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THE SECOND AND THE THIRD SMALLEST DISTANCES ON THE SPHERE

Zoltan Furedi

Let s1(n) denote the largest possible minimal distance among n distinct points on the unit

sphere S%. In general, let si(n) denote the supremum of the k-th minimal distance. In
this paper we prove and disprove the following conjecture of A. Bezdek and K. Bezdek:
s2(n) = s1([n/3]). This equality holds for n > no however s2(12) > s1(4).

We set up a conjecture for sg(n), that one can always reduce the problem of the k-th
minimum distance to the function s;. We prove this conjecture in the case k = 3 as well,
obtaining that s3(n) = s1([n/5]) for sufficiently large n.

The optimal construction for the largest second distance is obtained from a point set of size
[n/3] with the largest possible minimal distance by replacing each point by three vertices
of an equilateral triangle of the same size €. If ¢ — 0, then s; tends to s1([n/3]). In the
case of the third minimal distance, we start with a point set of size {n/5] and replace each
point by a regular pentagon.

1. INTRODUCTION, RESULTS

Let P be a finite point set on the 2-dimensional unit sphere S? in R®. The spherical
distance between the points z,y € S? is denoted by d(z,y). Consider the set of distances
between the points of P, D(P) = {d(z,y) : z,y € P,z # y}. Order the elements in
D(P) = {d1,...,d:} such that dy < d; < --- < d;. Then d; is the diameter of P and the
k-th smallest distance, di is denoted by sg(P). (If ¢ > k, define s5(P) = 00.) So 51(P) is
the minimum distance.

Let sx(n) denote the supremum of the k-th smallest distance in n-point sets on the sphere,
sk(n) = sup{sx(P) : |P| = n, P C S?}. The problem of finding s;(n) was raised by
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Tammes {11] in 1930. The exact value of s;(n) and the extremal arrangements are known
for a couple of small values of n. (The cases n = 5,7,8 by Schiitte and Van der Waerden
[10], »=10, 11 by Danzer [5,6], n = 11 by Boroczky {3], n = 24 by Robinson [9] and
n = 3,4,6,12 by L. Fejes Toth [8].) Here we will use the asymptotic result

8w

V3n

(1.1) s1(n) = (1 + o{1))

This formula means that lim ns;(n)? = 87/v3. L. Fejes Téth proved the following

n—oo

1 n mw
1.2 < =1 cot? -) -1
(1.2) sl(n)_arccos2(co (n—Z 6) )
which yields the upper bound in (1.1). The lower bound can be obtained from a hexagonal
like packing of circles.

The problem of s;(n) was proposed by A. Bezdek and K. Bezdek [1]. They showed that
(1.3) s2(n) > s1([n/3]).

The construction giving (1.3) is obtained from an sy-extremal arrangement P' with |P'| =
[n/8], ie., s1(P') = s1(|P'|). Then, replace each point p € P' by an equilateral triangle
of side length ¢ and with a vertex in p. Finally, let ¢ tend to 0.

In [1] an upper bound (twice the right hand side of (1.2)) was proved. Obviously, s2(1) =
. = 52(4) = 0o, and s2(5) = s2(6) = m = 180°, because it cannot be larger. A. Bezdek

and K. Bezdek proved that s;(9) = s1(8) = 2n/3, and they asked whether equality holds

in (1.3) for all » > 4. Here we determine s3(n) for all n < 12 showing that s9(12) =

116.56...° > s1(4) = 109.47...°. However, the conjecture is true for large n.

THEOREM 1.1. (1) s2(7) = s2(8) = 52(9) = 120° = s;(4).

(2) Letu=tan™'2 =63.43...° be the minimum distance in the vertex set of a regular

inscribed icosahedron. If P C S? is a point set of size 10, 11, or 12, then s3(P) > 7 — u.

Equality holds if and only if P is a subset of the vertex set of the icosahedron.
(3) 52(17) = 52(18) = 90° = s1(6).

THEOREM 1.2. For n > ng one has s2(n) = s1([n/3]).
CONJECTURE 1.3. Equality holds in (1.3) for all n > 12.

Let f(k) denote the largest integer f such that for all ¢ > 0 there exists a k-distance
set in S? of size f and of diameter less than ¢. We have f(0) = 1, f(1) = 3, f(2) = 5,
f(3) = 7. For large k the best known upper bound is O(k%/*) due to Chung, Szemerédi and
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Trotter [4], and it is a challenging problem to decide whether f(k) = O(k), or not. Erdés,
Hickerson and Pach [7] proved some results which give support to the conjecture that
lim f(k)/k = co. Replacing the points of an s;-extremal set on the sphere by congruent
small copies of a (k — 1)-distance set we obtain sx(n) > si([n/f(k — 1)]).

CONJECTURE 1.4. Forn > ny(k) one has sg(n) = s([n/f(k —1)]).
THEOREM 1.5. For n > n; one has s3(n) = s1([n/5]).

In general we can only prove a weaker upper bound.

THEOREM 1.6. For n > ng(k) one has si(n) < s1([n/6f(k —1)]).

This result can be easily extended in higher dimensions, though obtaining an exact formula
for s¢(n) looks to be very difficult. The one dimensional case is easy, one has si(n) = 2rk/n

for n > 2k. The only extremal configuration is the regular n-gon.

2. A LEMMA ON THE RATIO OF s; AND s;

Let A > 0 be an integer, 0 < s < m/2. Define the regular A-gon (on the unit sphere S?)
with center ¢ and inscribed radius s as follows:

for A =0 the whole sphere,

for A =1 halfsphere including ¢ such that the distance from ¢ to the boundary is s,
for A =2 a digon with center ¢ whose distance from the sides is s,

for A >3 as usual.

We can extend these definitions to the Euclidean plane, in the cases A = 0,1, 2 the regular
A- gon is the whole plane, a halfplane or an infinite strip of width 2s. Define the function
A(A, D, s) as the area of the intersection of a regular A-gon with inscribed radius s/2 and
a circle of diameter D with the same center. The same function on the plane is denoted

by Aw(A, D, s). Clearly, Aw(A, D,s) = s?A(A, D/s ,1). If A and D/s are given, then

lim

8§—0 S

A(A, D, s) D
T A4, 1)

For brevity we use A(A,z) for Aw(A,z,1). E.g., A(0,z) = z*7/4, A(4,00) = 1, A(6,00) =

V3/2.

Let P be an n-element set on S?, s; = 5i(P), (n > 4). Define the minimum distance graph
G = G(P) with vertex set P as follows: two points are connected if their distance is s;5.
Obviously, every point has at most 5 neighbors, so for the maximum degree, A(G), of G
we have A(G) < 5.
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LEMMA 2.1. Let 0.1 > ¢ > 0 and suppose that n > ng(e),s2 < ¢. Then

51(P) < s1(n)(1 +¢) ZTZ,% '

Proof. By (1.1) for every € > 0 there exists an ng(e) such that

(2.1) 1+ E)Sf(n)g n > Area S? = 4r.

On the other hand for every p € P define its Dirichlet cell, C(p) = {g € §? : d(p,q) =
d(P,q)}. Let py,...,p: be the neighbors of pin G, and let H; be the half sphere containing
p which perpendicularly bisects pp;. Then C(p) contains the intersection of H;’s and a
spherical circle of radius s2/2 around p. Hence Area C(p) > A(A,s2,s1). Obviously,
A(A, s2,81) > A(A, s2/51)s3/(1 +¢). Then

(2.2) 4r > Y Area C(p) > n A(A,s3/s1)s]/(1 +e).

Finally, (2.1) and (2.2) imply the Lemma. [

3. A GENERAL UPPER BOUND

Here we prove Theorem 1.6. Let P be a finite point-set on S?. Consider the minimum
(k—1)-distance graph G*~1 = G(P), two points =,y in P are connected if d(z,y) < sg—1(P).

Let f(k —1,¢) denote the maximum size of a (k — 1)-distance set of diameter at most .

PROPOSITION 3.1. Every point in G*F™! is connected by less than 6f(k — 1,5,—_1) — 6
other points.

Proof. Let p € P, and consider a closed circle C with radius sg_; and center p. Divide
C into 6 congruent pieces with 3 diagonals through p, any two of them have an angle 7 /3.

Then the diameters of each piece is sg—1, so it contains at most f(k —1,s5—1) elements of

P. o

Proof of Theorem 1.6. There exists an ¢ > 0 such that f(k—1,e) = f(k—1). We have an
no(k) such that for n > ng(k) sx—1(n) < € holds. Then G*~! does not contain a complete
subgraph of 6 f(k— 1) — 5 vertices (k > 2), but every degree is not larger than 6 f(k—1)—86.
One can use Brook’s theorem (see, e.g., in Bollobas’ book [2}), that the chromatic numbers
of G¥~1 is at most 8f — 6. So there exists a P' C P with |P'| > |P|/(6f — 6) such that
s1(P'y = sx(P). O
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4. THE SECOND SMALLEST DISTANCE

Here we prove Theorem 1.2. By (1.1) we have an nj such that for all n > n,
’ 3
(4.1) aln/3D) S ym
s1(n)
holds. Suppose that P is an arbitrary m-set on the sphere with n > n;. To prove the
theorem we have to show that s2(P) < s1([n/3]). We may suppose that

(42) Sz(P) > 1.7151(7’1,),

otherwise {4.1) implies the Theorem.

As s1(n) — 0if n — oo we have an n3 such that s;(|n/4]) < 0.01 holds for all n > nj.
Then by Theorem 1.6 we have s;(P) < 0.01. So we may apply Lemma 2.1 to P with
n > max{nz,n3}, A = 5 and ¢ = 0.01. We have A(5,1.71) = A(5,00) = (5/4)tan36° ~
0.908... so by Lemma 2.1 8;(P) < s1(n) - 0.986.... This inequality and (4.2) imply that

s2(P)/s1(P) > 1.733... > V/3.

CLAIM 4.1. A(G) < 3.

Proof. Suppose on the contrary that p € P, ¢1,...,94 € P with d(p,q;) = s1. If the
distances d(qg;, g;) are all at least V/3 sy then each angle ¢;pg;,1 is at least 120°, a contra-
diction. So we have, say, d(q1,92) = s1. If d(gi,q1) (i = 3,4) is less than /3 s; then it is
also s1, but then s; < d(q2,¢:) < V3 s1 < s2, a contradiction. Hence d(qi,g5) > V3 s, for
i = 1,2, j = 3,4. Then we obtain the contradiction d(g3,q4) < s3. O

As G does not contain a complete graph of four vertices, Brook’s theorem implies that
its chromatic number is at most 3. So there exists a P' C P, |P’'| > n/3, such that
$1(P") > s1(P). Then we have s1([n/3]) > s1(P') > s2(P), and the proof of 1.2 is
complete. [

5. THE THIRD SMALLEST DISTANCE

Here we prove Theorem 1.5. We are going to use the method of the proof of Theorem
1.2 but we have to investigate more subcases. We will use the following simple facts on
2-distance sets R on the sphere. Suppose that the distances are u < v < 0.001.

FACT 5.1. |R| £ 5. In case of equality R is a regular pentagon and

(5.1) 1.6180... = 2sin54° < — < 1.62. [0
u



(i)

(vi)
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FACT 5.2. If|R| =4, then one of the following six cases holds: (See Fig. 1)

(i) (i) (i) (iv) ) (vi)
Figure 1

R consists of 2 equilateral triangles of side length u, with a common side. Then (1 +

cosu)(1l+ cosv) = 4 cos® u, hence

1732... =3 < 2 <1.733.
U

R is a regular quadrilateral. Then 1.414... = /2 < v/u < 1.415.
R consists of four vertices of a regular pentagon. Then (5.1) holds.
R is a convex quadrilateral with diagonals of length v, and sides u,u,v,v. Then cosu =

cos? v + sin® v4/(1 + 2cosv)(2 + 2cosv) , hence (v/u) ~ V2 + V3, ie.,

(5.2) 1.931 < 2 < 1.932
u

R is a triangle of side lengths v, v, and u and its center with circumscribed radius «. Then

cosv = cos? u — sin’ u\/(l +2cosu)(2+2cosu) , hence v/u ~ v/2+ V3 , 1.e., (5.2) holds.

R is an equilateral triangle of side length v and its center. Then cosv = 1 — 1.5sin’ v,

hence
1732< 2 <v3=1132... O
u

By (1.1) the limit of s1([n/5])/s1(n)is V/5 = 2.236.. ., so there exists an n4 such that for
all n > ng4

s1([n/51])

(5.3) U 5 2,936

S](TL)

holds. Suppose that P is an arbitrary n-set on the sphere with n > n4. To prove our

theorem we have to show that

(5.4) 33(P) < s1([n/5]).
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We may suppose that
(5.5) Sg(P) > 2.23651(‘{1),

otherwise (5.3) implies (5.4).

By Theorem 1.6 there exists an ng such that s3(n) < 0.001 holds for all = > ns. From
now on we suppose that n > max{ny,ns}. We need a definition. Let G> = G*(P) be a
graph with vertex set P defined in the following way: connect two points p,q € P with
an arc (with the shortest path on S?) if d(p,q) = s1 or s2. If these arcs form a planar
representation of G2 then (by the four color theorem) there exists a P’ C P, |P'| > |Pj/4
such that s3(P) < 51(P') < s1(1P']) < s1{[n/5]).

From now on we suppose that there exist two arcs ac and bd such that {a,b,c,d} C P,

d(ac) and d(bd) € {s1,s2} and int ac N int bd # (. We claim that in this case
(5.6) s2 < 2s1.

Indeed, if three of the points of a, b, ¢, d, are lying on a great circle, then (5.6) follows easily.
Otherwise, we are going to use the following.

FACT 5.3. Ifa,b,c,d form a convex quadrilateral with diagonals ac and bd, then d(ab) +
d(cd) < d(ac) + d(bd) and d(ad) + d(bc) < d(ac) + d(bd). O

a) If one of the diagonals is s;, then Fact 5.3 implies that the sum of any two opposite
sides is less than s; + s2. All the four sides must be 51, we get that a,b,¢,d is a 2-distance

set isomorphic to 5.2 (i).

$) Both diagonals have length s;. Then at least one of any two opposite sides has length
less than s;. One can find two adjacent sides of length s1, so (5.6) follows from the triangle
inequality. O

We claim that in G (not in G? !) every degree is small:
CLAIM 54. A(G) <3.

Indeed if p € P and T'(p) is the set of its neighbors then p U I'(p) is a 2-distance set by
(5.5) and (5.6). Then |pU T'(p)| < 5 by Fact 5.1. Moreover, if |[pUT(p)| = 5 then it is a
regular pentagon, but in that case [['(p)| = 2, a contradiction. [

PROPOSITION 5.5. s3 > s1 + $2.

Proof. We will prove that for every Dirichlet cell D we have

(5.7) Area D > 0.1734(s1 + s2)2.
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This implies the Proposition as follows:

1
oo Y3

4m \/§
2 2 2
5 39362 (51 + 82)% < 0.1734(s1 + s2)° < P < 1.001—2 s1(n)*

l.e., 81 + 82 < 2.236s1(n). Then (5.5) implies Proposition 5.5. To prove (5.7) we have two
cases. Let p be the only point of P contained in D.

— If degg(p) < 2 (ie., p has at most 2 neighbors in G), then we can apply Lemma 2.1
with A =2, 1.,

Area D > A(2,52,81) > 0.999(511/33 — 2 +sZarcsin a )
$2

Here, the right hand side is larger than 0.1734(s; + 52)* for 0 < s1 < s < 2s5.

— If degg(p) > 3 then degg(p) = 3 by Claim 5.4. Let T'(p) = {u,v,w}. Then every
distance in {p,u,v,w} is either s; or s;. Then one of the following three subcases holds
(by Fact 5.2)

Ig’ Bg_ﬁ

Figure 2 Figure 3 Figure 4

— — {p,u,v,w} is isomorphic to 5.2 (i). Then D contains the intersection of 3 halfspheres
and a circle of radius s2/2, (see Fig. 2). Hence V3 81 < s < 1.733s; and
V3 V2

3
Area D > 0.999(—6- + e + 3 (z m—2arctan \/E))sf > 1.48 s%

S Wik

> 0.1734(s1 + 1.73351)% > 0.1734(s1 + s2)°.

— — {p,u,v,w} is isomorphic to 5.2 (v) (Fig. 3). Then 1.931 < s2/s1 < 1.932 and Area
D > 0.999(1.497...53) > 1.495s% > 0.1734(s; + s2)%..

— — {p,u,v,w} is isomorphic to 5.2 (vi). (See Fig. 4). Then V3 81 > 8y > 1.732s4,
hence Lemma 2.1 yields (with ¢ = 0.001, A = 3, s, = 511.732) that

51(P) < 51(n)0.828 .
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Thus by (5.5) we have

83 > 2.7s;.

We claim that in this case there are no two crossing edges of G2, a contradiction to our
earlier assumptions. If {p,u,v,w} is a 2-distance set of type (vi) then there is no other
type of 4-element 2-distance set in G2. Consider the crossing edges ac and bd. The case a
is impossible so we have that s; = d(e,b) = d(a,d), s2 = d(a,¢) = d(b,d) ~ 1.73s;. This is
not a 2-distance set so we may suppose that, e.g., d(d,c) > s3 > 2.7s1. Then d(b,¢) < sz,
- too. It is easy to check, that such a convex quadrilateral does not exist. The proof of

Proposition 5.5 is complete. O

PROPOSITION 5.6. If ac and bd are two crossing arcs in G® then min{degg.(z) : z €
{a,b,c,d}} < 4.

Proof. As we have seen above, we may suppose that d(a,b) = d(a,d) = s, and d(a,c) =
s1 or s2. Then, by Proposition 5.5, {a,b,c,d} is a 2-distance set. So its type is among
(i)-(iv), by Fact 5.2. We claim that deggz(a) < 4. If e € P — {a,b,¢,d} and d(a,e) = s,,
then {a,b,c,d,e} is a 2-distance set with degg(a) > 3, which contradicts to Fact 5.1.
The same argument verifies the case when {a,b,c,d} is similar to (i), so a has already
three neighbors of distance s;. If d(a,e) = s; then {a,b,c,d} and {a,b,e,d} are similar
2-distance sets. This is impossible in the cases (ii) and (iv), and in the case (iii} we obtain

a regular pentagon. O
PROPOSITION 5.7. There exists a P' C P, |P'| > |P|/5 such that s1(P') > s3(P).

Proof. Let Py = P and consider two crossing edges. An endpoint of them has degree
at most 4 (in G?). Denote this point by p; and let P; = P — {p} — {T'(p)}. Repeat
this step until we have crossing edges of length at most s in P;. Finally, we have a set
Q = {p1,...,p:} such that d(g,p) > s for ¢ € @, and p € P, UQ, and | P} > |P| — 5|Q|.
Then, by the four color theorem we have a Q' C Py, |Q'| = [P:|/4 with 51(Q') > s2. Then
let P =QUQ". 0O

Finally, Proposition 5.7 obviously implies (5.4). O

6. THE CASES OF n <12, n =17, 18

The cases n = 17, 18.  Let P C 8% |P| = 17 or 18. The chromatic number of G,
the minimum distance graph of P, is at most 4. So we have a subset P' of size at least
[[P|/4] = 5 not containing any distance of s1(P). We obtain s;(P) < s1(P') < 81(5) =
90°. O
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To finish Theorem 1.1, it is sufficient to consider the cases n = 7 and n = 10. Let P C S?
be an n-element set with s;(P) > 120° (for n = 7), or with s; > 7 — u = 116.56...° (for
n = 10). In the first case we will get a contradiction, in the second we will see that P is a
subset of an icosahedron. We will use that s1(7) < 90°, and s1(10) < 70°.

If every degree in G, is at most 3, then, as we have seen in Section 4, there is a subset
P' C P with [P'] 2 |P|/3, 51(P') > s1(P). In the case of n = 10 we get s2(P) < 51(P') <
51(4) = cos71(—~1/3) = 109.47... < m — u, a contradiction.

In the case of n = 7 we get 52(P) < s1(3) = 120°. Equality must hold, so we get 3 points
P1,P2,P3 € P with' mutual distances 120°. The open discs of radius 120° and centers p;
cover all other points of the sphere at least twice. So for each ¢ € P\ {py,p2,ps} there
are (at least) two p;’s with d(g,p;) = s1. There are two points ¢;,¢go € P in the same
hemisphere determined by the great circle through the p;’s. The distance of ¢; and ¢ is
less than 120° hence it is s;. This implies s; = cos™(1/3) = 70.52...°. There is a pair,
say p1, P2, such that there are ¢! and ¢® from P with all four distances d(p;, ¢’) = s;1. Then
the distance d(q?,¢?) = cos™*(1/9) = 96.37...°, a contradiction.

From now on, we suppose that there are points p, ¢1,42,93,94 € P such that d(p, ¢) = s1.
Suppose these points lie around p in this order. Then d(q1, ¢3) and d(gz, ¢4) are larger than
s1. There is another distance exceeding sy, say d(g1,q4) > s1.

PROPOSITION 6.1. d(ql,q2) = d(92,q:s) = d(q;;,q,;) = 87.

Proof. Suppose, on the contrary, that there are at most two more minimum distances.
Then there is a pair, say q;¢2, such that d(g1,q2) > s1 but the angle q1pg; is less than
120°. In the case n = 7 this implies s; < d(g1,42) < 120°, and we are done. For n = 10
we get cos(qi1qz2) < (cossy)? — (1/2)(sin s1)?, implying d(g1,¢2) < 108.93...° <7 —u, a
contradiction. [J

The casen =7. Here we finish the proof of s; < 120°. Let ¢ be the center of the regular
triangle pgags. The angle gicqqs = 120° and d(c,q1) = d(c,q4). Hence d(q1,94) < 120°.
This distance is not minimal, so we get s; < 120°. In case of equality we get d(c,q) = 90°
which implies again that s; = cos™!(1/8) = 70.52...°. If there is a vertex in § with
degree at most two, then we can find three independent points forming a regular triangle
of side length 120°, and we can finish the proof as we did above. If all the degrees in G
are at least three, then we obtain that both points, {r;,r2} of P not connected to p have
two neighbours among {q1,... ,g¢}. Only the pairs g;qi+1 qualify, so we get two regular
triangles, q1g271 and gzqar2. Then d(ry,72) = cos™1(1/16) = 86.41...°, a contradiction.

The case n = 10. If s; < u, then d(q1,93) < 7™ — u, a contradiction. Suppose that

s1 > u. There is a vertex z € P of degree at most 4. Let us denote the point on the
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sphere antipodal to « by —z, and let D be a closed disc about —z of radius u. We have
[P N D| > 5. We-claim that sy = u. If the center —z & P, we are done; otherwise there is
an angle rq(—z)ry, 7; € (P N D), at most 72°, implying d(ry,72) < u.

We have obtained s; = u, hence s; = m — u. Consider the icosahedron with vertices
P,q1,--- ,q4. All neighbours of ¢;’s are also vertices of this icosahedron. This finishes the
proof, since the graph G is connected. O
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