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PAIR LABELLINGS WITH GIVEN DISTANCE*

ZOLTAN FUREDI,** JERROLD R. GRIGGSt AND DANIEL J. KLEITMAN}

Abstract. Given a graph G and d € Z%, the pair-labelling number, r(G,d), is defined to be the
minimum n such that each vertex in G' can be assigned a pair of numbers from {1,...,n} in such a way
that any two numbers used at adjacent vertices differ by at least d. We answer a question of Roberts
by determining all possible values of r(G,d) given the chromatic number of G. The answer follows by
determining the chromatic number of the graph that has pairs of integers as vertices and edges joining
pairs that are distance at least d apart. For general t € Zt, the analogous questions for f-sets instead of
pairs are considered. A solution for general ¢ is conjectured which, for d = 1, reduces to Lovasz’s theorem
on Kneser graphs.

1. Introduction. There has been a considerable effort [CR,R1] to study properties
of “T-colorings” of graphs, in which each vertex of simple graph G = (V| E) is assigned a
“color”, denote it as f(v), where f(v) is a positive integer and for every edge {v,w} € E
the value of |f(v) — f(w)] is restricted to some set T'. Fred Roberts [R2] has proposed an
analogous problem in which each vertex v is assigned an unordered pair of integers as its
color, subject to the restrictions that adjacent vertices never receive the same or adjacent
integers. The proposed problem is motivated by the task of assigning channel frequencies
without interference. Our investigations here will find a close connection between this
theory and Kneser graphs. '

Throughout th_e paper, sets denoted by interval notation, such as [1,n], are restricted
to integer values. For a set S and valuet € Z, (‘f) denotes the collection of all (unordered)
t-subsets of S. All graphs G = (V, E) are simple and undirected, i.e., E C (}).

A pair labelling of a graph G = (V, F) is a function f: V — (Z;). We are interested in
pair labellings such that no vertex receives a label that is too close to that of a neighbor.
The distance between two pairs A,B C (22+) is defined to be the minimum value of |a — b
over all @ € A and b € B. A pair labelling f of a graph G has distance d(f) where d(f) is
the minimum, over all edges {v,w} € E, of the distance between the pairs f(v) and f(w).
We wish to study, for given graph G and distance d, the minimum number n such that
there exits a pair labelling f with distance d(f) > d and max, f(v) = n. That is, we seek
to minimize n such that there exists f: V — -([15"]) with d(f) > d. Let (G, d) denote this
minimum.
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~ More generally, for any t € Z*, a t-labelling of a graph G is a function F:V - (Z+)
We may extend the definitions above to distance between t-sets and distance d(f) of a t-
* labelling f. Let ry(G, d) denote the minimum n such that there exists f : V — ([1 "]) with
" d(f) 2 d. Notice that the special case ¢ = 1 and d = 1 is the familiar one of vertex-coloring

o - for graphs, so that ri(G, 1) = x(G), the chromatic number of G. Of course, r2( G, d) is the

.- ..same as r(G,d).

. "How can we efficiently label the complete graph K;? Given ¢ and d, one can: ass:gn
4'the ﬁrst t mtegers to some vertex, skip the next d — 1 integers, assign the next t integers

;_;to a second vertex, skip the next d — 1 integers, and so on. It is easily checked that no

- other-labelling of a complete graph is as efficient. Hence re(Ki,d) = kt + (k — 1)(d - 1),

" and the given labelling is the only one that attains r4( K%, d) up to permuting the vertices.

‘The same labelling strategy works more generally for any k-chromatic graph: Given a k-
" coloring of V, one can replace the first color by the first #- -integers, then skip d— 1 integers,
and replace the second color by the next t-integers, etc. We have proved the followmg
.resuit

PROPOSITION 1.1. Let t,d,k € Z*. Suppose G is a graph with x(G) = k.- Then
' 4r¢(G d) £ kt+ (k —1)(d — 1), and this bound is sharp for G = K. []

This establishes the close connection between the chromatic number and labelling
niurabers. In the special case ¢ = 2 and d = 2 it is the motivation for the problem posed
o by Roberts [R2]: Determine the range of possible values of r{G,2) for arbltrary k where

~ k=x(G). |

‘In the next section we explore the connection between t-labellings and graph homo-

S 'morphlsmms For labellings we state our main theorem, which answers Roberts’ question.

- More generally, for arbitrary d we determine the range of possible values of v(G,d) for
~graphs G with given chromatic number. The proof is reduced to one essential lemma that

- 'gives a lower bound on the chromatic number of a particular class of graphs. The lemma,
- 'which is of independent interest in light of its connection to Kneser graphs, has a purely

'_::gra.ph—theoretm proof, given in Section 3. Further discussion of pair labellings follows in

" Section 4. The paper concludes with a conjecture about what happens for ¢-labellings

. for general t. A weaker version of the main theorem for pair labellings can be proven for

' general t. A purely graph-theoretic proof of the general conjecture would be surprising,
- since the conjecture yields the chromatic number of Kneser graphs as a special case.

2. f-labellings, Graph Homomorphisms, and the Chromatic Number. When
~one studies vertex-labellings of graphs, it is often helpful to consider graph homomor-

B - phisms. That is the case here. A graph homomorphism from a graph G = (V,E) to a

~graph H = (W, F) is amap g: V — W that sends edges to edges, i.e., for all {v,w} € E,
{9(v),9(w)} € F. We say G is homomorphic to H if there exists such a homomorphism
~ from G to H. In this language, a graph G has a k-coloring, i.e., x(G) < k, if and énly if

G is homomorphic to K. For related work on homomorphisms, see [A], [G], [HN].
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In a similar way we may view t-labellings as homomorphisms to the graph of labels.
We introduce the ¢-graph G4(n,d) with vertex set V = ([1 't“]) and edge set E that contains
every pair {A, B} € (g) such that the distance between A and B is at least d. If { = 2
we suppress the t and write G(n,d), which we call the pair graph. It follows from the
definitions for any G,t,d,n that r(G,d) < n if and only if G is homomorphic to the {-
graph Gy(n,d). For the case proposed for study by Roberts, ¢ = 2 and d = 2, we discuss
characterizations by homomorphisms in more detail in Section 4.

Given this homomorphism characterization of t-labellings, it is clear that the chromatic
numbers for the t-graphs Gi(n, d) are of particular importance in our study. Suppose ¢,d, k
are given and n is the smallest value such that x(G:(n,d)) = k. Then consider any graph G
with ry(G,d) < n. G is homomorphic to G¢(n —1,d), which is (k — 1)-colorable and hence
homomorphic to Kx_;. By composition, G is homomorphic to Ki_y, i.e. x(G) < k— 1.
Thus the range of possible values of r(G,d) for graphs G with x(G) is contained in the
interval [n, kt + (k — 1)(d — 1)].

For pair labellings we can determine the minimum value n above and show that for
this n, x(G(n,d)) = k, so that this n is one of the attainable values of r{G,d) for given
k. Then we prove by induction on k that every value in the interval is attained. We now
state our main result which contains the answer to Roberts’ question.

THEOREM 2.1. Let d,k € Z%. Suppose the graph G has x(G) = k. If k = 1, then
r(G,d) =2. If k > 2, then r(G,d) € [d(k — 1) 4+ 3,d(k — 1) + k + 1], and all values in this
interval are attained by suitable graphs G.

Proof. If k = 1 and x(G) = k, then G consists of one or more isolated vertices.
Trivially, r(G,d) = 2 for all d in this case. Then suppose £ > 2 and x(G) = k. By
Proposition 1.1, r(G,d) < d(k — 1)+ k¥ + 1, and this bound is sharp. Next we show
that r(G,d) =2 d(k — 1) + 3. In view of the discussion above, this follows by bounding

x(G(d(k — 1) + 2,d)) above by k — 1. We now prove a more general result that applies for
all .

PROPOSITION 2.2. Let t,d,k € Zt. Then
x(Ge(d(k—1)+2t —2,d)) < k—1.

.Proof of Proposition. It suffices to describe a suitable (¥ — 1)-coloring of the vertices
of Gy(d(k —1)+ 2t — 2,d). For 1 < m < k — 2 assign color m to all vertices (¢-subsets)
{i} < i3 < --- < 14} such that i; € [d(m — 1) + 1,dm]. The remaining uncolored vertices
form the set (1), where I = [d(k —2) + 1,d(k — 1) + 2t —2]. Let A € ({) be any such
vertex. Then at least d + ¢ — 1 elements of I are within distance d — 1 of some element of
A. Since {I| = d 4 2t — 2, any other vertex B € (f) contains some element within distance
d — 1 of A. Hence every vertex in ({) may be assigned color & — 1. J
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) -“We have shown that the bounds in the theorem are correct, and that the upper bound
<8 sharp Next we prove that the lower bound is also sharp. We must show there is a-graph
.G such'that x(G) = k and r(G,d) = d(k — 1) + 3. Such a graph G must be homomorphic

- '-“_to G(d(k — 1) + 3,d), which by Proposition 2.2 has chromatic number at most k. If we

. ¢an establish that x(G(d(k — 1) + 3,d)) = k, then this graph can be the G we seek. ThlS
- follows from:

 LeuMa 2.3. Let d,k € Z¥. Then x(G(d(k ~ 1) +3,d)) 2 k.

II‘he proof of this lemma is the most demanding part of our paper, and we devote Sectxon

3 to it. Assume here that this lemma is true. To complete the proof of the theorem it then
i - remains to produce k-chromatic graphs that assume the intermediate values of the pair

.' _labelling number, r. We prove this by induction on k. For k = 1 and 2 the only possible -

| e &élues for r(G, d) are 2 and d + 3, respectively, so we know they are realized by suitable G
et '(e g., K1 and K3, respectively).

<+ Assume for induction that k > 2 and every value i in the interval [d(k~1)+3, d(k 1) +

SR k+ 1] is realized by a suitable graph G; = (V;, E;). Attach a new vertex w that is adjacent

. 1o all of Gy, i.e., let G} = (V/, E}), where V! = V; U {w} and E] = E; U {{v,w} : v € V}}.

S It follows immediately that

X(G) = x(Gi) =k +1,
and (G =r(Gi,d)+d+1=14d41.

" " Hence the graphs G} all have chromatic number & + 1 and exhibit the following values of

= : "r(G ‘d)': {dk+ 4,dk +(k + 1) +1]. This includes all values in the interval except ‘dk + 3,

- fwhlch is handled by Lemma 2.3. []

_ Proof of Lemma 2. 3. We interpret the lemma in the following way: . Pa:rs
in [1 n] correspond to edges in the complete graph K,. So we must show that for all
~d,k > 1 it is impossible to partition the edges of K, into k& — 1 graphs G, i.e., E(K,) =

0 TE(G)U -+ U E(Gre1), when n = d(k — 1) + 3, such that no G; contains distinct edges
© . eand f unless |a — b| < d for some a € ¢,b € f. When edges e, f have Ja = b| < d

for some a € ¢,b € f, we say that the edges are "close” to one another, and otherwise,

- . "they are "far”. In these terms, we seek to prove that there is no ¥ — 1-coloring such that
2o 7 all edges of the same color are close to one another. For d = 1 the desired result, i.e.,
0 xX(G(k +2,2)) =k, is a special case (t = 2) of the well-known result about Kneser graphs

{cf. Sec. 5). For the sake of completeness we supply a direct proof here. For d > 2 we
. ;prove the result for a more general class of graphs by induction on k.

“First suppose d = 1 and n = k + 2. We use induction on k. The result is trivial for

'k =1. Suppose k > 2. Suppose E(K,)=E(G)U---UE(G,,) where m < k—1 and for
oo alld any two edges in E(G;) intersect. Then the edges in any color class E(G;) either form
S - atriangle or a star (i.e., have a common vertex). Since [E(K,)| = (k-gz) >3(k—1) 2 Im,
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some color class must be a star through some vertex j. Then the partition of E(Ky)
induces a partition of the edges in the subgraph of K,, on vertices [1,n]/{j} into just
m — 1 < k — 2 color classes, which is impossible by induction on k. Therefore m > k, and
hence x(G(k + 2,1)) = k as claimed. a

Let d > 2. For our induction on k to succeed we must consider edge-colorings of a
larger class of graphs, called cut-graphs. Suppose V = {iy,i3,...,%4}, where 1 € 1; <
i < --- < iy < n. A cut between vertices that are consecutive in V, say between i j and
ij41, written'i; | i;4,, will mean two things. First, the edge {i;,1;41} is removed from
the graph. Second, vertices below the cut, including i;, are considered far, i.e., distance at
least d, from vertices above the cut, including ;4.

Consider an example. Let d = 3 and V = {1,4,5,6,8,9}. The graph G = 1,45, 6|8]9
has six vertices and three cuts. Thus E(G) is (g) except for {4, 5}, {6,8}, and {8,9}. Due
to the cuts, the edge {4,8} is now far {distance at least d = 3) from {5,9}. The cuts make
the graph easier to color by removing edges, yet harder to color by increasing distances.

We shall complete the proof of the lemma By proving for d > 2 this stronger statement:

PROPOSITION 3.1. Letd>2,k>1,andn 2 d(k—1)+3. Let V CZ% with [V| =n.
Let G be any cut-graph on vertex set V. Then any coloring of E(G) with distance d
requires at least k colors.

Proof. We assume that V = [n] in order to make it as easy to color G as possible. For
example, the graph G’ = 1,2|3,4|5|6 is no harder to color than G = 1,4(5,6|8|9. Indeed,
far edges such as {1,8} and {4,9} in G are close in G'. More precisely, any feasible coloring
of G induces a feasible coloring of G'.

With d > 2 fixed, suppose first that £ = 1, n > 3. To prove one color is required it is
enough to show there is an edge in any cut-graph on [1, 3]. If there is no cut, {1,2} is an
edge. If there is one cut, the two vertices on'the same side of the cut determine an edge. If

there are two cuts, they are 1|2 and 2|3. Then {1,3} is an edge. Hence at least one color
is required.

We induct on k. Suppose & > 2 and that the proposition holds for ¥ — 1. Let n >
d(k — 1) + 3, and let G be any cut-graph on [1,n]. Suppose, for contradiction, that G has
an edge-coloring with k£ — 1 colors, E(G) = E(G1) U --- U E(Gg—1), where any two edges
in any G; are close to one another. We say a set of vertices S C [1,n] is heavy for color i,
written S € H;, if putting into G; every edge in G that meets some vertex in S maintains
the property that the distance is at most d — 1 between any two edges in E(G;).

The interval [1,n] is partioned into subintervals, which we call sections, by the cuts
in G. Suppose some section S has j vertices, say {a + 1,...,a + 7}, where 2 < j < d.
There is some edge e with both ends in S, say e € E(G;). Since every edge in E(G;)
is distance at most d — 1 from e, it follows that every edge in E(G;) meets S. We now
remove S and all edges that meet S from G. If a > 1 and a4+ j 4+ 1 < n, then also remove
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o -_'-_;the edge {a,a+j + 1} and insert a new cut aja + j + 1. We have a new cut-graph call it
S GLAl edges in E(G,) were deleted along with some others possibly, so the color classes
~'_E(G2) U+ UE(G- 1) induce a (k — 2)-coloring of E(G’) with distance d. However, the

eut- graph G’ has n — j > d(k — 2) 4 3 vertices, and by induction on k, it requires at least

.k -1 colors for E(G'), a contradiction. Therefore we may assume hereafter that each

| ‘sectlon in G has only one vertex or else at least d+ 1 vertices.

- Suppose now that G has single vertex section on both ends, i.e., 1|2 and n— 1|n Then

e {1 n} is an edge, say {1,n} € E(G,). All vertices in [2,n — 1] are distance at least d from
o1 anid i, so every edge in E(G;) contains 1 or n. Thus the induced subgraph G of G on
" [2,n—1] is a cut-graph, and the coloring induced by E(G) uses only k —2 colors. However,
c |V(G')] = n -2 > d(k —2) + 3, so by induction at least k — 1 colors, are reqmred for G,
i a contra,dactlon

. We assume for the remainder of the proof that at least one end say the end begmnmng
at 1 has at least d + 1 vertices in its section. Suppose there is a cut near the other end,

i, n'=1jn. The edge {1,2} belongs to G, say {1,2} € E(G1). To be closer than distance

_. d to {1,2}, every edge in E(G,) must meet [1,d+1]. Thus every vertex in [2, d] is distance
~_at most d — 1 from every edge in E(G;). It follows that [2,d] € Hy, so we may recolor

every edge meetmg [2,d] by color 1 and still have a vahd coloring. Assume we have done
~ “this.

.. Since k > 2, we have n > d 4 3, so the edge {l,n} is in E(G). If {1,n} ¢ E(Gl), say
- A1,n} € E(G,), then every edge in E(G;) must contain 1 or n. But then the k — 2 color
. classes E(G1)UE(G3)U- - UE(G—1) cover all edges in the induced subgraph G on [2,n— -1],

e contradiction to our induction hypothesis. Therefore, we must have {1 n} € E(Gy). If
. “every edge in E(G;) meets [1,d], then the k — 2 color classes E(G3)U---U E(G~ 1) cover
-+ ‘the induced subgraph on [d + 1,n], which is a contradiction by mductlon It then must be
i _:that some edge in E(G;) avoids [1,d], and the only possibility is {d+1,n} € E(G), since
o ”--:no other edge avoids [1,d] yet is close to {1,2} and {1,n}.

L Suppose first that there is a cut d4+1|d+2. Then every edge in E(G,) meets [2, d]U {n},
. éxcept {1,d+1} if it belongs to E(G1). Remove vertices [2,d]U{n} and the edge {1,d+1},
_and replace them by a cut 1|d 4+ 1. The edges of this cut- graphonn—d > d(k+2)+3

NE .- 1-;,'rvertxces have a coloring with Just k —2 colors induced by G, which contradicts our induction
e -_hypothes1s

Therefore there can be no cut between d+1 and d + 2. They then form an edge in

o .G which is too far from {1,n} to be color 1. Suppose, say, {d + 1,d + 2} € E(G3). All

-_'edges meeting [2, d] are color 1. So in order to be near {d+1,d + 2}, every edge in E(G3)
- must meet the set [d+ 1,p], where either p = 2d + 1 or else d +2<p< 2d and [1,p] is the

R :' -;sectlon before a cut p|p + L

-+ Let ¢ = min{p,2d}. Then every vertex in [d+2, ¢] is distance at most d — 1 from every
' edge' in E(G3), so that [d+ 2,¢] € H,. ‘We may recolor every edge that meets [d - 2, g] by

Hi “color 2. (The purpose of this recoloring is to get edges {1,7}, j € [d+2,q], out of E(G,).)
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Now the only edge in E(G;) that avoids [2,d] U {n}, if any do, is {1,d +1}. So, as in the
previous case, there is a (k — 2)-coloring induced on the subgraph obtained by removing
[2,d] U {n} and inserting a cut d + 1|g. But there can be no such (k — 2)-coloring of the
subgraph, by the induction hypothesis, so we have a contradiction.

At this point we notice what the cut "bought” for us: an easy argument to reduce
to the case that there is no cut near either end of [1,n]. We assume now there are no
cuts in [1,d + 1] or [n — d,n]. The edges {1,2} and {n — 1,n} belong to E(G) and are
different colors since n > d 4 3. If k = 2, then there are at least two colors, and we are
finished. Otherwise k > 3, and suppose {1,2} € E(G,), {n — 1,n} € E(G;). As before,
we find [2,d] € H; and similarly [n —d +1,n — 1] € Hy. We may therefore recolor all
edges meeting {2, d] by color 1 and then all edges meeting [n —d + 1,n — 1} by color 2. If
{1,n} € E(G3), say, then every edge in E(G3) meets 1 or n, so that by removing 1 and n
we get a (k — 2)-coloring of a cut-graph on n — 2 vertices, a contradiction to our induction
hypothesis. Therefore, {1,n} is color 1 or 2, say {1,n} € E(G;). We now proceed exactly
as before: We replace [2,d]U{n} by a cut 1|d+1, eliminating all edges in E(G,). We carry
out this replacement immediately if there is a cut between d + 1 and d 4 2. Otherwise, if
{d+1,d +2} € E(G), then it is a new color, say {d + 1,d + 2} € E(G3); we recolor all
edges meeting [d+ 2, ¢] by color 3, with ¢ as above, and then replace [2,d]U {n}. We obtain
a (k — 2)-coloring of a cut-graph on at least d(k — 2) 4+ 3 vertices, the same contradiction
to our induction hypothesis as before. '

In every case we have reached a contradiction, so at least k colors are required to color
E(G), and the proposition follows. {J '

This completes the proof of the lemma. [

Remarks. A slightly stronger statement than the proposition can be proven by a similar
argument. We can take away more edges every time there is a cut. Specifically, fix d and
aset V= {i,...,1.} € [1,n]. Then we may require that a cut ¢;|i;4; omits not just one
edge but omits every edge {¢{j4+1—q,%;45} Wherea 21,5 > 1, a + b < d, and no other cut
separates ij41—, and i;44. Return to the earlier example, G = 1,4|5,6(8|9 with d = 3.
Then edges {1,5}, {4,6}, and {5,8} are also omitted besides {4,5}, {6,8}, and {8,9}, as
before. However, {6,9} is not omitted becuase two cuts intervene. The statement and
proof of the proposition hold as above with this new definition of cut, even though the
graphs have fewer edges in general. '

It is also worth noting that the proof of the lemma is deceptively simple.‘ Without

introducing cut-graphs, there is no approach clearly available. Working on the ends at 1,2
and n — 1, n also appears to be crucial to the argument.

For d = 1, the case of Kneser’s graph of pairs, the proof of the lemma is rather easy. For
the case originally proposed by Roberts, d = 2, the lemma states that x(G(2k +1,2)) > k.
This graph G(2k + 1,2) induces on the subset ({1’3’5’“2"2""'1}) of its vertex set a graph
isomorphic to G(k + 1,1). So we easily obtain x(G(2k + 1,2)) > x(k +1,1) = k- 1.

7




: fHowever obtaunng the desired lower bound of % in this d = 2 case seems to be essentially

o : .' _as dlfﬁcult as the problem for general d.

4. Palr Labellings with Distance 2. We now discuss the consequences of the

; : ﬁndlngs -above for the original problem of Roberts concerning pair labellings with distance
-2 of graphs with given chromatic number. It follows from our main theorem that for graphs

G with x(G) = k the pair labelling number, r(G,2), must be 2 if k = 1 and if k > 2, it

. may assume any of the k — 1 values in the range [2k + 1,3k — 1]. The upper bound in this

‘range; 3k — 1, is attained by the complete graph Kj. Of course any k-chromatic graph
-~ that contains K} must also requires 3% — 1 labels. The lower bound in the range, 2k + 1,
_' 1is attained by the “pair graph”, G(2k + 1,2), that was our main object of study.

- Another interesting family of graphs is the set of complements of odd cycles.  For

A ok > '3, Rich Lundgren [Lu] found that the complement of the (2k — 1)-cycle, Czk;{.l,

" has chromatic number k and pair labelling number 3k — 2, just one below the maxirmim
value. Here is a labelling that achieves the minimum: Consecutive vertices receive pairs

{1,2),{3,4),{4,5}, {6,7}, {7,8}, ..., {3k — 3,3k — 2}, {3k — 2,1}. Indeed, we can show

- that this labelling is the unigue labelling of C3x—_; on [1,3k — 1], up to isomorphism of the
I -.-graph but we omit the tedious details. '

_ Trivially, the 1-chromatic graphs G, which consist of isolated points, have rG,2) =
- ~~while the 2-chromatic graphs G, which are bipartite graphs with at least one edge, have
 1(G,2) = 5. Next consider graphs G with x(G) = 3. We have seen in this case that r(G, 2)

R “is T or 8, with r(G,2) = 7 if and only if G is homomorphic to the graph G(7,2), shown in

e Flg 1. There is a simpler characterization due to the fact that G(7,2) is homomorphic to
_ (’the cycle Cs: It is easy to find a pair labelling with distance 2 for G(7,2) using only the
_'-"pa.n‘s on lts five-cycle, i.e., 12,67,34,17, and 45. Hence we have the following result.

e PROPOSITION 4.1. Suppose G is a graph with x(G) = 3. Then r(G,2) = T if and only
L .1fG is homomorphlc to Cs; else r(G,2)=8.[ '

For mstance if Gis an odd cycle Cop_1, k = 3, then 7(G,2) = 7. I G contains a

N I(trla,ngle and x(G) = 3, then r(G,2) = 8. In Fig. 2 we show a 3-chromatic graph G which

“is triangle-free, yet r(G,2) = 8, as there is no homomorphism to Cs (cf.[G]). Incidentally,

2 it was shown in 1981 by Maurer, Sudborough, and Welzl that the problem of determining
-2 swhéther a graph G is homomorphic to Cs is NP-complete in the size of G ([MSW], cf.[A]).
‘ e ‘Heénée, determining whether (G, 2) < 7 is NP-complete.

. For general k, graphs G with x(G) =k and r(G,2) =j,2k+1<j<3k—1,are, asin

b f"g'énéi‘al, characterized as those G with y(G) = k that are homomorphic to G(3,2) but not

- t0'G(j — 1,2). For general j this condition can be somewhat simplified since the graphs

- -G(j,2) are homomorphic to some smaller graph H, as we saw above for § = 7. However,

‘nio nice description of suitable graphs H; for general j is evident.
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Fig.1. The graph G(7,2).

Fig.2. A triangle-free, 3-chromatic graph with »(G,2) = 8.

5. A Conjecture for ¢-labellings. A weaker version of Theorem 2.1 holds for general
t. It follows from Propositions 1.1 and 2.2 and from the discussion preceding Theorem 2.1.

THEOREM 5.1. Let t,d,k € Z+. Suppose the graph G has x(G) = k. If k = 1, then
r(G,d)=t. Ifk > 2, thenry(G,d) € [d(k —1)+ 2t —1,d(k — 1) + kt — k + 1]. The upper
bound is attained by K. []

For t = 1, the interval in the theorem consists of a single point, d(k¥ — 1) + 1. For
t = 2, Theorem 2.1 shows that all values in the interval are attained. For k = 2, the

interval again consists of a single point, d + 2¢ — 1. Therefore, it is reasonable to propose
the following conjecture:

CONJECTURE 5.2. All values in the interval in Theorem 5.1 are attained by suitable
graphs G.




_ If this conjecture holds, then the lower bound in Theorem 5.2 holds for some graph G
~with x(G) = k. The same reasoning that we gave prior to the statement of Lemma 2.3
would then imply the following conjecture that generalizes Lemma 2.3.

CONJECTURE 5.3. Let t,d,k € Z+. Then x(Gy(d(k —1) + 2t — 1,d)) > k.

N .. Conjecture 5.3 appears to be shghtly weaker than 5.2 because the argument we gave
- to ‘deduce Theorem 2.1 from Lemma 2.3 daes not generalize for values of ¢ > 3. However,
it may not be difficult to deduce 5.3 from 5.2.

‘ For d = 1, Conjecture 5.3 is the famous theorem conjectured by Kneser{K| and first
.. proved by Lovéasz[L]. The graphs G4(n,1) are known as Kneser graphs, and in other no-
. .tation they are denoted by K(n,t) [FF| or by KGyn—_2¢ [S]. Bérany [B] gave a simpler
- proof. Schrijver [S] found a vertex-critical subgraph of the Kneser graph. Generaliza-
tions of Kneser’s conjecture have been given recently in [FF] and [AFL]. All known proofs
“use topological methods, relying on versions of the Borsuk-Ulam Theorem. Therefore, a
- purely graph-theoretic proof of our conjectures would be surprising. Perhaps there is a
~ direct topological proof or one that follows from some of the work referenced above.
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