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Abstract. What is the densest packing of points in an infinite strip of width w, 
where any two of the points must be separated by distance at least 1 ? This question 
was raised by Fejes-T6th a number of years ago. The answer is trivial for w < x/3/2 
and, surprisingly, it is not difficult to prove [M2] for w = nx/3/2, where n is a positive 
integer, that the regular triangular lattice gives the optimal packing. Kert6sz [K] 
solved the case w<x/2. Here we fill the first gap, i.e., the maximal density is 
determined for x/3/2 < w -< x/3. 

1. Preliminaries, Results 

The open circular disc on the Eucl idean plane with radius r and center p is 
denoted by C(p, r). A family ~ of circular discs is called a packing if its members  
are pairwise disjoint. Instead of looking for the largest n u m b e r  of pairwise disjoint 
circles of diameter  1 conta ined  in a (bounded)  region A we can consider  the 
fol lowing equivalent  form: let R be the region consist ing of points p of A with 
C(p, ~) c A, and then we are looking for the largest n u m b e r  of points  in R where 
any two of  them are separated by distance at least 1. Such a set of points  is called 
a point-packing (in R),  and  the size of the largest is denoted  by p(R). We use 
this latter terminology.  The density, d (P, R),  of  a poin t -packing P in R is defined 
as IP]/area R. Let d(R):=p(R)/area R. We use the fact that (see [F3]) 

2 
d(whole  plane)  - , - .  (1.1) 

, /3 
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Formula (1.1) means that for every point-packing P on the plane and 
(bounded) convex region R we have lima ~ d(P n )tR) <- 2/x/3. Here 2 /v~  = (area 
of  the regular hexagon of  width 1)- ~, the density of  the regular triangular lattice. 

For w, x - 0 let Rw.x denote a (closed) rectangle with sides w and x. For brevity 
d(w, x) and p(w, x) stand for d(R~,,,) and p(R~,.,~), respectively. It is easy to see 
that the following limit exists: 

lim d(w, x)=:  d(w). (1.2) 
X ~ C C 5  

Indeed, p(w, x) is a positive, monotone nondecreasing function of x and 

p(w, x)+p(w, y)>-p(w, x + y) 

and 

p(w, x)+p(w, y) <_p(w, x + y+ 1). 

These properties imply (1.2) and, even more, the following bounds: 

d(w)wx<~p(w, x) <- d(w)w(x + 1). (1.3) 

Example 1.1. Let n = [2w/x/-3] and let T be a set of  �89 1 ) (n+2)  points of 
the triangle lattice packing of points onto a regular triangle of  side n. Then let 
us place triangular blocks of  points congruent to T touching alternately the two 
bordering lines of the strip (of width w), such that the distance between the 
closest points of two neighboring blocks is 1. (See Fig. 1.1. The segments indicate 
unit distances.) 

This example is due to Moln~ir [M1]. Denote the density of Example 1.1 by 
do(w), i.e., 

( n + l ) ( n + 2 )  
d~ = w(n + x / 4 -  (2w - nx/3)2)" (1.4) 

Fig. 1.1 
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I f  2w/x/3 is an integer, then d o = ( n + l ) / w ,  and Example 1.1 turns out to be a 
part of  the triangular lattice. Clearly, do(w)<-d(w) holds. Our aim is to prove 

Theorem 1.2. For w <- x/3 we have do(w) = d(w).  

This is an improvement of  a result of Kert6sz [K]. The proof  is postponed 
until Section 2. The case w ~ x/3/2 is trivial. Indeed, consider the strip 

S(w) =: {(x, y): 0-< y-< w}, 

and a point-packing P in S(w). If  p~ = (xi, yi) E P, then [xi - xj[-> x/]--z-~, so Rw.~ 
contains at most 1 + ( x / , f i -2 -~ ) ,  points of  P. 

Conjecture 1.3 [M1]. do(w) = d(w)  holds for all w. 

Molnfir [M 1 ] observed that the validity of his conjecture in the case w = nx/3/2 
(n is an integer) can be derived from the following theorem of Groemer  [Gro]: 
let %o be a circle-packing in the convex region R, then 

2 -x /3  x / ~ -  ~-(,v/-3- 1) 
[cr -<area(R) ~ pe r (R)+  4 

where per(R)  denotes the length of the boundary of R. 
Another proof  can be obtained from the following inequality due to Folkman 

and Graham [FG]. Let K be a simplical complex in the plane with p vertices, 
and with Euler characteristic y (K) .  Suppose that the vertex set of K forms a 
point-packing. Then 

2 
p <- ~ area( K ) + �89 K ) + y( K ). 

Here we give another proof  which uses only (1.1). 

Proposition 1.4. For all w > 0 we have 

2 1 
d(w)<-'-~+ w.  

Corollary 1.5 [M1]. I f  n is a positive integer, w = nx/3/2, then d ( w ) =  do(w)= 
( n + l ) / w .  

Proof of  (l.4). Let P be a point-packing in S(w). Reflect S(w) (together with 
P) to the line y = w +v/3/4,  and translate it with the vector (0, x/3/2). We obtain 
another strip S' parallel to S and with distance x/3/2. It is easy to see that 
P w P '  is a point-packing of S(2w + x/3/2). Continue this process, now with S w S' 
instead of S. Finally we obtain a point-packing P* in the upper  half-plane. 
The density of  P* is at most 2/x/3 by (1.1) and, on the other hand, d(P*)=  
d (w)w/ (w+x/3 /2 ) .  [] 
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(a) (b) (c) 

Fig. 1.2 

Historical Remark. Originally Fejes-T6th [F2] raised only the question of deter- 
mining d(1). (This is the so-called problem of parasites on dimension 2.) He had 
the wrong conjecture (see Fig. 1.2(b)). The right conjecture was proposed by 
Graham [G]. Kert6sz [K] determined the maximum packing density up to w -< x/2, 
but, unfortunately, he did not publish it. 

There are two natural generalizations of  this question in higher dimension. 
Packing spheres into a cylinder or into a d-dimensional strip, i.e., a layer Both 
questions seem to be hopeless in general, but, surprisingly, for a small diameter 
the exact results were known earlier for d->3 and then for d = 2. Horwith [HI ]  
described the densest point-packing into a d-dimensional cylinder of diameter 
at most 1 for d -> 3. The case d = 3 was a Schweitzer competition problem in 1966 
proposed by Heppes and Fejes-T6th [HF]. Molnfir [M1] determined the 
maximum density in a three-dimensional layer of  width at most l/x/2. Horvfith 
[H2] has some estimates for the case d = 4. More problems and further back- 
ground can be found in the survey paper  of  G. Fejes-T6th [F1], and in the 
problem book of Moser and Pach [MP]. 

2. Sketch of the Proof 

We will prove four lemmas about the densest point-packings in S(w). The first 
lemma says that in an extremal configuration most of  the points must lie on the 
boundary of the strip. So we can describe the structure of  those point sets. The 
second step is to partition the strip into rectangular regions (but not necessarily 
into rectangles), which contain at most six points. The third one is a technical 
lemma which enables us to eliminate almost all the tiring calculations when 
checking configurations having a few points. It says that an extremal configuration 
must be rigid. The last lemma says that the density of  the packing in each 
rectangular region is at most do(w). 

Most of  the standard arguments and calculations are omitted, the unproved 
propositions are indicated by a I .  

Instead of an infinite strip we deal with the shortest rectangle containing 
given number, say s, of points. Then let s tend to infinity. Define 

lw(s) =: inf{x: p(w, x) -> s}. 

For example, / l (1)  = l , ( 2 )=0 , / , ( 3 )  = x/9/2,/1(4) = 1,/1(5) = x ~ , / , ( 6 )  =2.  By (1.3) 
we have 

s 

d(w)<~ wlw(s)" (2.1) 
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We will prove that for x/-3/2 < w-<x/3 we have 

l w ( s ) ~ ( l + ~ 4 - ( 2 w - x / 3 ) 2 ) - O ( 1 ) .  (2.2) 

Then (2.1) and (2.2) imply the theorem. 
As lw(s) (and so d(w))  are cont inuous functions of  w we can assume that 

W ~ x/'3. 

Pushing the Points to the Boundary 

For a point p on the plane, x (p )  and y (p )  denote its coordinates.  Let P, IP] = s, 
be a point-packing in the region S(w, l,.(s)), i.e., 0 < x (p )  <- l,,(s), and 0-< y(p)<- 
w. Choose  P such that 

Z min{y(p), w-y(p)} (2.3) 
p~P 

is minimal. (Such a P exists.) 
Split S into two half-strips; the lower half-strip S~ = {(x, y) c S: 0 <- y <- w/2} 

and the upper  half-strip Su = {(x, y) ~ S: w/2 < y <- w}. Clearly, if p, p '  c P belong 
to the same half-strip, then 

I x ( p )  - x ( p ' ) l -  ~/1 - ( w / 2 )  ~ > 1. (2.4) 

We call p and p' consecutive in SI if the region $1 c~ {(x, y):  x (p )  < x < x(p ' )}  does 
not contain further elements of  P (and, o f  course, x ( p )  < x(p ' ) ,  p, p ' c  P). We 
define consecutiveness analogously  in Su. A point  p = (x, y)  c P is an inner point 
i f 0 < y < w .  

Lemma 2.1. Two inner points o f  P in the same half-strip are never consecutive. 

Proof. We deal with only S~. Assume that a, b, c c P c~ Sj are consecutive points. 
The fol lowing two proposi t ions  are easy. 

Proposition 2.2. Suppose that b lies below (or on) the line ac. Then b is on the 
boundary. �9 

Proposition 2.3. Suppose b lies (strictly) above the line ac. Then b', the image of  
b after reflecting it to ac, is below the real axis. �9 

Proof of  Lemma 2.1. Assume on the contrary that b, c ~ S j n  P are consecutive 
inner points,  y(b)<<-y(c). Denote  by a the point  which precedes b. ( I f  such a 
point  does not exist, then b is the first point,  and it is easy to see that y ( b ) =  O, 
a contradict ion.)  I f  b is below or on the line ac, then we can apply Proposi t ion 
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2.2. So we may assume that b is above the line ac. Then y(a)<y(b)<-y(c) .  For 
the image o f  b, b',  we have y(b') >-- y(a) >-- O. This contradicts Proposi t ion 2.3. [] 

The following fact is trivial. 

Proposition 2.4. Let a, b, c be three consecutive points, where b is an inner point. 
Then the length of ab or bc (or both) is 1. �9 

Decomposition of the Strip 

First define S ~ the essential part of  S~, by S O =: {(x, y) E S~: there exist p~, P2 ~ P 
on the real axis such that x(p~)<-x<x(p2)}. That is, we do not consider the 
points of  S~ at the very ends. By Lemma 2.1 we have 

[P s~ [P s,I- 3. (2.5) 

Next, decompose  S O into rectangles using the following cuts. If  p ~ P lies on the 
boundary  (i.e., on the real axis), then cut S O into two pieces {(x, y) :  x < x((p)} 
and {(x, y) :  x-> x(p)}.  Cont inuing this process we arrive at a rectangle partition, 
~ ,  o f  S ~ Let B(R) =: {(x, 0): (x, y) e R} be the projection of  the rectangle R. We 
call it the base of  R. For  all R ~ ~ the base B(R) is an interval [ I (R) ,  r(R)). 
Denote  the lower left (right) corner of  R by p(R) (p*(R),  resp.). For all R we 
have p(R)~Rc~P,  but note that  p+(R)~R (see type II  in Fig. 2.1). Each R 
has one o f  the following properties:  

(i) The only point  o f  P contained in R is the lower left corner  p(R). 
(ii) I P n R I = 2, and the second element o f  P, denoted by v(P), is an inner point. 

Analogously  we can define a partition, ~u ,  of  the essential part o f  the upper  
half-strip, S ~ (The base o f  an R c ~u is also a segment of  the real axis, but  p(R) 
denotes its upper  left corner.) Let ~ denote ~l  u ~u .  We call two rectangles in 

neighboring if their un ion  is connected.  We say that R ~ ~ adjacent to R '  e ~ ,  
or  R ~ R '  for short, if [P c~ R[ = 2 and v(R) ~ B(R'). Note that this relation is not 
necessarily symmetric, it defines a directed graph, ~d, with the vertex set ~ .  
Moreover ,  if R is adjacent to R' ,  then they are lying in different half-strips. 

The aim of  this section is to define the crucial not ion of  the proof,  the 
cell-decomposition of  S O = S O u S ~ First we define the set o f  cells, ~. Every cell 
C is the union  of  at most  three rectangles f rom ~ .  These cells cover So, but a 
point  is not  necessarily covered by only one cell. Later we see how to construct 
a ~ ~  ~ which is a parti t ion o f  S ~ This ~o is called the cell-decomposit ion.  

Definition 2.5. 
Type I: 

Type I I: 
Type I I I :  

There are six types of  cells in %. See Fig. 2.1. 
C = R, where R e ~ has proper ty  (i). 
C = R u R ' ,where  R '  has proper ty  (i), and R ~ R'. 
C = R ~ u R 2 u R ,  where R has proper ty  (i) and R~-~R, R2~R.  
Moreover ,  we will see in Proposi t ion 2.7 that R~ and R2 are 
neighbors,  and B ( R ) c  B(R~)u  B(R2). 
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! 
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Type IV 

-I- f 

R 

R~ R 2 

Type V 

Fig. 2.1 

I 

I 

J-  . . . .  

Type IV: 
Type V: 

Type VI: 

C = R u R', both have proper ty  (ii) and R + R' .  
C = R 1 k) R 2 u R, where all have proper ty  (ii) and R1 -+ R, R ~ R : .  
Moreover ,  we will see in Proposi t ion 2.9 that R~ and R2 are 
neighbors,  and x ( v ( R ) )  lies between x(v(R1))  and x(v(R2)).  
C = R ,  where R has proper ty  (ii), and lies at the end of  its 
half-strip. 

Lemma 2.6. There exist a cell-decomposition cr 

The above six types contain 1, 3, 5, 4, 6, or 2 points of  P, resp. In the next 
section we see that in types I -V  the density of  P is at most  do(w), which together 
with Lemma 2.6 implies Theorem 1.2. The rest of  this section is devoted to the 
p roo f  of  Lemma 2.6 via a series of  proposit ions.  Our  main tool in the proofs 
about  the structure o f  P is (2.3). 

Proposition 2.7. Suppose that the rectangles R~ and R2 have property (ii) and 
x (v (R t ) )  < x(v(R2)).  Suppose further that P does not have any element p in the 
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other half-strip with x (v (R l ) )  < x(p)  < x(v(R2)).  Then Rl and R2 are neighbors. 
Moreover, there exists an R having property (i) such that R, RI, and R2 form a 
cell of  type I I I .  �9 

Proposition 2.8. Suppose that R2-> R, where R has property (ii). Then 

Ix( R 2 ) -  x( R )l < l. �9 

Proposition 2.9. Suppose that RI, R2, and R have property (ii), and R 1 ~ R ~ R2. 
Then Ri and R2 are neighbors and x( v( R ) ) lies between x( v( R1) ) and x( v( R2) ), 
i.e., R I w R2 ~ R form a cell of  type V. �9 

Proposition 2.10. Suppose that R ~ ~ has property (ii) and R~-> R, R2-~ R. Then 
RI and R2 are neighbors and x (v (R) )  lies between x(v(R1)) and x(v(R2)) , i.e., 
R l w  R2u  R form a cell of  type V. �9 

Consider  now the undirected adjacency graph go over  ~ ,  which can be 
obta ined  by deleting the directions of  the edges of  ~g, and identifying the mult iple 
edges created. 

Proposition 2.11. ~qo consists of a (vertex) disjoint union of  paths and isolated 
vertices. �9 

Proof of  Lemma 2.6. We define ~0 using go. I f  R c ~. is an isolated vertex of  
~go, then it forms a one-e lement  cell of  type I or VI. I f  a path of  go consists of  
rectangles of  p roper ty  (ii) only, then it can be easily d e c o m p o s e d  into vertex 
disjoint subpaths  of  lengths 2 and 3, which cor respond  to cells o f  type IV and 
V, resp. Finally, if the pa th  R 1 , . . . ,  R ,  in go contains a rectangle R, having 
proper ty  (i), then it is the only member  of  this type. Moreover ,  R~ - R~+I for  i < t 
and R~+1 -~ R~ for i -> t. Then  starting at any end we can chop a subpa th  of  length 
2 which does not contain R,. This subpa th  cor responds  to a cell in ~0 
of  type IV. We keep doing this until the rest o f  the original pa th  is either R, 
a lone or with one or two of  its neighbors.  Then the remainder  of  the path  forms 
a cell of  type I, II  or I I I ,  resp. [] 

The Rigidity of  the Extremum 

Assume that,  given a set o f  vectors in the plane,  P = {Pl, �9 �9 Pn}. Assume further  
that  P satisfies (finitely many)  l inear inequalit ies 

(pj, aj) >- b for i e I (2.6) 
j=l 
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and also satisfies some quadratic inequalities of  the form 

l ip,-p,I]  ~ b,j (2.7) 

for 1~  i , j  <- n. Such a system is called a {al, b', bo, I, n}-packing,  or briefly an 
L-packing. We call the system of  vector functions {pj(t)}, where 1 <-j-< n, a smooth 
motion of  P if: 

(o~) There exists an e > O  such that p j ( t ) : ( - e , + e ) - ~ R  2 is a cont inuous 
function,  for all j. 

(13) p;(O) = pj. 
(y)  pj(t) has a first derivative at t=O,  i.e., there exists a vector vj such that 

p,(t) = p, + tvj + o(t) .  
(6) The system {p,(t): 1 <-j-< n} is an L-packing for all ttl < ~. 

Proposition 2.12. Suppose that {pj(t)} is a smooth motion o f  the L-packing P. 
Then the linear ,system {pj + tvj} is also a smooth motion. �9 

The set of  all L-packings is denoted by H. From now on we assume that the 
set H is nonempty  and compact  (in R2"). An inequality o f  (2.6) or (2.7) is called 
P-exact (or briefly exact),  for some L-packing P c  H, if it holds with the equality 
for P. A smooth  motion P(t)  is called a proper motion if it keeps all the exact 
inequalities o f  P of  type (2.6), and there exists an exact inequality o f  type (2.7), 
for which vi ~ vj. For example,  a translation of  P is never a proper  motion.  A 
proper  mot ion always rotates some of  the exact segments pipj. I f  P has no proper  
motion,  then it is called rigid. Let f ( P )  be a linear function, i.e., f ( P ) =  
~:j (u jx(p j )+  vjy(pj))  for some real constants uj, vj. 

Lemma 2.13. f takes its minimum over II in a rigid pO. �9 

Each Cell has a Low Densi ty  

This heading is slightly misleading, since it is true only for types I-V. The lower 
(upper) base o f  a cell C ~ ~ is the union of  bases o f  the rectangular components  
o f  Cc~S~ ( C c ~ S u ,  resp.). It is denoted by BI(C) (Bu(C)  resp.). I f  C is of  type 
I or VI then one of  its bases is empty. We have 

area C =2 (IB,( C)I+IB ( C)I). 

We prove that the density of  a cell is at most  do(w) in the following form. 

Lemma 2.14. Let C be a cell o f  type I, II ,  I I I ,  IV or V. Then 

IB,(C)I + Inu(C)l IP ~ c ]~ (1  +x /4  - (2w - x/3)2). (2.8) 
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P r o o f  Denote  the coefficient o f  I P n  C] in inequality (2.8) by p(w),  or briefly 
by p. In the p roof  we have to check separately all five cases. 

Case  I. C = R, where R has type I, then IB(R)I-> 1. For (2/x/3) < w < x/3 we have 

l > p ( w ) >  2/3 .  (2.9) 

In the next four  cases our  main tool is Lemma 2.13, because the problem of  
minimizing IB,(c)l+ IBu(C)I for all C with a given type can be reformulated as 
the problem of  minimizing a linear function over the set of  all L-packings for 
some special L. 

Case  II. C = R • R ' ,  where R ~ R ' .  Let p l = p ( R ) ,  p z = p ( R ' ) ,  p s = v ( R ) ,  p4 = 
p + ( R ' ) ,  P5 = p * ( R ) ,  and p~ = (x~, y~). Then we have 

I lp , -pj l [  ~ 1 for all ir  

y ~ = y s = 0 ,  O<- y3 <-- w / 2 ,  x~ <- x3 <- xs ,  

Y2 = Y4 = w, x2 ~ X 4 ,  

X2~ X3~ X4~ 

x3=0 ,  Ix, l-<3 for all i. 

(2.1o) 

The first line o f  these inequalities says that { p ~ , . . . ,  Ps} is a point-packing,  the 
second and third describe the structures o f  R and R '  (resp.), the fourth says that 
R - - , R ' ,  and the last one makes the domain  compact .  It is only a technical 
constraint because we would like to minimize the linear funct ion 

X 4 - -  x2qt-  x 5  - -  X1 , (2.11) 

We claim that the min imum value o f  the funct ion in (2.11) over the constraints 
o f  (2.10) is at least 3p, which finishes Case II. Before we proceed with the p roof  
o f  this claim, note that instead of  (2.10) we can state somewhat  stronger constraints 
(e.g., we know that strict inequalities hold in the second and the third rows) but  
the above inequalities obviously describe the structure o f  the celt C, and we 
wanted to keep the compactness  of  the domain  o f  the feasible solutions in order  
to make use o f  the possible application o f  Lemma 2.13. Further,  to reduce the 
number  o f  local minimums we can weaken the first line o f  (2.10) as follows: 

Ilpi-pjll~l for ( i , j )  ~ {(1, 3), (3, 5), (2, 3), (3, 4), (2, 4)}. (2.10a) 

As x 4 - x 2  ~- 1, we may  add to the constraints of  (2.10) that 

x5 - xl -< 3p - 1 < 2. (2.12) 
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2 4 

1 3 g " - 

Fig. 2.2 

Lemma 2.13 implies  that  there  exists a r igid o p t imum of  system (2.10)-(2.12).  I f  
y3 = w/2,  then l y , - y 3 l > - x / 1 - ( w / 2 )  2 for all i ~ 3 .  Hence  

X 4 - -  X 2 -~- X 5 - -  X 1 ~ 4,/1 - ( w / 2 )  2 > 3O(w). (2.13) 

So we may assume that  Y3 < w/2.  For  the po in t  p~ = (x~, 0) the only const ra in t  is 
the fol lowing:  liP1- P3 [I -> 1 and xl-< 0. Therefore  in the op t imal  solut ion we have 
that  [ [ P , - P 3 1 I  = 1. Similar ly,  I ]ps-p311 = 1. Then the only rigid conf igurat ion is 
ob ta ined  with Y3 = w - x ~ 3 / 2  (see Fig. 2.2). For  this conf igurat ion the value of  
(2.11) is just  3p. 

The rest of  the cases require  more ca lcula t ions  but  the a rguments  are essent ial ly  
the same. []  

Proof o f  the Theorem. By (2.5) all but  at most  six points  of  P are con ta ined  
in a cell of  %00. Moreover ,  by Lemma 2.6 all but  at most  four  cells o f  ~0 have 
types I -V.  Then Lemma 2.14 implies  that  

area([,_] C ~ >-�89 t - 14). 

This implies  (2.2). []  
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