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Abstract 

Frankl, P. and Z. Filredi, A sharpening of Fisher’s inequality, Discrete Mathematics 90 (1991) 

103-107. 

It is proved that in every linear space on v points and b lines the number of intersecting 
line-pairs is at least (z). This clearly implies b 2 v. 

1. Definitions 

A hypergraph W is a pair (V, Z), where V is a finite set, called vertices, and 8, 

the edges, is a family of non-empty subsets of V. It is called linear (or O-l 

intersecting) if IE rl E’I c 1 holds for all pairs {E, E’} c %. H is &intersecting if 

IE n E’J = il for all pairs. For a set S c V let 8[S] denote the family of edges 

containing S. The degree of the vertex x is deg(x) = I ‘2T[ {x}]l. H is k-uniform if for 

every edge E E 8, [El = k. The dual of the hypergraph H, H*, is obtained by 

interchanging the roles of vertices and edges keeping the incidences, i.e. 

V(H*) = ‘Z(H) and 8(H*) = { E[x]: x E V}. 
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A linear space L = (P, 2) is a linear hypergraph consisting of at least 2-element 

sets such that I_‘?@, y][ = 1 hold for all pairs. In this case the vertices are called 

points, the edges are called lines. It is called trivial if 121 = 1, i.e. .Y= {P}. A 

near pencil is a linear space having a line with (P( - 1 points. A finite projective 
plane (of order q) is a linear space over q2 + q + 1 points, the same number of 

lines, each line having q + 1 points. 

2. Preliminaries, results 

In 1948 de Bruijn and Erdiis [4] proved that for every nontrivial finite linear 

space L = (P, .Y), one has 

1~1~ IPI. (2.1) 
Moreover here equality holds if and only if L is either a finite projective plane or 

a near pencil. This result is called sometimes the non-uniform Fisher’s inequality, 

as the proof of the uniform case is due to him [6]. (His inequality applies to 

general intersection size.) The dual of (2.1) says that if (V, ‘ZY) is a l-intersecting 

family consisting of at least 2-element sets then 

181 =s IV. (2.2) 
Because of its simplicity, the de Bruijn-Erdiis theorem has plenty of applications. 

There is a growing number of different proofs, whose methods and applicability 

go far beyond the theory of designs and finite geometries. (We mention e.g. the 

books by Crawley and Dilworth [5], Lov&z [ll].) Varga [18] proved that for 

every line L, E .3 of maximal cardinality there are at least (PI - 1 lines 

intersecting it. Ryser [16] gave a complete characterization of O-l-intersecting 

families, in which every set is intersected by all but one edge. Seymour [17] 

proved that every O-l-intersecting family (V, 8) contains at least ( ‘iSI/ VI pairwise 

disjoint members. (This generalization is related to the ErdGs-Faber-Lov&z 

conjecture, see [7].) A weighted version was proved by Kahn and Seymour [lo]. 

Fiiredi and Seymour (see in [lo]) proved that for an intersecting hypergraph 

(V, ‘8) one can find a pair {x, y} c V such that I~[x, y]l> I%l/lVl. Another 

version of (2.1) and (2.2) became known as Motzkin’s lemma [13]. 

The most interesting and fruitful proof was given by Majumdar [12] and Ryser 

[15]. Using linear algebra they proved (2.2) for A-intersecting families. Their 

method was greatly generalized by Ray-Chaudhuri and Wilson [14], Frank1 and 

Wilson [9]. For recent developments see Alon, Babai and Suzuki [l], Babai [2], 

Babai and Frank1 [3], Wilson [19]. 

In this note another sharpening of (2.2) is proven. 

Theorem. Suppose that E,, . . . , E, is a l-intersecting family (i.e. lEi n EjI = 1 for 

all i #j) of sets having at least 2 elements, moreover n Ei = 0. Then the number of 
pairs covered by the Ei’s is at least (y). 

There is already an application of this theorem (see [S]). 
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3. Proof 

We return to the original proof given in [4]. Let V = {xl, x2, . . . , x,} denote 

the underlying set of the l-intersecting family. Denote the cardinality of the edge 

Ei by ei, and the degree of xi by d,. Without loss of generality we may suppose 

that 

e, Se . a2 e,, 

and 

d, 2 d, 2. . . ad,,. 

Obviously, we have 

(3.1) 

(3.2) 

c ei = c di. (3.3) 

We do know that m G n. The main point in the original proof is that for every i if 

ei > 0, then 

ei 2 di. (3.4) 

holds. For the reader’s convenience a proof of (3.4) is given in the Appendix. 

Let v(N, n) be the set of vectors x = (x1, . . . , x,) with nonnegative integer 

coordinates such that C xi = N and x1 > x2 2. . .S x,. We say y covers x if there 

exist coordinates 1 s u < u c it such that 

{ 

xi + 1 for i = U, 

y, = xi - 1 for i = 21, 

xi otherwise. 

Define the partial ordering of v(N, n) as follows. y >x if there exists a sequence 

x=x0, Xl, . . . ) x, =y such that xicl covers Xi (i = 0, 1, . . . , s - 1). This is the 

usual notion of majorization in v(N, n). 

Define the function f(.~~, . . . , x,) = Ci (2). Then the following is trivial. 

Lemma 3.5. Zfy >x then f(y) >f(x). 

Proof. Lemma 3.5 holds for any convex function g(x) : R --, R whenever f(x) = 

CigCxi)* o 

Proof of the Theorem. Let N = C e, = C di. Then we have that 

e = (e,, e2, . . . , en*, 0, . . . , 0) > d = (d,, dZ, . . . , d,, . . . , d,). 

Then Lemma 3.5 implies that 
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Here the left-hand side is the number of pairs covered by {E,, . . . , E,}, and the 

right-hand side is the number of intersections, i.e. (7). 0 

Appendix. Here we recall the proof of (3.4). For x $ E we have 

deg(x) s IEl. (3.6) 

Let E be any edge not containing {x1, . . . , xi}. Then (3.6) gives that IEl zdi. So 
(3.4) follows if we have at least i such edges. This settles the case i = 1. For i > 1 

suppose that there are only at most i - 1 such edges. All the other edges contain 

{XI> . . . 9 xi}, so we have m = i. Then min,,, dj = 1, yielding e, 2 2 > di = 1. 

4. Remarks, problems 

Conjecture. Suppose that H is a (nontrivial) A-intersecting family with m edges. 

Then the number of covered pairs is at least (y). 

Can we obtain in this way a purely combinatorial proof for the Majumdar- 

Ryser theorem? Can we have in this way a new approach to the A-design 

conjecture? (See [15].) As a first step, is there a linear algebraic proof for the 

Theorem? 
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