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Abstract. A misstated conjecture in [3] leads to an interesting "(1, 3) representa- 
tion" of the 7-point projective plane in R 4 where points are represented by lines 
and planes by 3-spaces. The corrected form of the original conjecture will be negated 
if there is a (1, 3) representation of the 13-point projective plane in R 4 but that 
matter is not settled. 

1. Introduction 

A Sylvester-Gallai (SG) design consists of two finite sets P (points) and L (lines) 
and an incidence relation such that each two points are incident with exactly 
one line and each line is incident with at least three points. Finite projective 
planes are examples of such designs. SG designs were introduced and studied 
in [4]. 

An SG configuration in a projective or afline space is a finite set of points 
such that the line joining any pair of points of the set contains at least one more 
point. Representations of SG designs by SG configurations is of obvious interest 
and we are also interested in more liberal representations where points of the 
design are represented by subspaces of dimension rn and lines of the design are 
represented by subspaces of dimension n. We refer to such representations 
as (m, n) representations. SG configurations can thus be regarded as (0, 1) 
representations. 

The well known Sylvester-Gallai theorem asserts that any SG configuration 
in an ordered projective or affine space is a subset of a single line. However, in 
complex projective 2-space it is a classic bit of lore that the nine inflection points 
of a nondegenerate cubic curve are points of an SG configuration. It is not hard 
to generalize this example to sets in C 2 of cardinality 3k for any integer k > 3. 

In 1966 Serre [5] suggested that SG configurations in C" might be confined 
to the plane and this was recently confirmed in [3]. The proof, however, invoked 
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a presumably deep result in complex manifold theory and prompted speculation 
that a simpler proof  might be contrived if this C 2 theorem were given a conven- 
tional real 4-space interpretation in which points of  C 2 correspond ( 1 - 1 )  to 
points in R 4 but lines of  C 2 correspond to a (proper) subset of planes in R 4. 
Since each two lines in C 2 intersect in a single point each two planes of this 
special family must also have only one point in common. This family, or any 
family projectively equivalent to it, will be called a set of  C-planes of  R 4. The 
dual of  a set of  C-planes in R 4 is a set of  pairwise skew lines which are referred 
to as a set of  C-lines of  R 4. 

The key fact needed in [3] to establish the Serre result was a corollary of an 
inequality of  Hirzebruch [1] to the effect that a nonlinear SG configuration in 
C 2 must be intersected by some line in exactly three points. Interpreting this in 
the R 4 setting we have 

Theorem. I f  a finite family of  C-lines in R 4 is such that the 3-space containing 
any two o f  the lines contains at least two more, then the family is in a single 3-space. 

This is obtained by first dualizing in C 2, interpreting the result in R 4, and 
finally dualizing in that setting. This leads to the obvious conjecture that the 
theorem might be true in R 4 without the proviso that the family be a subset of  
C-lines. That is: 

Conjecture. I f  a finite family o f  pairwise skew lines in R 4 is such that the 3-space 
containing any two o f  the lines contains at least two more, then the family is in a 
single 3-space. 

A conjecture in [3] was actually a misstatement of this where "at  least two 
more"  was inadvertently replaced by "at  least one more." That conjecture was 
clearly false since any nonlinear SG configuration in C 2 gives rise to a counter- 
example in R 4. For example, the existence of the nine-inflection-point SG 
configuration in C 2 implies the existence in R 4 of a set of  nine pairwise skew 
lines spanning R 4 such that the 3-space containing any pair contains exactly one 
more line of  the set. In representation language this is a (1, 3) representation in 
R 4 of  a 9-point, 12-line SG design. 

The misstated conjecture had the desirable effect of  prompting the discovery 
of  a (1, 3) representation in R 4 of  a nonlinear SG design which is not obtainable 
as a transform of  a nonlinear SG configuration in C 2 and suggested a construction 
technique which might produce a counterexample to the (properly stated) 
conjecture. 

2. A (1, 3) Representation of the Seven-point Projective Plane 

Let A and B be two different hyperplanes in R 4 intersecting in a plane C, let 
•l, • - - ,  ~/7 be seven lines in general position in C, let a ~ , . . . ,  a7 be seven planes 
in general position in A, and let/31 . . . .  ,/37 be a similar set of  planes in B and 
assume ai n/3i = Yi. 
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Now let x ~ , . . . ,  x7 be the seven lines of a Fano plane, F. If x~, xj, Xk concur 
in F define Pijk = ai c~ aj c~ 0t k and Qok -~ fli ~ flj ~ ilk. The seven lines luk in R 4 
joining P0k and Qok may or may not be pairwise skew but if they are not, 
considerations of continuity and the wide latitude available in the choice of a~, 
/3, y~ should make it clear that judicious choices will produce a pairwise skew 
set. For the skeptical we produce a specific example below. 

Granting this, the other relevant properties of the lines lqk are immediate. 
That is they span R 4 and the 3-space containing any two contains exactly one 
more. 

3. Numerical Example 

~jk Quk 
( -40,  4, 0, 10) (0, -6 ,  -30,  0) 

(4, -24,  0, 16) (12/11: 72/11, 191/11, 0) 

(108, 168, 0, -72)  ( -24,  -24,  -48,  0) 

( -36 /7 ,  36/7, 0, -60 /7)  ( -12,  0, 36, 0) 

(10, -4 ,  O, 2) (7, -6 ,  4, O) 

( -12 ,  30, O, -3 )  ( -12 ,  30, 6, O) 

( -15,  5, O, 11) ( -15,  -6 ,  -33,  O) 

A direct calculation shows that the seven lines lij k joining Pijk and Qijk a r e  

pairwise skew, span R 4, and the hyperplane in R 4 containing any pair contains 
exactly one more. 

4. Remarks 

A (1, 3) representation in R 4 of the 13-point projective plane seems possible but 
so far our efforts to exploit these techniques have been inconclusive. If such a 
representation exists it would invalidate our conjecture and show that membership 
in the C-line set was very relevant and that the Serre result is probably intimately 
involved with deeper algebraic properties of C 2. 

Since SG configurations in C" are confined to the plane and the only nonlinear 
examples which seem to be known are those of cardinality 3k and 3k+  1, k->3, 
a more complete classification could be revealing. Further work on (1, 3) rep- 
resentations of  SG designs in R 4 is in progress. 

Finally we make an observation correcting an impression given in [3]. All 
proofs we know of the original Sylvester theorem employ the order structure of 
the space. Those interested in foundational studies have long wondered whether 
adjoining the Sylvester assumption to the basic projective axioms would produce 
a space in which the order axioms could be proved. This was shown not to be 
the case in 1984 by Joussen [2]. This fact deserves to be better known. 
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