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T H E  SECOND AND T H E  THIRD SMALLEST DISTANCES ON T H E  S P H E R E  

Zolts Fi i redi  

Let sl  (n) denote the  largest  possible minimal  distance among n dist inct  points  on the  unit  
sphere S 2. In general,  let s~(n) denote the supremum of the k- th  min imal  distance.  In 
this pape r  we prove and disprove the following conjecture of A. Bezdek and K. Bezdek: 
s2(n) = s l ( I n / 3 ] ) .  This equali ty holds for n > no however s2(12) > s1(4). 

We set up a conjecture for s~(n), tha t  one can always reduce the problem of the k- th  
m in imum dis tance to the  function s l .  We prove this conjecture in the case k = 3 as well, 
obta ining tha t  s3 (n) = sl  ( [ n / 5 ] )  for sufficiently large n. 

The op t imal  construct ion for the largest  second distance is obta ined  from a point  set of size 
In~3] with the largest  possible min imal  distance by replacing each point  by three vertices 
of an equi lateral  t r iangle of the same size r If r -* 0, then s2 tends to sl([n/3]). In the 
case of the  th i rd  min imal  distance, we s tar t  with a point  set of size ~n/5] and replace each 
point  by a regular  pentagon.  

I. INTRODUCTION, RESULTS 

Let 7) be a finite point  set on the 2-dimensional unit sphere ~2 in ]~3. The  spherical  

distance between the points  x , y  E S 2 is denoted by d(x,y). Consider  the set of distances 

between the points  of 7), 0 (7 ) )  = {d(x ,y)  : x,y e 7),x ~ y}. Order  the  elements in 

D(7)) = {dl, . . . ,dt} such tha t  dl < d2 < "-- < dr. Then dt is the diameter o f T '  and  the 

k- th  smallest  distance,  dk is denoted by sk(7)). (If t > k, define s~(7)) = c~.) So s1(7)) is 

the min imum distance. 

Let sk(n)  denote  the  supremum of the k- th  smallest  dis tance in n-point  sets on the  sphere,  

sk(n) = sup{sk (P)  : 17)[ = n, 7 ) C S2}. The problem of finding sl(n) was raised by 
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Tammes [11] in 1930. The exact value of s l (n )  and the ext remal  a r rangements  are known 

for a couple of small  values of n. (The cases n = 5, 7, 8 by Schiit te and  Van der Waerden 

[10], n=10 ,  11 by Danzer  [5,6], n = 11 by B6r6czky [3], n = 24 by Robinson [9] and 

n = 3, 4, 6,12 by L. Fejes T6th  [8].) Here we will use the asympto t ic  result 

8~ 
(1.1) s l ( n ) - - - - ( l + o ( 1 ) )  x / ~ n  

This formula  means  tha t  l im n s l ( n )  ~ = 87r/x/3. L. Fejes T6th  proved the following 
n - - ~ o o  

(1.2)  s (n) < arc cos 5 6 

which yields the upper  bound  in (1.1). The lower bound  can be obta ined from a hexagonal  

like packing of circles. 

The problem of s2(n) was proposed by A. Bezdek and K. Bezdek [1]. They showed tha t  

(1.3)  s (n) > s l ( [ n / 3 1 ) .  

The construct ion giving (1.3) is obta ined from an s l - ex t r ema l  a r rangement  P '  with [P'[ = 

In~3], i.e., S l ( P ' )  = s l ( [P ' ] ) .  Then,  replace each point  p E P '  by an equilateral  tr iangle 

of side length ~ and with a vertex in p. Finally, let e tend  to 0. 

In [1] an upper  bound  (twice the right hand  side of (1.2)) was proved. Obviously, 82(1) = 

. . . .  82(4) = oo, and  82(5) = 82(6) = zr = 180 ~ because it cannot be larger. A. Bezdek 

and K. Bezdek proved tha t  82(9) = 81(3) = 2zr/3, and they asked whether  equality holds 

in (1.3) for all n > 4. Here we determine  s2(n) for all n < 12 showing tha t  s2(12) = 

116.56. . .o > 81(4) = 109.47. . .o .  However, the conjecture is t rue for large n. 

T H E O R E M  1.1. (1) 82(7) = 82(8) = 82(9) = 120 ~ = 81(4). 

(2) Let u = tan  -1 2 = 63.43. . .~  be the m i n i m u m  distance in the ver tex  set of  a regular  

inscribed icosahedron. I f 7  ~ C S 2 is a point set of  size 10, 11, or 12, then 82(7 ))  > ~r - u. 

Equality holds i f  and only i f 7  ~ is a subset of the vertex set o f  the icosahedron. 

(3) s (17) = 82(18) = 90 ~ = 

T H E O R E M  1.2. For n > no one has s2(n) = s~([n/31).  

C O N J E C T U R E  1.3. Equali ty holds in (1.3) t'or a / / n  > 12. 

Let f ( k )  denote the largest  integer f such tha t  for all e > 0 there exists a k-dis tance 

set in S z of size f and  of d iameter  less t h a n e .  We have f ( 0 ) - -  1, f (1)  = 3, f (2 )  = 5, 

f (3)  -- 7. For large k the best  known upper  bound is O(k 5/4) due to Chung, Szemer4di and 
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Trotter [4], and it is a challenging problem to decide whether f (k)  = O(k), or not. Erd6s, 

Hickerson and Pach [7] proved some results which give support  to the conjecture that  

F~m. f (k ) / k  = oc. Replacing the points of an sl-extremal set on the sphere by congruent 

small copies of a (k - 1)-distance set we obtain sk(n) >_ s l ( [ n / f ( k  - 1)1 ). 

C O N J E C T U R E  1.4. For n > no(k)  one has sk(n) = 8 ( [ n / f ( k  - 1)]). 

T H E O R E M  1.5. For n > n l  one has s~(n)  = s l ( [ n / 5 1 ) .  

In general we can only prove a weaker upper bound. 

T H E O R E M  1.6. F o r n  > no (k )  one has s~(n)  < s~([n /6J: (k  - 1)1 ). 

This result can be easily extended in higher dimensions, though obtaining an exact formula 

for sd(n)  looks to be very difficult. The one dimensional case is easy, one has s~(n) = 27rk/n 

for n _> 2k. The only extremai configuration is the regular n-gon. 

2. A LEMMA ON THE RATIO OF sl AND s2 

Let A >_ 0 be an integer, 0 < s < re/2. Define the regular A-gon (on the unit sphere S 2) 

with center c and inscribed radius s as follows: 

for A = 0 the whole sphere, 

for A = 1 halfsphere including c such that  the distance from c to the boundary  is s, 

for A = 2 a digon with center c whose distance from the sides is s, 

for A > 3  as usual. 

We can extend these definitions to the Euclidean plane, in the cases A = 0, 1,2 the regular 

A- gon is the whole plane, a halfplane or an infinite strip of width 2s. Define the function 

A(A,  D, 8) as the area of the intersection of a regular A-gon with inscribed radius s / 2  and 

a circle of diameter D with the same center. The same function on the plane is denoted 

by A ~ ( A ,  D, s). Clearly, A ~ ( A ,  D, s) = s2A~(A,  D / s ,  1). If A and D / s  are given, then 

l~m A ( A , D , s )  _ Aoo(A,--D ,1) 
8-+0 8 2 3 

For brevity we use A(A,  x) for A ~ ( A ,  x, 1). E.g., A(0, x) = ,2~r/4, A(4, ~ )  = 1, A(6, c~) = 
v /2. 

Let 7 9 be an n-element set on S 2, si = si(79), (n > 4). Define the minimum distance graph 

Q = Q(79) with vertex set 79 as follows: two points are connected if their distance is sl. 

Obviously, every point has at most 5 neighbors, so for the maximum degree, A(Q), of Q 

we have A(Q) ~ 5. 
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L E M M A  2.1. Let 0.1 > e > 0 and suppose that n > n0(s) ,s2 < e. Then 

45/2 
s,(7)) < s l (n) (1  + e )  A(A,  s~ /s l )  " 

Proof. By (1.1) for every e > 0 there exists an no(e) such tha t  

(2.1) (1 + e ) s ~ ( n ) ~  n > Area S 2 = 41r. 

On the other  hand  for every p E 7) define its Dirichlet cell, C(p) = {q E g2 : d(p, q) = 

d(7), q)}. Let p~ , . . .  ,Pt be the neighbors o f p  in G, and let Hi be the half  sphere containing 

p which perpendicular ly  bisects PPi. Then C(p) contains the intersect ion of Hi's and a 

spherical  circle of radius s~/2 around p. Hence Area  C(p) _ A ( A , s 2 , s ~ ) .  Obviously, 

A ( A , s 2 , s l )  > A ( A ,  s2 /s l ) s~/ (1  + e). Then 

(2.2) 4~ > ~ Area C(p) > ~ A(Z~,s~/s~)s~/(1 + e). 

Finally, (2.1) and (2.2) imply  the Lemma.  [] 

3. A G E N E R A L  U P P E R  BOUND 

Here we prove Theorem 1.6. Let 7 :) be a finite point-set  on S 2, Consider  the  min imum 

( k - 1 ) - d i s t a n c e  graph G k-1 = 6(7)), two points x, y in 7 ) are connected if d(x, y) < sk-~ (7)). 

Let f ( k  - 1,e) denote the max imum size of a (k - 1)-distance set of d iameter  at most  e. 

P R O P O S I T I O N  3.1. Every  point in 6 k-~ is connected by less than 6 f ( k  - 1 , sk-~)  - 6 

other points. 

Proof. Let p E 7), and  consider a closed circle C with radius sk-1 and center p. Divide 

C into 6 congruent  pieces with 3 diagonals through p, any two of t hem have an angle 7r/3. 

Then the d iameters  of each piece is sk-1,  so it contains at most  f ( k  - 1, sk-1)  elements of 

7). [] 

Proof  of  Theorem 1.6. There  exists an e > 0 such tha t  f ( k  - 1, e) = f ( k  - 1). We have an 

no(k) such tha t  for n > no(k) sk_~(n) < e holds. Then Q k-~ does not contain a complete  

subgraph  of 6 f ( k  - 1) - 5 vertices (k >_ 2), but  every degree is not larger than  6f(k - 1 )  - 6. 

One can use Brook 's  theorem (see, e.g., in Bollobs book [2]), tha t  the  chromat ic  numbers  

of ~ - ~  is at  most  6 f  - 6. So there exists a 7 ) '  C 7 ) with 17)'1 -> ] ~ l / ( 6 f  - 6) such tha t  

~(7) ' )  >_ s~(7)). [] 
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4. THE SECOND SMALLEST DISTANCE 

Here we prove Theorem 1.2. By (1.1) we have an n2 such that  for all n > n2 

(4.1) > 1.71 
 l(n) 

holds. Suppose that  P is an arbi trary n-set on the sphere with n > n2. To prove the 

theorem we have to show that  s~(79) < ~1([n/3]) .  We may suppose that  

(4.2) s2(79) > 1.7181(n), 

otherwise (4.1) implies the Theorem. 

As sl(n) ~ 0 i f n  ~ cc we have an n3 such that  sl([n/4~) < 0.01 holds for all n > n~. 

Then  by Theorem 1.6 we have 82(79) < 0.01. So we may apply Lemma 2.1 to 79 with 

n > max{n2,n3} ,  A = 5 and E = 0.01. We have A(5,1.71) = A ( 5 , ~ )  = ( 5 / 4 ) t a n 3 6  ~ 

0 .908. . .  so by Lemma 2.1 31(79) < 31(n) �9 0.986 . . . .  This inequality and (4.2) imply that  

s2(7~)/81(79) > 1.733. . .  > V~. 

CLAIM 4.1. A(G) _< 3. 

Proof. Suppose on the contrary that  p C 79, q l , . . . , q 4  6 79 with d(p, qi) ---- S l .  If the 

distances d(qi,qj) are all at least x/3 sl then each angle qiPqi+l is at least 120 ~ a contra- 

diction. So we have, say, d(ql,qz) = sl. If d(qi,ql) (i = 3 ,4 ) i s  less than  v ~  sl then it is 

also s l ,  but  then 81 < d(q2,q~) < ~ s~ < s2, a contradiction. Hence d(ql,qj) >_ v ~  .51 f o r  

i : 1,2, j = 3,4. Then  we obtain the contradiction d(qa,q4) < sl. [] 

As G does not contain a complete graph of four vertices, Brook's theorem implies that  

its chromatic number  is at most 3. So there exists a 7), C 79, [7)11 >_ n/3,  such that  

81(79') > s l (V).  Then we have s1([n/3~) > s l (V' )  > 82(79), and the proof of 1.2 is 

complete. [] 

5. THE THIRD SMALLEST DISTANCE 

Here we prove Theorem 1.5. We are going to use the method of the proof of Theorem 

1.2 but  we have to investigate more subcases. We will use the following simple facts on 

2-distance sets 7"r on the sphere: Suppose that  the distances are u < v < 0.001. 

FACT 5.1. [T~I _~ 5. In case of equality 7~ is a regular pentagon and 

V 
(5.1) 1.6186 . . . .  2s in54  ~ < - < 1.62. [] 

u 
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F A C T  5.2. I f  [~l  = 4, then one of the following six cases holds: (See Fig. 1) 

/l~'\ / \ 

\ t / t 
\ I / / 

\ 1 /  

(i) (ii) (iii) (iv) (v) (vi) 

Figure 1 

(i) T~ consists of 2 equi la tera l  t r iangles  of side length  u, with a c o m m o n  side. 

cos~)(1 + cosy)  = 4cos ~ ~, hence 

?3 
1.732 . . . .  x/3 < - < 1.733. 

U 

T h e n  (1 + 

(ii) 7~ is a regular  quadr i la te ra l .  T h e n  1.414 . . . .  v ~  < ?3/u < 1.415. 

(iii) R consists of four  vertices of a regular  pen tagon .  T h e n  (5.1) holds. 

(iv) ~ is a convex quadr i l a te ra l  with diagonals  of l ength  ?3, and  sides u,u,v,?3. T h e n  cosu  = 

cos 2 73 + sin s v~/(1 + 2 cosy)(2 + 2 c o s ~ ) ,  hence (~/~)  ~ V/2 + V~, i.e., 

73 
(5.2) 1.931 < - < 1.932 

u 

(v) T~ is a t r iangle  of side lengths  v, v, a n d  u an d  its center  with c i rcumscr ibed  rad ius  u. T h e n  

cos?3 = cos ~ u - sin 2 u v / ( 1  + 2r u)(2  + 2 c o s u )  , hence ?3/u - V/2 + v ~ ,  i.e., (5.2) holds. 

(vi) ~ is an  equi la tera l  t r iangle  of side l eng th  73 a n d  i ts  center .  T h e n  cos 73 = 1 - 1.5 sin 2 v, 

hence 
73 

1 . 7 3 2 < -  < v / 3 - - 1 . 7 3 2 . . .  [] 
u 

By (1.1) the  l imit  of sl  ( [ n / 5 ~ ) / s l  (n) is x/~ = 2 . 2 3 6 . . . ,  so there  exists an  n4 such tha t  for 

all n > n4 

(5.3) sl([n/51) > 2.236 

holds. Suppose  tha t  'P is an  a rb i t r a ry  n-set  on the sphere with n > n4. To prove our 

theorem we have to show tha t  

(5.4) s3(~)  < s,(Vn/5~). 
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We may suppose that  

(5.5) > 2.236 1(n), 

otherwise (5.3) implies (5.4). 

By Theorem 1.6 there exists an ns such that  s3(n) < 0.001 holds for all n > nh. From 

now on we suppose that  n > max{n4,n~}. We need a definition. Let G 2 = G2(7)) b e ' a  

graph with vertex set 7 ) defined in the following way: connect two points p, q 6 P with 

an arc (with the shortest path on S 2) if d(p,q) = sl or s2. If these arcs form a planar 

representation of 62 then (by the four color theorem) there exists a 7)' C 7), ]7)'1 >- ]7)]/4 

such that  s~(7)) < s1(7)') _~ s1(17)']) _~ s~([n/51). 

From now on we suppose that  there exist two arcs ac and bd such that  {a, b~ c, d} C 7)~ 

d(ac) and d(bd) 6 {Sl, s~ } and int ~c N int b'd ~ 0. We claim that  in this case 

(5.6) s2 _~ 2sl. 

Indeed, if three of the points of a, b, c, d, are lying on a great circle, then (5.6) follows easily. 

Otherwise, we are going to use the following. 

FACT 5.3. I f  a, b, c, d form a convex quadrilateral with diagonMs ac and bd, then d( ab) + 

d(cd) < d(ac) + d(bd) and d(ad) + d(bc) < d(ac) + d(bd). [] 

a)  If  one of the diagonals is sl ,  then Fact 5.3 implies that  the sum of any two opposite 

sides is less than Sl + s2. All the four sides must  be sl,  we get that  a, b, c, d is a 2-distance 

set isomorphic to 5.2 (i). 

fl) Both diagonals have length s2. Then at least one of any two opposite sides has length 

less than s2. One can find two adjacent sides of length sl,  so (5.6) follows from the triangle 

inequality. [] 

We claim that  in ~ (not in Q 2 I) every degree is small: 

CLAIM 5.4. A(G) _~ 3. 

Indeed if p C 7) and r(p) is the set of its neighbors then p U F(p) is a 2-distance set by 

(5.5) and (5.6). Then ]p U r(p)] <_ 5 by Fact 5.1. Moreover, if ]p U F(p)[ = 5 then it is a 

regular pentagon, but in that  case [r(p)[ = 2, a contradiction. [] 

P R O P O S I T I O N  5.5. sz > sl + s2. 

Proof. We will prove that  for every Dirichlet cell D we have 

(5.7) Area D > 0.1734(sl + s2) 2. 
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This implies the Proposit ion as follows: 

1.001 ~ 1 4~r V~ 81(n)2 2 2.2362 (sl + s 2 )  2 <0.1734(s l  + s 2 )  2 < - -  < 1.001 
- -  n 2 ' 

i.e., s~ + s2 < 2.23631(n). Then (5.5) implies Proposit ion 5.5. To prove (5.7) we have two 

cases. Let p be the only point of 7 ~ contained in D. 

- -  If deg~(p) <_ 2 (i.e., p has at most  2 neighbors in 6),  then we can apply L e m m a  2.1 

with A = 2, i.e., 

Area D > A ( 2 ' s 2 ' s l )  > 0"999( slV/s~ - s~ + s ~ a r c s i n S l )  " s 2  

Here, the right hand side is larger than 0.1734(31 + s2) 2 for 0 < sl < s2 < 2sl.  

- -  If dega(p) > 3 then dega(p) = 3 by Claim 5.4. Let F(p) = { u , v , w } .  Then every 

distance in { p , u , v , w }  is either sl or s2. Then one of the following three subcases holds 

Figure 2 Figure 3 Figure 4 

(by Fact 5.2) 

\ 

- -  - -  {p, u, v, w} is isomorphic to 5.2 (i). Then D contains the intersection of 3 halfspheres 

and a circle of radius 82/2, (see Fig. 2). Hence ~ 81 < 82 < 1.7338~ and 

A r e a D  > 0.999 + - ~ -  + ~ (~ v - 2 a r c t a n ~ / 2 )  s~ 

> 0.1734(31 + 1.73381) 2 > 0.1734(,~ + ,2) 2 

> 1.48 s~ 

- -  - -  { p , u , v , w }  is isomorphic to 5.2 (v) (Fig. 3). Then 1.931 < 32/31 < 1.932 and Area 

D > 0.999(1.497...312) > 1.495s~ > 0.1734(81 + 32) 2. 

- -  - -  { p , u , v , w }  is isomorphic to 5.2 (vi). (See Fig. 4). Then v/3 81 > s2 > 1.73281, 

hence L e m m a  2.1 yields (with e = 0.001, A = 3, 82 = s~1.732) that  

31(~)  < 31(n)0.828 
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Thus by (5.5) we have 

s3 > 2.7sl .  

We claim tha t  in this case there  are no two crossing edges of G 2, a contradic t ion to our 

earlier assumpt ions .  If  { p , u , v , w }  is a 2-distance set of type  (vi) then there is no other  

type  of 4-element 2-distance set in ~ .  Consider  the  crossing edges ac and bd. The case a 

is impossible so we have tha t  s~ = d(a, b) = d(a, d), s2 = d(a, c) = d(b, d) ,.~ 1.73Sl. This is 

not  a 2-distance set so we may  suppose tha t ,  e.g., d(d,c) > s3 > 2.7s~. Then  d(b,c) < s2, 

too. I t  is easy to check, tha t  such a convex quadr i la tera l  does not exist.  The  proof  of 

Proposi t ion  5.5 is complete.  [] 

P R O P O S I T I O N  5.6. I f  ac and bd are two crossing arcs in G 2 then min{deg~2(z)  : z E 

{a ,b ,c ,d}}  < 4. 

Proos As we have seen above, we may  suppose tha t  d(a, b) -= d(a,d) = s l ,  and d(a, c) = 

sl  or s2. Then,  by Proposi t ion 5.5, {a ,b ,c ,d}  is a 2-distance set. So its type  is among 

( i)-( iv) ,  by Fact  5.2. We claim tha t  degg2(a) < 4. If e E 79 - {a ,b ,c ,d}  and d(a,e)  = sl ,  

then {a ,b , c ,d , e}  is a 2-distance set with dega(a)  > 3, which contradic ts  to Fact  5.1. 

The same argument  verifies the  case when {a, b, c,d} is similar to (i), so a has a l ready 

three neighbors of dis tance s l .  If  d(a, e) = s2 then {a, b, c, d} and {a, b, e, d} are similar 

2-distance sets. This is impossible  in the  cases (ii) and (iv), and  in the  case (iii) we obta in  

a regular  pentagon.  [] 

P R O P O S I T I O N  5.7. There exists a 79' C 79, 179'l > 179l/5 such that s1(79') > sa(79). 

Proof.  Let 79o = 7) and consider two crossing edges. An endpoint  of t hem has degree 

at most  4 (in ~2). Denote this point  by Pl and let 791 = 7 9 - {P} - {F(p)}. Repeat  

this s tep until  we have crossing edges of length at most  s2 in Pl .  Finally,  we have a set 

Q = { p l , . . .  ,Pt} such tha t  d(q,p) > s2 for q E Q, and p E 79t U Q, and 179tl > 179l - 5[Q[. 

Then,  by the  four color theorem we have a Q' C 79t, IQ'I -> [79tl/4 with s~(Q')  > s2. Then 

let 79' = Q U Q'.  [] 

Finally, Propos i t ion  5.7 obviously implies (5.4). [] 

6. THE CASES O F  n < 12, n = 17, 18 

The cases n = 17, 18. Let 7 9 C S 2, ]79[ = 17 or 18. The  chromat ic  number  of ~,  

the min imum distance graph  of 79, is at most  4. So we have a subset  79' of size at least 

I[79[/4] = 5 not  containing any distance of s l ( P ) .  We obta in  s2(79) < s1(79') <_ s~(5) = 

90 ~ . [] 
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To finish T h e o r e m  1.1, it is sufficient to consider  the  cases n = 7 and  n = 10. Let  P C S 2 

be  an  n -e l emen t  set wi th  s2 (P )  > 120 ~ (for n = 7), or  wi th  s2 > ~r - u = 116 .56 . . . o  (for 

n = 10). In  the  first case we will get  a cont rad ic t ion :  in the  second we will see t h a t  7 v is a 

subset  of  an  icosahedron .  We will use t h a t  s1(7) < 90 ~ and  s l (10)  < 70 ~ 

I f  every  degree  in G, is at mos t  3, then~ as we have  seen in Sect ion 4~ the re  is a subset  

73' C 73 wi th  [73'[ > 17)[/3, s1(73') > s1(73). In the  case o f n  = 10 we get  s2(7)) < s1(73') _< 

s l  ( 4 ) =  c o s - 1 ( - 1 / 3 )  = 109 .47 . . .  < r -  u, a cont rad ic t ion .  

In  t he  case o f n  = 7 we get  s2(73) < s1(3) = 120 ~ Equa l i ty  m u s t  hold,  so we get  3 points  

pl ,p2 ,p3  C 73 w i t h : m u t u a l  d is tances  120 ~ T h e  open  discs of  rad ius  120 ~ and  centers  pi 

cover  all o the r  po in ts  of  t he  sphere  at least  twice. So for each q 6 73 \ {p l ,P2:p3}  the re  

are  (at  least)  two p i ' s  wi th  d(q, pi) = sl .  T h e r e  are  two poin ts  ql,q2 E 73 in t he  same 

hemi sphe re  d e t e r m i n e d  by the  grea t  circle t h r o u g h  the  pi's. T h e  d is tance  of  ql and  q2 is 

less t h a n  120 ~ hence  it is Sl.  This  implies  s~ = c o s - ~ ( 1 / 3 )  = 7 0 . 5 2 . . . ~  T h e r e  is a pair ,  

say p l , p 2 ,  such tha t  the re  are  ql and  q2 f rom 7 ) wi th  all four  d is tances  d(pi,  q J) = s l. T h e n  

the  d i s tance  d(q l ,q  2) = c o s - 1 ( 1 / 9 )  = 9 6 . 3 7 . . . ~  a cont rad ic t ion .  

F r o m  now on,  we suppose  tha t  the re  are  po in ts  p, ql,  q2, q3, q4 E 7) such t h a t  d(p, qi) = sl .  

Suppose  these  po in ts  lie a round  p in this order .  T h e n  d(ql,  q3) and  d(q2, q4) are  larger  t h a n  

s l .  T h e r e  is a n o t h e r  d i s tance  exceeding s l ,  say d(ql,  q4) > s l .  

P R O P O S I T I O N  6.1. d(ql ,q2)  = d(q2,q3) = d(q3,q4) = s l .  

Proos  Suppose ,  on the  contrary ,  t ha t  there  are  at mos t  two m o r e  m i n i m u m  distances.  

T h e n  the re  is a pair ,  say qlq2: such tha t  d(ql ,q2)  > sl but  the  angle  qlpq2 is less t h a n  

120 ~ In t he  case n = 7 this implies  s2 _< d(ql ,q2)  < 120 ~ and  we are done.  For  n = 10 

we get  cos(qlq2) < ( c o s s l )  2 - ( 1 /2 ) ( s in s1 )  2, imply ing  d(ql ,q2)  <_ 108 .93 . . . o  < 7r - u, a 

cont rad ic t ion .  [] 

The  case n = 7. Here  we finish the  p roo f  of  s2 < 120 ~ Let  c be  the  center  of  t he  regular  

t r iangle  Pq2q3. T h e  angle  q~cq4 = 120 ~ and d(c,q~) = d(c, q4). Hence d(ql ,q4)  <_ 120 ~ 

This  d i s tance  is no t  min ima l ,  so we get s2 < 120 ~ In  case of equal i ty  we get  d(c, ql) = 90 ~ 

which impl ies  again  t h a t  s~ = c o s - ~ ( 1 / 3 )  = 7 0 . 5 2 . . . ~  I f  the re  is a ve r t ex  in Q wi th  

degree  at mos t  two, t hen  we can find three  i ndependen t  po in ts  fo rming  a regular  t r iangle  

of  side l eng th  120 ~ and we can finish the  p roo f  as we did above.  If  all the  degrees  in Q 

are at least  three ,  t hen  we ob ta in  tha t  b o t h  points :  { r l : r 2 }  of  7) not  connec ted  to p have 

two ne ighbours  a m o n g  { q l , . . .  ,q4}. Only  the  pairs qiqi+l qualify~ so we get two regular  

t r iangles ,  qlq2r~ and q3q4r2. T h e n  d(r~, r2) = cos -~ (1 /16 )  = 8 6 . 4 1 . . . ~  a cont rad ic t ion .  

The  case n = 10. I f  s l  < u~ then  d(ql ,q3)  < ~r - u,  a cont rad ic t ion .  Suppose  tha t  

s~ > u. T h e r e  is a ve r tex  x E 7) of  degree  at  mos t  4. Let  us deno te  t he  po in t  on the  
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sphere ant ipodal  to z by - z ,  and let D be a closed disc about  - z  of radius u. We have 

[~ N D I > 5. We-claim tha t  sl = u. If  the center - z  6 ~ ,  we are done; otherwise there is 

an angle r l ( - z ) r 2 ,  ri E (7 ~ A D),  at most  72 ~ implying d(rl,r2) <_ u. 

We have obtained 81 = u, hence s2 -- 7r - u. Consider the icosahedron with vertices 

p, q l , . . .  , q4. All neighbours of qi's are also vertices of this icosahedron. This finishes the 

proof, since the graph G is connected. [] 
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