
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Theorem 3.2’. Suppose that V is a database inducing Jv as the system of maximal 
nonkeys, max{lN/:NEJV)=n-tff, J&={IVEJY: INI=i>. Then 

IVlr l - lJv,_1+112’3n-1’3. 
(t + l)! 

4. Lemmas. The structure of the minimum distance graph 

Let 9 be a graph with the vertex set V. (Usually we identify a graph with its edge 

set.) Suppose that $9 does not contain the complete bipartite graph X(2, p) as a sub- 

graph. Then for the number of edges e(g) we have that 

(4.1) 

as it was shown by K&&i, Sos and Turin [7]. 

Let V be a perfect t-error-correcting database of length n. Define the minimum 
distance graph, $?, with the vertex set V as follows. (a, p) is joint by an edge if and 

only if H(a: /3) = t + 1. The edge (a, /3) E %J has color II (where LXX, IDI = t + 1) if 

D = D(cx, p). We will use the standard notations of graph theory, i.e., deg(a, $?) (or 

briefly deg(a)) stands for the degree. r(a, Y?) (or briefly r(a)) denotes the neighbor- 
hood of a. 

For every (t + I)-element set DC X choose an edge of $9 of color D. These ((1 1 ) 

(or in the proof of Theorem 3.2’, these JJv,_,+, I) pairs form the reduced minimum 

distance graph ge,. This graph is not necessarily unique in general. The notations 

deg,, TO indicate that we are speaking about go. 

Lemma 4.1. Suppose that (a, /I) $ $J. Then Ir(a)flr(p)l < 3*lf2. 

Lemma 4.2. For all a, /3 one has irO(a)n&(/3)l <n3’. 

Proofs of Lemmas 4.1 and 4.2. We prove these lemmas simuhaneously. Let C= 

{xEX: a(x)#p(x)}, i.e., ICI =H(a,p). W e may suppose that ICI <2t +2, other- 

wise both lemmas are trivial, there is no y E V with {a, y} E $Z, { /?, y} E %. 
Suppose that y, Y’ET(a)nr(p), yf y’. As y(x) differs from a(x) or /3(x) for all 

XE C we have 

CcD(fx Y)UD(P, 71, 

Moreover D(a, y) \ C = D(P, y) \ C. 

(4.2) 

Proposition 4.3. Suppose that D(a, y) n C=D(a, y’)rl C and D(/3, y)fl C= 
D(p, y’)flC. Then ICI =t+ 1, and (D(a, y)\C)n(D(a, y’)\C)=O. 



174 Z. Fiiredi 

This proposition says that y is (almost) determined by the traces of D(a, y) and 

W/I Y) on C. 

Proof. (4.2) gives 

WY, Y’)CW% Y)UWG r’). 

y and y’ agree on C\(D(a, y)flD(p, y)), hence we have 

WY9 Y’)W(o, Y)nWP, Y)nCl+ IWG y)\Cl+ I&% Y’)\Cl. (4.3) 

As IWG Y’)\CI = lo(P, Y)\CI we have that the right-hand side of (4.3) equals 

2(t+ l)- ICI. If lCl>t+ 1, then this leads to the contradiction H(y, y’)<t+ 1. So 

IC/ = t+ 1, and equality holds in (4.3). Thus the sets D(a, y)\D and D(a, y’)\D are 

disjoint. Cl 

Proof of Lemma 4.1. Proposition 4.3 implies that the number of y~r(o)r)T(P) 

is not more than the number of set pairs A, BC C= D(a, /?) such that IA I = IB1, 
AnB=0andlAl2lCI---l1.(HereA=D(a,y)\o(P,Y)andB=o(P,Y)\D(cr,y).) 

Hence 

Note that in the case t = 2 we obtain the following bounds 

18, if lCl=4, 

Ir(a)nr(p)l5 30, if ICI=5, (4.4) 
20, if ICI=6=2t+2. 

Proof of Lemma 4.2. Let again C=D(rx, /3). Now ICI = t + 1. Choose the subsets 

A,BcC such that (AI=IBI=I’, AnB=O, and consider all YETa(a)n&(/3) with 

A =D(a, y)\D(/I, y) and B=D(P, y)\D(a, y). For an arbitrary YE&(~) we have 

D(cw, y)\ C#0, by the definition of go, so ik 1. Proposition 4.3 implies that the 

number of such y is at most (n - ICl)/i. Hence 

5. The proof of Theorem 3.2 

Consider the graph YJe, defined in Section 4. Lemma 4.2 gives that so does not 

contain a complete bipartite graph X(2,n3’). Then (4.1) yields that 
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implying Theorem 3.2. 
The proof of Theorem 3.2’ is similar. 

6. The proof of Theorem 3.1 

Consider the graph 9,. We are going to estimate Ca,pE y I&(a)nro(fi)I. By 
Jensen’s inequality 

a pcE v lTo(~)mdP)I =,& ( degy) 

~lyl(2e(G%/‘V)=2~-e(G,). (6.1) 

To obtain an upper bound we split the sum into two parts. First, Lemma 4.1, more 
exactly (4.4) gives that 

Rearranging the rest of the sum we have 

(6.2) 

I’ (6.3) 

Proposition 6.1. For any fixed CCX, jC/ = t + 1 one has 

Proof. The left-hand side is the number of triples (Y, /3, y such that {a: v}, { ,8, y} E gO 
and D(cr, p) = C. Associate to this triple the sets D(a, y), D(fl, y). These sets deter- 
mine (Y, p and y, hence, by Lemma 4.1, the left-hand side in Proposition 6.1 is not 
more than the number of pairs A,BCX such that IAl = (BI =t+ 1, AUB>C and 
A \ C= B \ Cf0. The number of such pairs is at most 

fz, (“-:-‘)(‘2/‘>(:‘)<( L(t+:)/2J)3t* (6.4) 

In the case t = 2 the left-hand side of (6.4) is less than 3n. 0 
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Hence the right-hand side of (6.3) is at most (;)3n. Using this and (6. l), (6.2) we 

have that 

This inequality gives 1 V/I >0.089...n2. 

The combination of the proofs might give ft(n) 1 Q(n(2’+2)‘3), but the real ques- 

tion is that whether the upper bound O(n’) can be decreased. 
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