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Let § be an order on P. A ternary operation m:P>— P is isotone if m(x,y,z) <
m(x',y',z') whenever xS, ySy, z€7 and a majority operation if m(y,x,x)=
m(x, y, x) = m(x, x, y) = x for all x,y € P. Orders admitting an isotone majority operation
are called majority orders and are important for clones. The characterization of majo-
rity orders seems to be rather difficult and the purpose of this paper is to draw attention
to this interesting combinatorial problem. The rather incomplete results are the follow-
ing. We show that majority orders are partial lattices with a Helly type property. We
produce a large class of majority orders, called forest-like, which are not lattices. Finally
we derive certain results for majority orders with a crown p; >p, <p;> - >pg < I
and exhibit three types of majority orders with a unique isotone majority operation.

Keywords: (partial) Orders; posets; isotone (monotone or order preserving) operation;
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0. INTRODUCTION

0.1 Let P:=(P, <) be a fixed order (i.e. < is a reflexive, transitive
and antisymmetric relation on P which is also called a (partial) order-
ing and P is referred to as an ordered set or poset). For n positive
integer an n-ary operation on P is a map f:P"-P. The image of
(X4, ...,x,)€ P" is denoted by f(x,, ...,x,) or shortly by fx,,...,x,. The
operation f is isotone (also monotone or order preserving) if fx,,...,x,
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40 Z. FUREDI AND 1. G. ROSENBERG

<fyy,....v, whenever x; <y, ...,x, £ y,. Let Pol < denote the set of
isotone operations. It is known and easy to see that Pol S is a clone;
ie., it is composition closed and contains all projections €}, iSisn
(defined by setting e’ x,, ..., x, = x; for all x,,...,x,€ P). Thus Pol £ 1s
a multi-variable analog of the set End < of order endomorphism (=
unary isotone selfmaps) and so it presents a certain interest. We list
certain properties of Pol <.

A clone is maximal (also precomplete or preprimal) if it is a dual
atom or coatom in the lattice (L, C) of clones on P (i.e. if it is covered
exactly by the clone of all operations). For P finite the clone Pol €
is maximal if and only if < is a bounded order (i.e. € has at least and
greatest element ([10,6,7] see also [12,13]). Similarly for P infinite the
clone Pol(<) is locally maximal if and only if £ is directed and
down-directed (i.e. each pair of elements has an upper and lower
bound [16-18]). For P={0,1} and the natural order § on P the
lattice of clones of isotone non-constant operations (ordered by <)
form an important part of the lattice of clones [14]; for hypergraph
connections seec [2—41])

0.2 A ternary operation m: P> — P is a majority operation if for all
x,yeP

m(y, x, x) = m(x, y, x) = m(x, x, y) = x. 1

Clones containing a majority operation have remarkable properties. If
P is finite then such a clone C is both a compact and co-compact
element of the lattice of clones; in particular, C is finitely generated
and the lattice of superclones of C is atomic with a finite number of
atoms. There are finitely many p, < P? (i=1,...,n) such that fe C iff
p1, ..., p, are subuniverses of (P;f %2. Moreover, the variety generated
by the algebra (P;C) is congruence distributive [1,8].

Thus it is natural to investigate orders admitting an isotone majo-
rity operation which we call majority orders. For finite bounded
orders this problem (in a more general context) was raised by Deme-
trovics et al., in [5]. Somewhat surprisingly, the characterization of
majority orders seems to be rather complex. The problem is also
interesting because for a finite majority order < the clone Pol £ 1s
finitely generated. The clone of the form Pol & where § is a finite
bounded order are the only maximal clones which may be not finitely
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generated. In this context we mention the following problem from

[15] (cf [14]).

Problem Let P be (fintie) majority order. What are the isotone major-
ity operations on P such that the clone generated by m is an atom of the
lattice of clones?

0.3 In §1 we start with some obvious properties of majority orders.
We show that they are partial lattices with the Helly property (if pair-
wise joins (meets) of x, y and z exist then the joint (meet) of x,y and z
exists) and so locally bounded majority orders coincide with lattices.

In §2 we look at W-paths ie. sequences {p,> such that p,, is the
meet of p,;, | and p,;,, and p,,,, is the join of p,; and p,;,,. We
derive a condition on an isotone majority operation for orders with a
W-path and such that p,, is the meet of each xZp,,_, and each
YyZPy+; and py,., the join of every x <p,; and every y <p,;, ..
From this we obtain that a crown is not a majority order. An order is
tree-like if it is obtained from a discrete order whose diagram is a tree
by replacing each interval [g, 4] such that g’ covers g by a lattice F aar
with a least element g and greatest element g’ so that two such lattices
intersect in at most one bound. We show that the tree-like orders form
a large class of majority orders that need not be lattices. A majority
order is stiff if it has a unique isotone majority operation. A lattice is
stiff if it is distributive. We show that an order p, > p, > p; > -+~ is
stiff but a simple tree-like order on 7 elements which is not of this
form has already a huge number of isotone majority operations.

Finally we turn to majority orders containing a W.path
{p1,....Ps, p1}- If, moreover p, p; ps and p, are maximal elements then
the meet of p,p;, ps and p, are maximal elements then the meet of
P1, P3» Ds and p, exists, py, ..., pg are the unique elements greater than
6 and the values of a majority isotone operation on {6,p,,...,pg} are
unique. Finally we show that the 9-element order consisting of a
crown {p,,...,ps} and a least element 0 is stiff.

Finite majority orders can also be characterized in terms or zigzags,
see [20] and [21] Remark 2.4, and undoubtedly some of our results
could be derived by this technique but for simplicity’s sake we shall
neither define nor use zigzag here.

The results of this paper are certainly far from definitive. The main
purpose of this paper is to draw attention to the problem of majority
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orders, which, beside the above mentioned motivation, are of their
own combinatorial interest. The financial support provided by
NSERC Canada operating grant A-5407, NATO grant RG-09782 and
FCAC Québec Subvention d’équipe Eq-0539 is gratefully acknow-
ledged. The authors would like to thank Dr. B. Larose for very helpful
suggestions.

1.1. Preliminaries

Let P: = (P; £) be a fixed order. Let m be a ternary operation on P i.e.
a map from P3? into P which assigns the value m(x,y,z) or, briefly,
(xyz) to each (x,y,z)e P>.

For a €P put [a): = {xeP:x=a} and (a]: = {xe P:x La}. We say
that A is a partial lattice if for all x,ye P we have (i) [x)n[y)=¢
or [x)n[y) has a least element which is called the join of x and y
and denoted by x + y and (ii) (x]n(y] =0 or (x]n(y] has a greatest
element which is termed the meet of x and y and denoted xy. Clearly
{A;+,) is a partial algebra satisfying the partial version of lattice
axioms (i.e. if one side of an axiom or law exists so does the other side
and they are equal), in particular the associative law for + is: (i)
if both u: =x + y and u + z exist then both v: =y +z and x + v exist
and

[x+y]+z=x+[y+2z] (2)

and (ii) if both v: =y + z and x + v exit, then bothu:=x+yand u+z
exist and (2) holds. The common value in (2) is denoted by x + y + z.
The situation for ”-” is quite analogous.

For the simplicity of notation we use the arithmetical convention
that ”-” takes precedence over ” + " e.g. xy + z stands for [xy] + z (and
is defined iff x, y,z have a common upper bound). Note that for a <b
the interval [a)n(b] is a lattice.

We say that a partial lattice has the Helly property if (i) x+y+z
exists if x + y, x + z and y + z exist and (ii) xyz exists whenever xy, xz
and yz exist. Note that (i) and (ii) are statements about upper and
lower bounds. We have the following result ([18] Lemma 5.2).

1.2 PROPOSITION Let P have an isotone majority operation m. Then
P is a partial lattice with the Helly property satisfying for all
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X, y,ze P
ZZX+y=>(xyz)=(yxz)=(xzy)=x+y 3)
2§ xy =(xyz)=(yxz) = (xzy) = xy; “)

if x +y+z exists, then

(xyz) S [x + yllx +z1[y + z; (5)
if xyz exists, then

(xyz) Zxy+ xz + yz. 6)

1.3 Remark ([18] Cor. 5.3). Let P have an isotone majority opera-
tion m. Then for x, y,z u, /€ P we have

x,y,z€(u] or x,y,ze[u)= ((xyu)zu) = (x(yzu)u), (7
x, ye[£)n(u]= (x(xyu)t) = (x(xyf)u) = x (8)

(indeed these are the associative and absorptive identities combined
with (3) and (4)).

As usual P is directed (down-directed) if for all x,yeP the set
[x)n[y) (the set (x]~(y]) is nonempty. We have ([18] Cor. 5.4 and for
a finite bounded order [5]):

1.4 CORROLLARY If P is a directed (down-directed ) majority order
then {(P;+» {P;) is a semilattice. If P is both directed and down-
directed then P is a majority order if and only if P is a lattice

Proof Tt is well known that a lattice is a majority order (choose m
equal to xy + xz + yz or to [x + y][x + z][y + z]). O

It is known [5] and easy to prove that the class M of majority
orders is an order variety (ie. closed under direct products and re-
tracts). The cardinal sum of orders (P;; <)) (iel) is the order € on
P:=U,, P;x {i} defined by setting (x, i) < (y,j) if and only if, i =j
and x §;y. We have [19]:
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1.5 LEMMA The order variety M of majority orders is closed under
cardinal sums.

Note that the order variety M is not closed under lexicographic
products.

1.6 Remark Let m be an isotone majority operation on P and let
peP. Clearly, if x; 2 p (i=1,2,3), then (x,x,X;3) Zp and so the restric-
tion of m to [p) is an isotone majority operation on ([ p); §). The same
holds for (p] and therefore for p,p’ € P,p < p’ the restriction of m to the
interval I: =[p, p'] is a majority operation of the lattice (I; <) and so
e.g. its values on I are between the two lattice medians. Clearly, if for
some pe P the order ([p); <) is not a majority order, then P is not a
majority order.

2. W-PATHS AND FOREST-LIKE ORDERS

21 A W-path is a sequence Q of clements of P of the form {pq, py...., Dy
<p1’p2’-"’pn>’ <p0’p1’--~>a <p17p27-~> or <"'7p71’p0’p1’“'> such that

P2i=P2i 1 Paivrs Paiv1=P2i T Paiv2 ©)

for all i (such that all the elements in (9) belong to the sequence; as
usual, (9) also stipulates that the meets and joins exist and are equal to
the indicated elements).

The next proposition gives bounds on the values of a majority
isotone operation in a special case.

2.2 PROPOSITION Let m be an isotone majority operation and let Q
be a W-path such that for all i

XZPyi-1» Y Z P21 =XV =P (10)
XEPop VS P2i42= X+ Y= Pair- (11)

Let q,=p; ifi is odd and q; < p; if i is even. Then for all 1 Ligjgkand
arbitrary permutation © of {i,j, k}

Z Puis if j is odd,

12
Spyy U Jis even (12

(4uy 9ujy Gny ) = {
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Moreover, if k Si+ 2 then (P, ,De(Prsy) = Prijy

Proof By induction on /:=k —i. Let /< 1. Then we have j=i or
j=k and the statement holds by the majority property.

Suppose the statement holds for some 1 £7. Let 1 £i <j £ k satisfy
k —i=¢+ 1. We start with a particular case.
A. Let i, j and k be all even. Then

a. =(ql'41ﬂk) sxi= (‘quj'—lqk—1)a asgy:= (‘Ii+1‘1j+ 190)-

By the inductive assumption x < p;_, and y=p,, ;.

By (10) we have agx-y=p, Obviously the same holds for any
permutation of i, j and k.
B. Suppose that j is odd. If k is odd we have (q,9,9,) 2 (999, - ,) 2 p;
by the induction hypothesis and the same holds for any permutation
of i, j and k. Thus assume that k is even. By the same argument i may
be assumed even as well. Now

a: =449 2 x:=(q:4;- 19, A Z Y= (q; 1 19+ 19)-

By A above xsp;_, and y <p;,, whence applying (10) we get the
required (q,9;4;) = a 2 p; . Evidently the same holds for each permuta-
tion of i, j and k.
C. If j is even then (12) holds by duality.

This concludes the induction step and thus the proof of (12). For the
last statement note that for i + 1 odd by (12) and (11)

Piv1 S(PPiv1Pis ) S(Piy1Piy 1Pic1) = Pisq

and similarly for i + 1 even. O

A sequence {p,,...,p,,» of distinct elements of P is a W-cycle if
n>1and {py,....,p,, P, 15 a w-path.

The following are special cases of a more general statement proved
in [16] by slightly different methods.

23 COROLLARY A majority order has no W-cycle satisfying (10)
and (11).
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Proof Suppose {pi,...,P,,» is a W-cycle satisfying (10) and (11) in a
majority order.

By Proposition 2.2 we have (p,p,p;) £ P, Now {p3, ... P2 P1>P2)
is also a W-cycle satisfying (10) and (11) and by the same taken
(p.p2Ps) 2 P,, a contradiction. O

24 COROLLARY If P has a W-ycle {py ....p,,» such that
Pi,P3s .. Pan—y are maximal elements and p,,p,.....p,, are minimal
elements of P, then P is not a majority order.

2.5 Example A crown isnot a majority order. (A crown is a W-cycle
Py >Ppy<p3>-<p,,<p; With p,,...,p,, pairwise distinct and
p; £ p; otherwise).

2.6 As usual xeP covers yeP, in symbols x Jy, if x>y but
x>z>y for no zeP. The diagram of P is the unoriented graph
G =(P,E) where {x,y} is in the edge set E iff x Jy or y Ox (i.e. E is
the symmetric hull of the covering relation). A graph G is a tree if each
pair of vertices is connected by exactly one path. We need the following:

27 FACT Let G be a tree and let e;: ={v,,v,,} (i=1,2,3) be 3
pairwise distinct edges of G. Denote by H’fj the unique path from v, to v,
(1€i<jg3, 1<k ¢ <£2). Then either (i) there exists a unique vertex
v common to all H’ff(l Si<jg3, 1<k ¢£2), or (ii) one edge, say e,
is between the others (e.g. for i =2 we have e, =N, , <, I1{3)

Proof We can choose the notation so that v,,, v,, € [1%. If v,,e 1%,
for some je {1,2} then we have (ii). Thus we may choose the names of
the two vertices on e, so tht v,,, v,, €I135. Let v be the last vertex on
%, 1% (going from v,, to v,,). Since G is cycle-free, the path I1

from v,, to v,, through v is II7; and (i) follows. O

2.8 An order P is tree-like if it is the transitive hull of the relation
obtained from a tree G =(Q;E) by replacing each edge {q,q'} by a
bounded lattice with bounds ¢ and ¢’ so that for two distinct edges
from E the corresponding lattices intersect in at most a singleton from
Q. In other words, P is tree-like iff there is Q = P such that (i) the
diagram of (Q; £) is a tree on @, (ii) for all ¢, ¢’ € Q such that g’ covers
g in (Q;<) the interval I ,,:=[g,q'] in P is a lattice and (iii) each
x€ P\ Q belongs to exactly one I ,, (9,9'€Q,q covers q in (Q;S)).
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We say that P is forest-like if P is the union of vertex disjoint tree-
like orders. '

The proof of the next proposition is easy but tedious and therefore
it is omitted; however it can be obtained upon request from the
second author.

2.9 PROPOSITION A forest-like order is a majority order.

We say that a majority order P is stiff if it has a unique isotone
majority operation. Obviously the unique isotone majority operation
of a stiff order is totally symmetric. We have:

2.10 FACT A directed and down-directed order P is stiff if and only if
P is a distributive lattice.

Proof By Corollary 1.4 the order P is a lattice (P, +,). By the proof
of Corollary 14 both m,(x,y,z):=x'y+xz+y-z and m,(x,y,z2):=
[x + y1[x + 2]Ly + 2] are isotone majority operations. It is well known
and easy to prove that every isotone majority operation m satisfies

m,(x,y,z) S m(x, y,z) S m,(x,y,2)

for all x,y,ze P. It follows that P is stiff iff m, =m,. It is well known
that the latter is equivalent to P distributive. O

The following example shows a tree-like majority order wich is not
stiff.

211 Example Let P={1,2,...,7} be ordered by 1>2<3>4<35,
3> 6 <. Let m be an isotone majority operation. Proposition 1.6 deter-
mines all the values of (xyz) except for (246), (146), (247), (256), (147), (257),
(156), (157) and those obtained from the above by permuting the
variables. it is easy to establish that (246) is a lower bound of (146), (247)
and (256), 3 and (157) are upper bounds for (147), (257) and (156) and

(147) = (247) £(257) 2 (256) £ (156) = (146) < (147).

while otherwise these values are independent from the others.

In particular, we can choose all these values equal 3 or all equal 4
and so the order is not stiff. An easy calculation shows that there are
exactly 51°~ 1.76 x 10'? isotone majority operations. O
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13. ORDERS WITH A W-CYCLE {p,, ..., p;}

3.1 Lattices may contain W-cycles and so we should look at orders
containing a W-cycle {p,,...,p,,} such that either the join of p,,p,,
“+,Pa,—; OF the meet of p,,p,,---,p,, does not exist. By the Helly
property we may assume n>3. The first case is n=4 ie. in this
section we assume that a partial lattice P contains a W-cycle
{py,---,pg). By duality we assume that p, + p, +ps+p, does not
exist. We show that neither p, + ps nor p, + p, exist. Indeed, if this
does not hold, then by symmetry we may assume that q:=p, + p;
exists. Clearly then ¢ is an upper bound for p, and p, and hence
p3=p,+ Py < q. Similarly p, =pe + ps $ g and we have the contra-
diction g =p, + p; +ps + p,- We use the following notation. Write i
instead of p,(i=1,---,8) and put pl:=(137), pi:=(248), p3:=(351),
pl:=(246), pl:=(357), pL:=(468), pi:=(157), ps:=(268). For
pl =(abc) put p?=(bca) and p}=(cab) (i=1,...,8). Further for
pi=(abc) put g/ = (bac) (i=1,...,8,j=1,2,3). We have:

3.2 LEMMA Let P be an order with a majority isotone operation m
and W-cycle {p,,...,pgy. Then the p{ defined above satisfy: (i) For all
i=1,..,4and j=1,2,3

(i) Paio 1 = Daie1Pai1P3i-1 ZP2i 1
Py =Dy + D3+ Py S Py (13)

(ii) phSrirypiph, phspirsrspl,
pispi" ' pirsrs, i Sriphpir (14)

pizr,+pi+plt +re PiZrytra+pl+pl
PLZpi+ratrotpl, PRZphHphtretry (15)
(where p*:= p! and p9 = p?). Similar relations hold for the ¢} s.

(as usual, (13) (15) also stipulate the existence of the meets and joins
involved).
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Proof 1t is easy to verify that due to the monotonicity of m we have
PizZpiSpizp; Sphzpispizpisplt (16)

(j=1,2,3; e.g pi:= (137) = (246) = p}).

Next pi:= (137) 2 (227) =2, p} 2 (838) = 8 shows that p! =2 +8=1.
The same argument shows p? =(371) = 1, p? =(713) = 1. It follows that
ry = p} p} p; exists and satisfies r; = 1. The proof of the remaining cases
in (13) 1s quite similar.

From (13) we get p}, § 2. In the W-cycle {1,...,8} we have 2< 1 and
23, by (13) we get 1<r, and 3<r; and so pj <r, and p,<r,.
Finally from (16) p} < p} and p} < pJ. Thus pJ, is a lower bound of r,,
ry» ph and p} and so in the partial lattice P the meet s:= r,r, pip/
exists and s = p). The remaining relations are proved in a similar
fashion. O

From (14)-(15) we obtain:

3.3 COROLLARY Under the assumptions of Lemma 3.2 we have for
allj=1,2,3

(iii)  pipiph Zpi+p,+pi+pk ph+p,+pi<pipipip),  (17)
(iv) i phpiph Zpl ph+ph+pit + pl < i (18)
We consider a special case:

3.5 COROLLARY Let P have an isotone majority operation m and let
P contain a W-cycle {1,...,8) such that 1,3,5,7 are pairwise distinct
maximal elements of P. Then

(i) The meet 0:=1.3.5.7 exists, 1.5=3.7=0and [0)=1{0,1,...,8}.
(ii) mis totally symmetric and unique on {0,1, ...,8}.
(i) If {x.y,z,t} ={1,3,5,7}, then (xyz) =t + 4 (all congruences are
mod 8 and the right sides # 0 ).
(iv) If x,y,z€ {2,4,6,8} are pairwise distinct, then (xyz) = 0.
(v) Let x,ye {1,3,5,7} and z € {2,4,6,8}.

1) If y=x+2 then (xyz)=x,y provided z=x—1, y+1 and
(xyz)=x + 1 otherwise.
2) If y=x+4 then (xyz) =z.
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(vi) Let x € {1,3,5,7} and y,z € {2,4,6,8}, 1) Let z= y+2. Then
(xyz)=y, y+1,y+2, 0 provided x=y—1,y+1, y+3, y+5.
2) Let z=y+ 4. Then (xyz)=y provided x=y +1 and (xyz)=z
provided x=y+3 or x=y+35.

(vii) (Oyz)=yz (where y-z is the meet in [0)).

Proof Clearly in Lemma 3.2 we have

péi—1=q£i—1=2i_1(i=1’---549j=1’2’3)' (19)

(i) By (14) the meet 0 exists and so [0) is a meet semilattice.

Since 05 4.6, from (4), the isotony and (14) we get 4.6 =(046)
(246) = p; < 0 providing 4.6 =0. By a similar argument 2i-2j=0 for
all 1€i<j<4. Put a=1.5. By the Helly property b:= 2+4+a
exists. Since b=2 +4 =3 and 3 is maximal, we have b=3 and 32 a
ie. a£1.3.5<24=0. By symmetry 3.7=0 and so (i) holds
(iii) From (19) for i=1

(B3N =731)=(713)=(317)=37)=(173) =1 (20

and similarly for i =2, 3,4.
(iv) By (14) we have (246) = p} <0 and similarly in the other cases.
(v) and (vi). Direct check using isotony, majority property and (iii)
(vil) As 0 £ y-z it suffices to apply (4).
(ii) Follows from (iii)—(vii). O

We conclude with the following example of a stiff order.

36 Example Let P=1{0,...,8} and let & be defined by 0<i
i=1,...,8) and 1>2<3>4<5>6<7>8<1 (ie. P is a crown
with an appended least element). The totally symmetric majority oper-
ation m defined in Corollary 3.5 is a unique isotone majority oper-
ation on P .

To check this let x,y,z, x,y,ZeP,x<x, y£y, z£Z and
(xyz)=t, (x' y z)=t"
A. Let x=y. Then t=x. If x=0 or x'=) we have t <t. Thus let
0#x=y<x #y. Suppose 0 # x=x"=y <y By symmetry we may
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assume x =2 and y' = 1. from (v) we get
(213)=(132)y=2, (215)= (152) =2, 217)=(712)=2.
Similarly applying (vi) we obtain
(Q14)=(124)=2, (216)=(126)=2, (218)=(128)=1

and finally (210)=(012)=1.2=2 by (viii). Thus for all z* we have
t' zt. Similarly if y’=x" and so by symmetry we may assume that
x=y=2,x'=1,y =3. Now by (v) 1) we have t =(132) € {1,2,3} and
t' 2t

B. Let x#y# z# x. We distinguish 5 cases according to which of
(ii)—(vii) in Corollary 1.14 applies to {x,y,z}.

(i) If x,y,z € {1,3,5,7} then by maximality X' =x, y'=y and z=2'
proving t =t".

(iv) If x,y,z € {2,4,6,8}, then t =0 K 1.

(v) Let x,y € {1,3,5,7} and z € {2,4,6,8}. Then x'=x and y' =y. If
z'=z then clearly t=1¢" Thus let z<z. 1) Let y=x+2, eg x=1,
y=3.1f z=8 then t = (138) = 1. For z’ =1 we have ' = (131) = 1 while
for 2/ =17 also ¢’ = (137) =1 (by (iii)). Let z = 4. Then t = (134) = 3 while
¢ is either (133)=3 or (135)=3. For z € {2,6} we have t =(13z)=2.
On the other hand ¢ =(13z') is one of (131)=1, (133)=3, (135)=3
and (137)=1ie. ' >t

2) If y =x +4 then by (v)2) we have t = (xyz) =z <z’ = (xyz) = t'.

(vi) Let x € {1,3,5,7} and y, z €{2,4,6,8}.

1) Let z=y+2eg y=2,2z=4 If x=7 we have t =0 and we are
done. Note that again by maximality x' =x. a) For x=1 we have
t=(124)=2.If y=1 we have t'=1. If ) =3 then ¢ is one of (133),
(134), (135) which are all equal to 3. Thus let v’ =2. Moreover,
(123) =(125)=2. b) Let x=3. Then (324)=3. If y' =3 clearly
t'=(332)=3. If y'=1, then ¢ is one of (313), (314), (315) which all
equal 3. Finally, if y’ = 2, then ¢’ is among (323), (324) and (325) that all
equal 3. ¢) Let x=5. Then t=(524)=4. If y' =1, then ¢ is one of
(513), (514), (515), i.e. t' € {3,4,5} as required. If y’ = 2 then ¢’ is among
(523), (524) and (525), i.e. t' € {3,4,5}. Finally if y = 3 then ¢’ is one of
(533), (534) and (535), i.e. ' € {3,4,5}.
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2) Letz=y+4eg y=2,2z=0. A) Let x € {1,3}. Then t = {x26)=2
and t' = (xy' Z) is one of the values of m on {1,3} x {1,2,3} x {5,6,7}.
A direct check shows that these are all in {1,2,3}. b) Let x € {5,7}.
Then t=(x26)=6 and ' =(xy z') is one of the values of m on
{5,7} x {1,2,3} x {5,6,7}. It may be verified that those are {5,6,7}.

(vii) Let x=0. Then t=yz <y z' &1 [
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