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ABSTRACT 

Here it is proved that for almost all simple graphs over n vertices one needs 
Q ( r ~ ~ ’ ~ ( l o g n ) - ~ ’ ~ )  extra vertices to obtain them as a double competition graph of a 
digraph. On the other hand O(n5’3)  extra vertices are always sufficient. Several problems 
remain open. 

1. DEFINITIONS 

The competition graph of a digraph D = (V, A) is a graph G = (V, E) where 
{ x ,  y} E E if and only if x # y and for some u E V both xu and yu E A. It is easy 
to see that, by adding sufficiently many isolated vertices, every graph G can be 
made into the competition graph of an acyclic digraph, e.g., let V ( D )  = V U E 
and let ve be an arc in D if e E E and u E e.  Thus the competition number, k ( G ) ,  
is defined to be the smallest integer k so that G together with k isolated vertices, 
G U I,, is a competition graph of a digraph. 

The double competition graph of a digraph D = (V, A) is the graph G = (V, E) 
where xy E E if and only if x # y and €or some u ,  u E V, the arcs ux, uy, x u ,  and 
yu E A .  The double competition number of a graph, dk(G) ,  is the smallest 
integer k so that G U I, is the double competition graph of some digraph. A 
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simple construction shows that for all graphs G one has 

The neighborhood graph, N ( H ) ,  of an (undirected) graph H = (V, E )  is the graph 
G = (V, E(G))  where {x, y }  E E(G) if and only if x # y and for some u E V both 
{ x ,  u }  and { y ,  u }  E E. One can define the embedding number g ( G )  of any graph 
G to be the smallest integer for which there is a graph H on (V(G)l+ g(G) 
vertices such that G is isomorphic to an induced subgraph of N ( H ) .  

A wheel W,, is a cycle of length PZ - 1 with an additional node adjacent to every 
node on the cycle, (n  24). 

The set of all (labelled) graphs over the elements {1,2, . . . , n }  is denoted by 
%-. Obviously, I % " (  = 2';'. G" denotes any member of %". The statement "almost 
all graphs have property P" means that there exists a sequence el,  eZ, . . . tending 
to 0 such that the number of graphs G" E %" having property P is at least 

The degree of a vertex x of the graph G is denoted by deg(G, x) or deg(x) for 
short. For digraphs deg+(x) denotes the outdegree. The neighborhood of x is 
denoted by N ( G , x )  or N ( x ) .  As usual, w(G) denotes the size of the largest 
complete subgraph in G .  The induced subgraph G)S is a graph with the vertex set 
S n V ( G )  and with the edges of G contained in S .  

A finite afine plane of order q is a pair (P ,  d) where P, the point set, is a 
$-element set and d, the line set, is a family of q-element subsets covering every 
pair in P exactly once. There are affine planes for each prime power order. The 
set of lines can be decomposed into q + 1 q-element subfamilies consisting of 
pairwise disjoint lines. These are called parallel classes. 

(1 - 42(? 

2. RESULTS 

The competition and double competition graphs of digraphs have been studied by 
numerous authors, mainly from a practical point of view. A survey may be found 
in Raychaudhuri and Roberts [lo], or in other papers and books of Fred Roberts. 
A recent Ph.D. thesis on this topic was written by Kim [9]. Usually, it is required 
that the associated digraphs are acyclic, so one can define dk,(G) = min{k: such 
that there exists an acyclic digraph over (V(G)(  + k vertices inducing G as its 
double competition graph}. We have that 

dk( G )  5 dk,( G )  . 
As a theoretical approach, to obtain the possible most general result, we will omit 
this constraint. Diny [4] calculated the dk,(G) for some classes of graphs, all of 
them have double competition number dk,(G) 5 2. Jones et al. [7] showed that 
the complete 3-partite graph has large double competition number. 

2 
3 ' 3 ' 3  

Here we give asymptotic description of the behavior of dk(G) (and dk, (G)) .  

 10982418, 1990, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.3240010205 by U

niversity O
f Illinois A

t, W
iley O

nline L
ibrary on [17/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



COMPETITION GRAPHS AND CLIQUE DIMENSIONS 185 

Theorem 2.1. 

Theorem 2.2. 

For almost all graphs G E $2” one has dk (G)  > 0.1n4’3(log n)-4’3. 

For each graph G E %ln one has dk , (G)  1 ( 2  + ~ ( l ) ) n ~ ’ ~ .  

3. PROOF OF THEOREM 2.1 

We are going to use two simple lemmas from the theory of random graphs (for 
the proofs, see BollobLs [2]). 

Lemma 3.1. For almost all graphs G E %l” the following holds. Every set 
S C V ( G ) ,  IS\ > 10 log n contains at least IS12/.5 edges of G .  rn 

Lemma 3.2. For almost all graphs G E %” the clique number o ( G )  5.2 log n.  rn 

In this section “log” means logarithm with base 2. 
Denote by X(u ,  d )  the set of all directed graphs on the vertex set 

{ l , 2 ,  . . . , u }  such that all arcs start from or end at {1,2, . . . , n }  = [n ]  and every 
out- and indegree restricted to [ n ]  is at most d. This means that IN’(x) n [n]l I d 
and IN-(x)  n [ n ] l s  d holds for every x E [ u ] .  Obviously, 

Let 3; denote the set of all graphs G E %”, such that 

(1). I E ( G ~ s ) ~  2 $ 1 ~ 1 ’  for all (s I  > 10 log n , 
(2) .  o ( G )  5 2 log n , 
(3). G is not the competition graph of any digraph D E X ( u ,  d )  with n 5 u 5 

( y  ), and ud < n2/(1010g n) .  

Claim 3.3. %: contains almost all graphs. 

Proof. This is obvious from the Lemmas and from the fact that in (3) 

IX(u, d ) (  < n420.2n2 = 42‘;’) ., 
u,d 

Claim 3.4. For G E 3; one has dk (G)  > n4’3(log n) -4 /3 /10 .  

Proof. Suppose that G is the double competition graph of the digraph D. 
Without loss of generality we may suppose that V(D)\V(G) does not contain any 
arc of E(D) .  Let V ( D )  = {1 ,2 , .  . . , u } ,  V ( G )  = [ n ] .  Denote the maximum 
restricted outdegree of D by d’ (i.e., d +  = max,(N+(x) n [rill), the maximum 
restricted indegree d -, and d = max{ d +, d - } . 

If d < n2l3(log r ~ ) ” ~ ,  then D E X(u ,  d ) ,  so the property (3) implies that 

u 2 n2/(10d log n) > n4/3(1~g n)-4’3/10.  
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If d 2 n2'3(log n)'13, then suppose that d = d' and d = IN+@) n [n]{ for some 
x E V(D). Then N + ( x )  n [n] contains at least d2/5 edges of G, by (1). All of these 
edges are contained in some N - (  y )  as well, so we have that 

By ( 2 ) ,  the right-hand side is at most u( :) < uw2/2 5 2u(log n)'. This implies 
again that u 2 0.1d2/(log n)'. H 

4. THE CONSTRUCTION FOR THEOREM 2.2 

Let q be the smallest prime power such that q2( q + 2 )  2 n.  By adding isolated 
vertices to G,  we may suppose without loss of generality, that IV(G)l= q2( q + 2 ) .  
Divide V(G) into q + 2 equal parts, V(G)  = V, U . . . . U Vq+,, IV,l = q2. 

Let di be a copy of an affine plane of order q on the point set V , ,  
(1 I i 5 q + 2). dj has q + 1 parallel classes. Label these classes by the integers 
{ 1 , 2 , .  . . . , q + 2}\{i} ,  and denote them by Zi l ,  Zi,,. . . , Z'j,q+2. Each parallel 
class, Tij, consists of q painvise disjoint q-sets L,,, . . . , Lijq. Now we are going 
to define the vertex set of the digraph D. Let V(D) = V U A U B U U U W where 
these five sets are pairwise disjoint, V= V(G), and \A[  = IBI = ( ' i 2 ) q 3 ,  IUI = 
1 WI = ( q  + 2)(  f ). Divide A (and B) into disjoint q-sets, i.e., 

A = U A,,, 

where 1 5 i < j I q + 2 ,  1 5 a, p 5 q .  (Similarly, B = U Bjiap .) As L,, and A,,, 
are both q element sets one has a bijection uijap between them, i.e., 

Similarly, Bjiap = { bjiap( y )  : y E Lji,} ,  where again 1 5 i < j 5 q + 2.  Divide U 
(and W) into q + 2 equal parts, U = U ,  U . . . U Uq+, ( W =  W, U . . . U W,,,). As 
U, has ( I:') elements there exists a bijection u, between Ui and the pairs of V,., 
i.e., 

where u I ( x ,  y )  = u,( y ,  x). Similarly, W, = { w l ( x ,  y )  : x ,  y E V,,  x # y } .  
Now we are going to define the set of arcs, D. There will be arcs from A U U to 

V and from V to B U W. Put an arc from u , , ~ , ( x )  to x, and to N(x)  n L,,, . 
Moreover, put an arc from u l ( x ,  y) to x and y if {x, y }  is an edge of G contained 
in V,. Similarly, we have all the arcs ( y, blInS ( y ) )  for y E Ll lp ,  from N( y )  fl L,, to 
b l r o p ( y )  and from x and y to w,(x ,  y )  if { x ,  y }  is an edge of G contained in V,.  

We claim that the double competition graph induced by D is just G with the 
additional isolated vertices A U B U U U W. This implies that 

d k , ( ~ )  5 I V ( D ) ~  = q 3 ( q  + 2) (2q  + 1) = ( 2  + 4 1 ) ) ~ ~ ~ ~ .  
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COMPETITION GRAPHS AND CLIQUE DIMENSIONS 187 

It is clear that all the induced edges are in V. It is also clear that the edges of G 
are induced. Indeed, if {x, y} E E(G) ,  x, y E q., then the four arcs (u i (x ,  y ) ,  x), 

some 1 d i < j I q + 2, then consider the lines of Zi, in V ,  and Zji in ";. For some 
a and p (1 5 a, p I q) we have x E L,, and y E Ljip.  Then, by definition, there 
are arcs from aijap(x) to x and to y (  E N(x)  n LiiS)  and from x( E N( y )  n Li ja)  

The only thing remained to check is that D does not induce more edges than 
E(G).  The arcs from U to V and V to W could not imply more than the edges 
inside (1 5 i I q + 2). Suppose that the arcs from a vertex of A,  say from 
aijap(x) ,  and the arcs to a vertex of B, say to b,, , , (y) imply an edge e ,  e g E ( G ) .  
By definition, N + ( D ,  aiiap(x)) = {x} U (N(G,  x) n LiiS),  and the pairs {x, y }  with 
y E N(G, x) n Ljip belong to E(G).  So e C N(G, x) fl Ljip.  Similarly, e C L,, . 
Hence these two lines of the affine plane have large intersection (=more than 1 
element). They must coincide, Lii, = Lfs, and so ( j ,  i) = ( t ,  s ) .  On the other 
hand, recall that j > i and t < s, so ( I ,  i) # (t, s). This contradiction completes the 
proof. m 

( U i ( X ,  Y ) ,  Y ) ,  (x, W i ( X ,  Y ) )  and ( Y ,  W i ( X ,  Y ) )  induce {x, Y > .  If X E Y ,  Y E y  for 

and Y to b j iap (Y) .  

In the above construction the following fact was utilized implicitly. 

Claim 4.1. Suppose that G" is a bipartite graph. Then dk,(G") I n. 

Proof. Denote the parts of G" by A and B, i.e., A U B = V ( G " ) ,  and all the 
edges go between A and B. Duplicate A and B, i.e., let A ,  = {a@) : x E A} and 
B,  = { b( y )  : y E B}. Then the following digraph over A U B U A U B, induces 
G n. 

E ( D )  = :{(a@), x )  : x E A }  U {(a@), y )  if (x, y )  E E(G")}  

u { ( Y ,  b(Y))  : Y E  B }  u {(x, b(Y))  if@, Y> E E(G")}  . m 

5. PROBLEMS 

Given a graph G = (V, E). Define its clique dimension in t rounds, cd,(G),  as 
follows. 

i = l  

such that there are families dl, . . . , dt, Idi\ = ni such that each edge e E E is 
covered by each family (i.e., for all 1 5  i I t there exist an A i  E di with e C A i ) ,  
but this does not hold for the nonedges. It is obvious that 

cd,(G) I (El  + t - 1 ,  

more generally 
cd,(G) I cd,(G) + cd,-,(G) . 

Moreover, 

 10982418, 1990, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.3240010205 by U

niversity O
f Illinois A

t, W
iley O

nline L
ibrary on [17/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



188 FUREDI 

and 

1 
- cd,(G) - IVI 5 d k ( G )  5 c d 2 ( G ) .  2 

Define cd,(n) = max{cd,(G) : G E 9'). The problem of determination of cd , (G)  
was posed by several authors (see [ll]). For example, Boland, Brigham, and 
Dutton [l] determined that g(W,) = 1-1. The true order of magnitude of 
cd,(n) was proved by Erdos, Goodman, and P6sa [5 ] .  

cd,(n) = [ :] . 

For a related problem about clique decomposition see Chung [3], Gyori and 
Kostochka [6], and Kahn [8]. 

Problem 5.1. Determine cd,(n) f o r  almost all graphs. 

Lemma 3.2 implies that it is at least f I (n2 / ( logn) ' ) .  P. Erdos (private com- 
munication) showed that the upper bound O ( n 2 / l o g n )  is immediate from stan- 
dard results from the theory of random graphs. 

Problem 5.2. 
between Theorem 2.1 and 2.2. 

Give estimates to cd,(n). Especially, close the gap, i f  possible, 

Probably, using the arguments of this article it can be shown that there is an 
absolute constant c > 0 such that cd,(n) 2 fI(nl+c'). 

Problem 5.3. 
graphs. 

Give estimates f o r  some narrower classes of graphs, e.g., interval 

Define c d ( G )  as the min,cd,(G), and cd(n) = max{ c d ( G )  : G E %'}. 

Problem 5.4. Estimate cd(n) .  

Problem 5.5. The definition of cd,(G) can be easily extended f o r  r-uniform 
hypergraphs. Investigate cd:(n).  0 
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