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ABSTRACT

Here it is proved that for almost ali simple graphs over n vertices one needs
Q(n*"*(log n)™*"?) extra vertices to obtain them as a double competition graph of a
digraph. On the other hand O(n°’*) extra vertices are always sufficient. Several problems
remain open.

1. DEFINITIONS

The competition graph of a digraph D =(V, A) is a graph G =(V, E) where
{x, y} € E if and only if x +* y and for some v € V both xv and yv € A. It is easy
to see that, by adding sufficiently many isolated vertices, every graph G can be
made into the competition graph of an acyclic digraph, e.g., let V(D)=VUE
and let ve be an arc in D if e € E and v € e. Thus the competition number, k(G),
is defined to be the smallest integer k so that G together with k isolated vertices,
G U I,, is a competition graph of a digraph.

The double competition graph of a digraph D = (V, A) is the graph G =(V, E)
where xy € E if and only if x # y and for some u, v € V, the arcs ux, uy, xv, and
yv € A. The double competition number of a graph, dk(G), is the smallest
integer k so that GU [, is the double competition graph of some digraph. A
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184 FUREDI

simple construction shows that for all graphs G one has
dk(G)<2|E|. .y

The neighborhood graph, N(H), of an (undirected) graph H = (V, E) is the graph
G =(V, E(G)) where {x, y} € E(G) if and only if x # y and for some v € V both
{x,v} and {y, v} € E. One can define the embedding number g(G) of any graph
G to be the smallest integer for which there is a graph H on |V(G)|+ g(G)
vertices such that G is isomorphic to an induced subgraph of N(H).

A wheel W, is a cycle of length » — 1 with an additional node adjacent to every
node on the cycle, (n =4).

The set of all (labelled) graphs over the elements {1,2, ..., n} is denoted by
4" Obviously, |4"| =2 G" denotes any member of ¥". The statement “almost
all graphs have property P” means that there exists a sequence €,, ¢,, . . . tending
to 0 suc?n )that the number of graphs G” € 4" having property P is at least
(1—¢,)2"%.

The degree of a vertex x of the graph G is denoted by deg(G, x) or deg(x) for
short. For digraphs deg’(x) denotes the outdegree. The neighborhood of x is
denoted by N(G, x) or N(x). As usual, w(G) denotes the size of the largest
complete subgraph in G. The induced subgraph G|S is a graph with the vertex set
SN V(G) and with the edges of G contained in S.

A finite affine plane of order q is a pair (P, o) where P, the point set, is a
q°-element set and &/, the line set, is a family of ¢-element subsets covering every
pair in P exactly once. There are affine planes for each prime power order. The
set of lines can be decomposed into g +1 g-element subfamilies consisting of
pairwise disjoint lines. These are called parallel classes.

2. RESULTS

The competition and double competition graphs of digraphs have been studied by
numerous authors, mainly from a practical point of view. A survey may be found
in Raychaudhuri and Roberts [10], or in other papers and books of Fred Roberts.
A recent Ph.D. thesis on this topic was written by Kim [9]. Usually, it is required
that the associated digraphs are acyclic, so one can define dk,(G) = min{k: such
that there exists an acyclic digraph over |V(G)|+ k vertices inducing G as its
double competition graph}. We have that

dk(G) = dk,(G) .

As a theoretical approach, to obtain the possible most general result, we will omit
this constraint. Diny [4] calculated the dk,(G) for some classes of graphs, all of
them have double competition number dk,(G) =2. Jones et al. [7] showed that
the complete 3-partite graph has large double competition number.

2 vm=aefx(3.2.2) = (o)

Here we give asymptotic description of the behavior of dk(G) (and dk,(G)).
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Theorem 2.1. For almost all graphs G € 4" one has dk(G)>0.1n*"*(log n)™*",

Theorem 2.2. For each graph G € 4" one has dk,(G)=< 2+ o(1))n’">.

3. PROOF OF THEOREM 2.1

We are going to use two simple lemmas from the theory of random graphs (for
the proofs, see Bollobas [2]).

Lemma 3.1. For almost all graphs G € 4" the following holds. Every set
S CV(G), |S|>101log n contains at least |S|*/5 edges of G. .

Lemma 3.2. For almost all graphs G € 4" the clique number o(G)=<2logn. =

In this section “log” means logarithm with base 2.

Denote by #(v,d) the set of all directed graphs on the vertex set
{1,2, ..., v} such that all arcs start from or end at {1,2, ..., n} =[n] and every
out- and indegree restricted to [n] is at most d. This means that |[N"(x) N [n]| < d
and [N~ (x) N [n]| = d holds for every x € [v]. Obviously,

2v
l%(v, d)ls<2> <n2dU=22dUlogn )

Let ¢, denote the set of all graphs G € 4", such that

(D). |E(G|S)| = }|S|? for all |S|>10logn,

2). w(G)=<2logn,

(3). G is not the competition graph of any digraph D € #(v,d) with n=v =<
(1), and vd < n’/(101log n).

Claim 3.3. 9 contains almost all graphs.
Proof. This is obvious from the Lemmas and from the fact that in (3)

2 I%(U, d)| < n420.2n2 — 0(2(;)) .. =
v,d

Claim 3.4. For G € 4} one has dk(G)> n*">(log n) */10.

Proof. Suppose that G is the double competition graph of the digraph D.
Without loss of generality we may suppose that V(D )\V(G) does not contain any
arc of E(D). Let V(D)={1,2,...,v}, V(G)=[n]. Denote the maximum
restricted outdegree of D by d* (i.e., d* =max, [N (x) N[n]|), the maximum
restricted indegree d , and d = max{d*,d"}.

If d < n**(logn)'”>, then D € ¥(v, d), so the property (3) implies that

v = n?/(10d log n) > n*"*(log n)™*'%/10 .
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186 FUREDI

If d=n""(log n)m, then suppose that d =d" and d=|N"(x) N [n]| for some
x € V(D). Then N™(x) N [n] contains at least d*/5 edges of G, by (1). All of these
edges are contained in some N (y) as well, so we have that

< <=3 (M OOM O,

By (2), the right-hand side is at most v(%) < vw’/2 =2v(log n)’. This implies
again that v =0.1d%(log n)*. n

4, THE CONSTRUCTION FOR THEOREM 2.2

Let g be the smallest prime power such that ¢g°(g +2)=n. By addmg isolated
vertices to G, we may suppose without loss of generality, that |V(G)| = q (g +2).
Divide V(G) into g + 2 equal parts, V(G)=V,U....UV,,,, |V =4"

Let &, be a copy of an affine plane of order g on the point set V,,
(1=i=gq+2). A has g +1 parallel classes. Label these classes by the integers
{1,2,...., ¢+2}\{i}, and denote them by &,, %,,,..., %, ., Each parallel
class, £, consists of q pairwise disjoint g-sets L, ..., L;,. Now we are going
to deﬁne the vertex set of the digraph D. Let V(D) V U AUB U U U W where
these five sets are pairwise disjoint, V=V(G), and |A|=|B|=(?;%)¢’, |U| =
|W|=(q+2)(%). Divide A (and B) into disjoint g-sets, i.e.,

A=UA

ijopB

where 1=i<j=q+2,1=<a, B=gq. (Similarly, B= U B;,,;.) As L, and A
are both ¢ element sets one has a bijection a,,,, between them, i.e.,

ijep
ijafB

Aijap = {aija[; (x):x€ Li].a} .

Similarly, B,z = {,,5(y): y € Lz}, where again 1=i<j=gq+2. Divide U
(and W) into g +2 equal parts, U=U, U.. . UU_, (W=W, U...UW,_,,). As
U, has ("2/"]) elements there exists a bijection u; between U, and the pairs of V,,
i.€.,

U ={ufx,y):x,yEV,x#y},

where u,(x, y) = u,;(y, x). Similarly, W, ={w,(x, y):x, yEV, x # y}.
Now we are going to define the set of arcs, D. There will be arcs from A U U to
V and from V to BUW. Put an arc from a;,,(x) to x, and to N(x)N L,;,.
Moreover, put an arc from u,;(x, y) to x and y if {x, y} is an edge of G contained
in V,. Similarly, we have all the arcs (y, b;;,5(y)) fory € L5, from N(y) N LW
],aﬂ(y) and from x and y to w,(x, y) if {x, y} is an edge of G contained in V,.
We claim that the double competition graph induced by D is just G with the
additional isolated vertices A U B U U U W. This implies that

dk,(G)=|V(D)| = ¢’(g +2)(2q + 1) = (2 + o(1))r’" .
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It is clear that all the induced edges are in V. It is also clear that the edges of G
are induced. Indeed, if {x, y} € E(G), x, y €V, then the four arcs (u,(x, y), x),
(ux, ¥), ¥), (x, w;(x, y)) and (y, w,(x, y)) induce {x, y}. f x€V,, y€V, for
some 1 =i <j=gq+2, then consider the lines of £, in V, and £, in V. For some
a@and B (1=a, B=gq) we have x€ L;;, and y € L,;;. Then, by definition, there
are arcs from a,,,(x) to x and to y(€ N(x) N L;;;) and from x(€ N(y)N L,,)
and y to b;,5(y).

The only thing remained to check is that D does not induce more edges than
E(G). The arcs from U to V and V to W could not imply more than the edges
inside V, (1=i=<gq +2). Suppose that the arcs from a vertex of A, say from
a,,5(x), and the arcs to a vertex of B, say to b, (y) imply an edge e, e £ E(G).
By definition, N™(D, a,,5(x)) = {x} U(N(G, x) N L), and the pairs {x, y} with
YEN(G,x)N L, belong to E(G). So e CN(G,x)N L;,. Similarly, eC L.
Hence these two lines of the affine plane have large intersection (=more than 1
element). They must coincide, L, = L,; and so (j,i)=(t,5). On the other
hand, recall that j > i and ¢ <s, so (], i) # (¢, s). This contradiction completes the
proof. .

In the above construction the following fact was utilized implicitly.
Claim 4.1.  Suppose that G” is a bipartite graph. Then dk,(G") < n.

Proof. Denote the parts of G" by A and B, i.e., AU B=V(G"), and all the
edges go between A and B. Duplicate A and B, i.e., let A, = {a(x) : x € A} and
B, ={b(y): y € B}. Then the following digraph over AU BU A, U B, induces
G"

E(D)=:{(a(x), x): x € A} U{(a(x), y) if (x, y) € E(G")}
U{(y, b(»): y € B} U {(x, b(y))if (x, y) € E(G")} . .

5. PROBLEMS

Given a graph G =(V, E). Define its clique dimension in ¢ rounds, cd,(G), as
follows.

t
cd,(G)=min > n;,

i=1

such that there are families of,, . .., o, || = n, such that each edge e € E is
covered by each family (i.e., for all 1 <i =1 there exist an A, € &, withe C A4,),
but this does not hold for the nonedges. It is obvious that

cd(G)=<|E|+t—-1,

more generally
cd (G)=cd, (G)+ cd,_,(G).

Moreover,
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cd,(G) - |V| = g(G) = cd\(G),
cd,(G) - |V| = k(G) = cd\(G),
and
% cd,(G) — |V| = dk(G) = cd,(G) .

Define ¢d,(n) = max{cd,(G): G € §"}. The problem of determination of cd,(G)
was posed by several authors (see [11]). For example, Boland, Brigham, and
Dutton [1] determined that g(W,)=|25%]. The true order of magnitude of
cd,(n) was proved by Erdos, Goodman, and Pésa [5].

cd,(n)= [%2] .

For a related problem about clique decomposition see Chung [3], GyOri and
Kostochka [6], and Kahn [8].

Problem 5.1. Determine cd,(n) for almost all graphs.
Lemma 3.2 implies that it is at least Q(n”/(log n)*). P. Erdos (private com-
munication) showed that the upper bound O(n”log n) is immediate from stan-

dard results from the theory of random graphs.

Problem 5.2. Give estimates to cd,(n). Especially, close the gap, if possible,
between Theorem 2.1 and 2.2.

Probably, using the arguments of this article it can be shown that there is an
absolute constant ¢ > 0 such that cd,(n) = Q(n'" ).

Problem 5.3. Give estimates for some narrower classes of graphs, e.g., interval
graphs.

Define cd(G) as the min,cd,(G), and cd(n) = max{cd(G): G € §"}.
Problem 5.4. FEstimate cd(n).

Problem 5.5. The definition of cd,(G) can be easily extended for r-uniform
hypergraphs. Investigate cd;(n). 0=

ACKNOWLEDGMENTS

The author would like to thank to W. T. Trotter, Jr. for communicating the
problem and for several stimulating discussions. The author is also indebted to
Andrzej Rucifiski for pointing out an error in the proof of 2.1 in an earlier version
of this article.

85UBD 17 SUOWILLOD aA 181D a|aeal|dde ay) Aq pausench ae sapile YO 9sn Jo Sa|ni 10y Akeld 1T auljuQ A8]IAA UO (SUOTIPUOD-pUe-SULIB)WOD AS | IM"Aeiq Ijou1[Uo//:Sd)y) SuonIpUuoD pue swe | a1 89S *[6202/90/2T] uo AriqiauluQ A8|ia ‘1 sioul||] JO AiseAIuN Aq S0Z0TOOYZE ©S1/Z00T OT/I0p/Wod A3 | 1M AReiq 1 jpuljuo//sdny wouy pepeojumoq ‘Z ‘066T ‘8T#Z860T



COMPETITION GRAPHS AND CLIQUE DIMENSIONS 189

REFERENCES

[1} J. W. Boland, R. C. Brigham, and R. D. Dutton, The difference between a
neighborhood graph and a wheel, Congressus Numerantium, 58, 151-156 (1987).

[2] B. Bollobis, Random Graphs, Academic, London, 1985.

[3] F. R. K. Chung, On the decomposition of graphs, SIAM J. Algebraic Disc. Meth., 2,
1-12 (1981).

[4] D. A. Diny, The competition-common enemy graph, Discrete Applied Math. (to be
published).

[5] P. Erdds, A. Goodman, and L. Pésa, The representation of a graph by set intersec-
tions, Canad. J. Math., 18, 106-112 (1966).

[6] E. Gyori and A. V. Kostochka, On a problem of G. O. H. Katona and Tarjan, Acta
Math. Acad. Sci. Hungar., 34, 321-327 (1979).

{7] K. F. Jones, J. R. Lundgren, F. S. Roberts, and S. Seager, Some remarks on the
double competition number of a graph, Congressus Numerantium, 60, 17-24 (1987).

[8] J. Kahn, Proof of a conjecture of Katona and Tarjan, Periodica Math. Hungar., 12,
81-82 (1981).

[9] Suh-Ryung Kim, Competition graphs and scientific laws for food webs and other
systems, Ph.D. Thesis, Dept. of Mathematics, Rutgers University, New Brunswick,
NJ, October 1988.

[10}] A. Raychaudhuri and F. S. Roberts, Generalized competition graphs and their
applications, in Methods of Operations Research 49 (P. Bruckner and R. Pauly, eds.),
Anton Hain, Konigstein, West Germany, 1985, pp. 295-311.

[11] F. S. Roberts, Applications of edge coverings by cliques, Discrete Appl. Math., 10,
93-109 (1985).

Received November 28, 1988
Revised August 6, 1989

85U8017 SUOWILIOD 3A1eR1D) 8|qedldde auyy Aq peusenob a e sajoie YO ‘8sn Jo S9N 10} Al 8UIIUQ AB]IM UO (SUOIPUOO-PUR-SLLIBY WD A8 1M ARIq 1 U1 IUO//SANLY) SUORIPUOD PUe SWis | 8y} 88S *[5202/90/2T] uo Ariqiauliuo A8|IMm ‘1 sioul]|l JO A1sieAIun Aq S0Z0TO0YZE©S1/200T OT/I0p/wod A8 | imAte.d 1 pul|uoy/sdiy Wwoiy pepeojumod ‘Z ‘066T ‘8T+Z860T





