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Let L* be the graph formed by the lowest three levels of the Boolean lattice By, i.e., V(Lk) =
{0,1,...,k,12,13,...,(k — 1)k} and O is connected to ¢ for all 1 < ¢ < k, and ¢j is connected to ¢
and j (1<i<j<k).

It is proved that if a graph G over n vertices has at least k3/23/2 edges, then it contains a
copy of Lk

1. Preliminaries, Results

A hypergraph, H, is a pair (V,8), where &8 is a family of subsets of V. The
elements of V are called vertices, the E € & are called hyperedges. A hypergraph is
called t-uniform, or a t-graph, if |E| = t holds for every E € 8. The 2-graphs are
called graphs. For X C V we set §[X]| = {E : X C E € 8}. The degree, deg(H, X),
or briefly deg(X), is the cardinality of 8{X], deg({z}) is abbreviated as deg(z). The
set N(z) = U8[z] \ {z} is called the neighbourhood of z. The family of all t-subsets
of a k-set is called the complete t-graph and is denoted by Kf

Given a graph F, what is T'(n,F), the maximum number of edges of a graph
with n vertices not containing F as a subgraph? This is one of the basic problems
of extremal graph theory, the so called Turan problem. The Erdés-Stone-Simonovits
theorem([9], [11], for a survey see Bollobds’ book [1}) says that the order of magnitude
of T(n,F) depends on the chromatic number of F, namely limp_.c T(n,F)/(3) =
1 — (x(F) — 1)"L. This theorem gives a sharp estimate, except for bipartite graphs.
The case of bipartite graphs seems to be more difficult, and only a very few T'(n, F)
are known. Even the exact value of T'(n, Cy) is known only for a quite rare sequence
of n’s [12]. For every bipartite graph F which is not a forest there is a positive
contant ¢ (not depending on n) such that

Q(n'*%) < T(n,F) < O(n?~°)

holds for all n > ng. The first problem is to determine the right exponent of n.
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Erdds, Rényi and T. Sés [8] and Brown [2] proved that

(11) T(n,Cs) = (1 + o)),
(1.2) 03n5/3 <T(n,Ks3) < C4n5/3.

Conjecture 1.3. (Erdds [5], also see in [10], [14]) Let F be a bipartite graph such that
each induced subgraph has a vertex of degree at most 2. Then T(n,F) = O(n®/ 2,
The aim of this note is to make a small contribution to this direction. Let

k > 2,5 > 1 be integers, and define the following bipartite graph L** with classes X
and Y. X = {l'o}U{JJ% 1<i<j<ka=1,...s}and Y = {y1,...yx}. Join zg

to each vertex of Y, and join xf:j to y; and y;. L* stands for L®1. All L®* contain
four-cycles, so Un3/2) < T(n,L*®). Erdés [4] proved that T(n,L3%) = O(n3/%), and

conjectured (see in [4], [6], [7]) that this holds for all L*, (according to the Conjecture
1.3)

2
k-1 +n3/2\/sk(k—— D2+ 2k~ 2)(k = 1)
4 8
To give a lower bound consider a Cy-free graph H with maximum number of

edges over v = |n/(k —1)] vertices. Replace every vertex z with a k — 1-element set
V(z). Join all vertices of V(z) to all vertices of V(y) if and only if {z,y} is an edge

of H. The obtained graph is L*-free, so (1.1) yields
— .

Theorem 1.4. T'(n,L¥*) < n

T(n,L¥) > (1 + o(1))

Theorem 1.4 is implied by the following lemma.

Lemma 1.5. Suppose that 4, |d4| = a, is a collection of subsets of the n-element set
S with average size b, (that is, > |A;|/a =b). Let k >t > 2andd > g > 1 be
integers, and suppose that

(06 ()R

Then there exists k members of 4, A1, Ao, ..., Ay € 4, such that |N A4;| > g, and
the size of the intersection of every t of them is at least d.

The proof of this Lemma is postponed until the second Section. The definition
of () for real z, as usual, is 2(z —1)...(z —t+1)/t! when z > ¢ —1 and 0 otherwise.
Proof of Theorem 1.4 from Lemma 1.5. Suppose that G is a graph on n vertices and
e edges, where e has the value which is given by the right hand side of inequality
in Theorem 1.4. Define 4 as the family of the neighbourhoods N(z) (z € V(G)).
Then one can apply Lemma 1.5 to o with the values a = n, b = 2e/n, k = k,
t=2g=1andd=k—1+s(5). We obtain the sets N(y1),... N(yx) with
the following properties. There exists a vertex zgp € NN(y;), and for 1 < i <
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j < k one has [N(y;) N N(y;)| > s(g) + k — 1. Then one can find disjoint sets

Vij © N(y) 0 N(y;) \ {zo, y1-..yx} of size s, i. e., the subgraph of G induced on
{zo, ¥1...yx} UV, ; contains a copy of Lk, |

Another corollary of the Lemma, for example, that if \/n sets are given of average
size 54/n, then one can find four of them whose pairwise intersections have at least
4 elements. (Moreover they have a common element, as well.)

The Lemma also implies that if G[n,/n] is a bipartite graph with classes of
sizes n and /7 and with c(k, s)n edges, then it contains a copy of L¥*. (For this
reformulation the author is indebted to P. Erdés.)

2. Proof of the Lemma, and more Corollaries

Let m > k£ > t > 2 be integers. Define T'(m, k,¢) as the minimum number of
t-sets of an m-element set S such that every k-subset of S contains a t-set. The
determination of T'(m, k, t) is the classical Turdn problem, and with the notations of

the previous Section one has T(m, k,t) = (T) — T(m, Kf) We have

2.1) T(m,k,t)z( m )M(k”)ﬁl.

t—1 t t—-1

This lower bound is due to de Caen [3].

Suppose on the contrary, that among every k¥ members of 4 containing g common
elements one can find ¢ of them with intersection size at most d—1. If the intersection
of t members of . has at least g but less than d elements, then they are called a
subsystem of type 0. Let X C S, |X| = g and consider the family #[X]. The
indirect assumption implies that the number of subfamilies of 4[X] of type 0 is at
least T'(deg(X), k,t). On the other hand, every subfamily of 4 of type 0 can appear

at most (d;l) times in some 4[X]. Then (2.1) and the Jensen’s inequality give that
d—1\ (a deg(X)\ deg(X) —k+1 (k~1\""
(7)) Ernens 3 (o) k()
jul (z; deg(X)/(;)) 2 deg(X)/(5) = (k—1)
JECEVANEEE :
(@) (o) ()2l @)~ k-1)
* éf_)( -1 ) 5 ‘ '

Define the bipartite graph Lf ** over XUY as follows. X = {xg}U {z§ : where I
isatsubset of {1,2,...k} and 1< a <s},and Y = {1,...y}. Join z¢ to each y;,

and join z§¢ to y; if i € I. So L;c’s = L*3. Then Lemma 1.5 also implies that there
exists a constant cf’s such that

1
(2.2) T(n,Li*) < ef*n? 1.
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The exponent of n in this bound is best possible for ¢ = 3 as well by (1.2).
Inequality (2.2) is a generalization of an estimate of T'(n, K; ;) due to Erdés, Kévéri,
T. Sés and Turan [13], and was also conjectured by Erdds (7).

If we use Lemma 1.5 with g =¢, (a=n,d= s(’:) + k), then we obtain that
1
T(n,G¥*) < O(n?~ 1),

where Gf ¥ is obtained from Lf ** by replacing zg by ¢t new vertices and joining each

of them to Y. For example Gg’l is a graph with vertex-set {0,0',1,...,k,12,13,...,
(k — 1)k} and 0 and 0’ are connected to i for all 1 < i < k, and ij is connected to i
and j (1 <i<j<k).

Acknowledgements. The author is indebted to P. Erdés for several fruitful discussions
and encouragements.
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