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Let L k be the  graph formed by the  lowest three  levels of the  Boolean lat t ice Bk,  i.e., V(L  k) = 
{0, 1 , . . . ,  k, 12, 1 3 , . . . ,  (k - 1)k} and 0 is connected to i for all 1 < i < k, and  i j  is connected to i 
a n d j  (1 < i < j  _< k). 

I t  is proved t ha t  if a graph G over n vertices has at  least k3/2n 3/2 edges, then  it contains a 
copy of L k. 

1. Preliminaries,  Results  

A hypergraph, H, is a pair (V, S), where S is a family of subsets of V. The 
elements of V are called vertices, the E E S are called hyperedges. A hypergraph is 
called t-uniform, or a t-graph, if IEI = t holds for every E E S. The 2-graphs are 
called graphs. For X C V we set S[X] = {E : X C E E S}. The degree, deg(H, X), 
or briefly deg(X), is the cardinality of S[X], deg({x}) is abbreviated as deg(x). The 
set N(x) = US[x] \ {x} is called the neighbourhood of x. The family of all t-subsets 
of a k-set is called the complete t-graph and is denoted by K k. 

Given a graph F, what is T(n ,F) ,  the maximum number of edges of a graph 
with n vertices not containing F as a subgraph? This is one of the basic problems 
of extremal graph theory, the so called Turs problem. The Erd6s-Stone-Simonovits 
theorem([9], [11], for a survey see Bollob~s' book [1]) says that the order of magnitude 
of T (n ,F )  depends on the chromatic number of F, namely limn--.~T(n,F)/(~) = 
1 - (x(F) - 1) -1. This theorem gives a sharp estimate, except for bipartite graphs. 
The case of bipartite graphs seems to be more difficult, and only a very few T(n, F) 
are known. Even the exact value of T(n, C4) is known only for a quite rare sequence 
of n's [12]. For every bipartite graph F which is not a forest there is a positive 
contant c (not depending on n) such that 

a ( n  l+c) < T(n, F) < O(n 2-c) 

holds for all n > no. The first problem is to determine the right exponent of n. 
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Erd6s, R6nyi and T. S6s [8] and Brown [2] proved that 

(1.1) T(n, C4) = ~(1 + o(1))n 3/2, 

(1.2) c3 n5/3 < T(n,  K3,3) < c4n 5/3. 

Conjecture 1.3. (Erdbs [5], also see in [10], [14]) Let F be a bipartite graph such that 
each induced subgraph has a vertex of degree at most 2. Then T ( n , F )  = 0(n3/2).  

The aim of this note is to make a small contribution to this direction. Let 
k > 2, s > 1 be integers, and define the following bipartite graph L k's with classes X 
and Y. X = {x0} U {xi~ : 1 _< i < j _< k , a  = 1 , . . . s }  and Y = {Yl,...Yk}. Join x0 

to each vertex of Y, and join x. a . to Yi and yj. L k stands for L k'l. All L k's contain 

four-cycles, so ~ (n  3/2) _< T(n,  Lk'S). Erd6s [4] proved that  T(n,  L 3) = 0(n3/2),  and 

conjectured (see in [4], [6], [7]) that this holds for all L k, (according to the Conjecture 
1.3.) 

n k -____~1 + n3 /2 i / s k (k  - 1) 2 + 2(k - 2)(k - 1) T ( n , L  k,s) Theorem 1.4. 
4 V 8 

To give a lower bound consider a C4-free graph H with maximum number of 
edges over v -- Ln/(k - 1)J vertices. Replace every vertex x with a k - 1-element set 
V(x) .  Join all vertices of V(x )  to all vertices of V(y)  if and only if {x,y} is an edge 
of H. The obtained graph is Lk-free, so (1.1) yields 

T(n,  L k) _> (1 + o ( 1 ) ) - ~ - - ~ n  3/2. 

Theorem 1.4 is implied by the following lemma. 

LemmA 1.5. Suppose that `d, [`dl = a, is a collection of subsets of the n-element set 
S with average sizeb, (that is, ~ l A i [ / a  = b). Let k > t > 2 a n d d  > g >_ 1 be 
integers, and suppose that 

Then there exists k members of.d, A1 ,A2 , . . .  ,Ak E `d, such that I MAil >_ g, and 
the size of the intersection of every t of them is a t / eas t  d. 

The proof of this Lemma is postponed until the second Section. The definition 
of (~) for real x, as usual, is x ( x -  1) . . .  ( x -  t + 1)/t! when x > t - 1 and 0 otherwise. 

Proof  of Theorem 1.4 from Le,nma 1.5. Suppose that G is a graph on n vertices and 
e edges, where e has the value which is given by the right hand side of inequality 
in Theorem 1.4. Define `d as the family of the neighbourhoods N(x)  (x E V(G)).  
Then one can apply Lemma 1.5 to `d with the values a = n, b -- 2e/n, k = k, 
t = 2, g = 1 and d = k - 1 + s(2k). : We obtain the sets N ( y l ) , . . . N ( y k )  with 
the following properties. There exists a vertex x0 E NN(yi),  and for 1 < i < 
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j _< k one has IN(y|) ~ N(yj)[ _> s(k2) + k - 1. Then one can find disjoint sets 
Vi,j C g(yi)  ~ g(y j )  \ {x0, Yl . . .  Yk} of size s, i. e., the subgraph of G induced on 

{x0, Yl ...Yk} U ~,j contains a copy of L k's. | 

Another corollary of the Lemma, for example, that if ~ sets are given of average 
size 5v/-~, then one can find four of them whose pairwise intersections have at least 
4 elements. (Moreover they have a common element, as well.) 

The Lemma also implies that if Gin, v ~  is a bipartite graph with classes of 
sizes n and vrn and with c(k, s)n edges, then it contains a copy of L k's. (For this 
reformulation the author is indebted to P. Erd6s.) 

2. P r o o f  o f  t h e  L e m m a ,  a n d  m o r e  Coro l l a r i e s  

Let m _> k > t > 2 be integers. Define T(m, k, t) as the minimum number of 
t-sets of an m-element set S such that every k-subset of S contains a t-set. The 
determination of T(m, k, t) is the classical Turs problem, and with the notations of 

the previous Section one has T ( m , k , t ) =  (~) - T(m, Ktk). We have 

(2.1) T(m,k,t)_> tin1 
This lower bound is due to de Caen [3]. 

Suppose on the contrary, that  among every k members of.d containing g common 
elements one can find t of them with intersection size at most d -  1. If the intersection 
of t members of .d has at least g but less than d elements, then they are called a 
subsystem of type O. Let X C S, ]X] = g and consider the family .4[X]. The 
indirect assumption implies that the number of subfamilies of .d[X] of type 0 is at 
least T(deg(X),  k, t). On the other hand, every subfamily of.d of type 0 can appear 

at most (dgl) times in some ~d[X]. Then (2.1) and the Jensen's inequality give that 

XcS XcS 

> Tk:~-h (g) (a~)/__ l~))a(~)/(~)t--- ( k - i )  | 
- ( , - 1 )  

T.k,s Define the bipartite graph ~t over X U Y as follows. X = {xo} U {x~ : where I 
is a t subset of {1, 2 , . . .  k} and 1 < (~ < s}, and Y = {Yl,.-.  Yk}. Join x0 to each Yi, 

T k's = L k's. Then Lemma 1.5 also implies that there and join x~ to Yi if i E I. So ~2 

exists a constant ckt 's such that 

k,s 2- 1 
(2.2) T(n, Lkt's) < ct n 7 
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The exponent of n in this bound is best possible for t = 3 as well by (1.2). 
Inequality (2.2) is a generalization of an estimate of T(n,  Kt,t) due to Erdhs, KSv~ri, 
T. S6s and Tur4n [13], and was also conjectured by ErdSs [7]. 

If we use Lemma 1.5 with g = t, (a = n, d = s(k) + k), then we obtain that  

T(n, k,s 1 Gt ) <_ O(n 2- ~), 

where ~k,s "-'t is obtained from T k's by replacing x0 by t new vertices and joining each ~ t  

of them to Y. For example G~ '1 is a graph with vertex-set {0, 0 I, 1 , . . . ,  k, 12, 13 , . . . ,  
(k - 1)k} and 0 and 01 are connected to i for all 1 < i < k, and i j  is connected to i 
a n d j  (1 ___ i < j  _< k). 

Acknowledgements. The author is indebted to P. Erd6s for several fruitful discussions 
and encouragements. 
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