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ABSTRACT 

A graph % of diameter 2 is minimal if the deletion of any edge increases its 
diameter. Here the following conjecture of Murty and Simon is proved for 
n > no . If 93 has n vertices then it has at  most Ln2/4J edges. The only ex- 
tremum is the complete bipartite graph. 

1. PRELIMINARIES 

A graph % is a pair (V(%),  E(%))  (or for short (V, E ) )  where E (the edge-set) 
is a set of pairs of I/. (V is called vertex-set.) Let S be a subset of vertices. 
Then %[S] denotes the subgraph induced by S, and %[A, B] stands for the 
induced bipartite subgraph (forA n B = 0). "[[A, B] denotes the complete 
bipartite graph with partsA and B, and "{[a, b] stands for a complete bipar- 
tite graph with JAJ = a,  IBI = b. X [ S ]  is the complete graph with vertex set 
S. The neighborhood of a vertex u is denoted by N%(u) (or sometimes briefly 
by N(u)) ,  i.e., N(u) =: {u E V: {u,  u} E E}. Note that u $Z N(u) .  The size 
of N(u) is called the degree of u,  deg9(u). The deg9(u,Y) stands for 
IN(u) fl Y1, the number of edges connecting u to Y The graph 93 has di- 
ameter 2 if it is not the complete graph and for each two vertices u ,  u E V 
either {u, u} is an edge of '3, or N(u)  n N(u) f 0 (or both). % is called a 
minimal graph of diameter 2 if its diameter is 2, and the deletion of any of 
its edges spoils this property. Plesnik [7] observed that all known minimal 
graphs of diameter 2 on n vertices have no more than n2/4 edges, and 
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that the complete bipartite graphs are minimal graphs of diameter 2. In- 
dependently, Murty and Simon (see in [2]) stated these as the following 
conjecture: 

Conjecture 1.1. If % is a minimal graph of diameter 2 on n vertices, then 
IE(%)I I Ln2/4J. Equality holds if and only if % is the complete bipartite 

Paul Erdos (private communication) informed me, that this conjecture 
goes back to the 1960s to the work of 0. Ore, but the author failed to un- 
cover an exact reference. Let % be a minimal graph of diameter 2 with n 
vertices. Plesnfk [7] proved that IE(%)I < 3n(n - 1)/8. Caccetta and 
Haggkvist [2] obtained IE(%)I < 0.27n2. Fan [6] proved affirmatively the 
first part of the Conjecture 1.1 for n I 24 and for n = 26. For n 2 25 
he obtained 

graph W ~ J ,  ~ 2 1 1 .  

n2 - 16.2n + 56 
320 

< 0.2S32n2. 
1 

IE(%)I < q n 2  + 
An incorrect proof was published [lo] in 1984. 

Theorem 1.2. Conjecture 1.1 is true for n > no. 

The value of no is explicitly computable, but the proof given here yields a 
vastly huge number (a tower of 2's of height about 1014). 

This paper is organized as follows. In Section 2, a lemma is proved about 
the number of disjoint neighborhoods in an arbitrary graph. In Section 3, 
we prove that IE(%)I < (1 + o(l))n2/4 holds for all n. The main idea of the 
proof is that we delete some o(n2) edges of % such that the remaining 
graph, %o, has only at most n2/4 edges. In this step we utilize a result of 
Ruzsa and Szemeridi [S] about triangle-free, 3-uniform hypergraphs. In 
Sections 4-6 we put back the deleted edges. Then after a lengthy argument, 
where we repeatedly use the structure of %", we conclude that the conjec- 
ture is true for sufficiently large n. During the proof we suppose that 
IE(%)I 2 ($ - 6)n2, and prove more and more common properties of % and 
a complete bipartite graph 3C[C, D] with C U D = V(%).  In Section 4 it is 
shown that crit % contains a huge bipartite graph with edge density 
1 - o(1). Section S contains the proof that almost all vertices in D are con- 
nected to almost all vertices of C,  i.e., % is almost a complete bipartite 
graph. In Section 6 we finish the proof. In Section 7 we have some closing 
remarks on further open problems. 

2. THE NUMBER OF DISJOINT NEIGHBORHOODS IN A GRAPH 

Let 9 be an arbitrary graph on n vertices. Define the set of pairs with dis- 
joint neighborhoods as follows: 

E(disj 9) =: { { u , ~ } :  N&) fl Np(u) = a}. 
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EXTREMAL GRAPHS OF DIAMETER 2 83 

We treat disj 9 as a graph with vertex-set V(9). 

Lemma 2.1. IE(9)I + IE(disj 9)l I Ln2/2J. 

For the complete bipartite graph X[ln/2J, rn/21] equality holds in 
Lemma 2.1. There are other extremal examples, e.g., a matching of size 
1421, or for n = 5 the disjoint union of an edge and a path of length 2, etc. 
Moreover, if 9 is vertex-disjoint union of complete graphs, then IE(9)l + 
(E(disj 9)l 1 ($), i.e., it is very close to the optimal one. 

ProoJ: We use induction on n. The cases n = 1,2 are trivial. Suppose 
that the vertex x has maximum degree, i.e., INs(x)I = max degs(u). If 
N&) = 0, then the left-hand side in Lemma 2.1 is (?) < Ln2/2J. So we may 
suppose that there exists a y E N ( x ) .  For every z E N(x)\{y} we have x E 
N ( y )  n N ( z )  f 0, hence 

and by definition 

Summing up (2.2) and (2.3) we have 

We distinguish between two subcases. 

(1) Suppose first that there exists a yo E N ( x )  such that the left-hand 
side of (2.4) is only at most n - 1. Let 4' be the graph obtained from 4 by 
deleting the vertex yo and the edges through yo. Obviously 

and it is easy to see that 

Summing up (2.5) and (2.6), then using the induction hypothesis for 9' and 
the assumption for yo, we obtain that 

IE(9)l + IE(disj %)I I L(n - 1)2/2j + (n - 1) 5 1n2/2J. 

(2) Suppose now that equality holds in (2.4) for every y E N ( x ) .  Then 
equality holds in (2.2) for ally E N(x) ,  which implies that the complete bi- 
partite graph X [ N ( x ) ,  V(S)\N(x)] is a subgraph of disj 9. Consequently, 
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there is no edge of 9 in N ( x ) .  Equality holds in (2.3) as well, so 
X [ N ( x ) ,  V(S)\N(x)] is a subgraph of 9, too. Hence 9 = X [ N ( x ) ,  V(B)\ 
N(x) ] .  Finally, for this graph the left-hand side in Lemma 2.1 is at most 
2tn2/4J. I 

3. THE PROOF OF maxp(%)I = a( 1 + o( l ) ) n 2  

Let % denote a minimal graph of diameter 2 with n vertices. Define the set 
of criticalpairs as follows. {u,u} E E(crit %) if there is a unique path of 
length at most 2 with end points u and u. Call this unique path critical path 
and denote it by P(u, u). There are two cases. 

If P(u,u) consists of only a single edge, then we call it type I.  If P(u,u)  
consists of two edges, then we call them type ZZ. It is possible that an edge 
of % has both types. But the minimality of % ensures that every edge has at 
least one type, i.e., every edge belongs to a critical path. For an edge 
E E E(%), denote m ( E )  the multiplicity of E, i.e., the number of critical 
paths in which the edge E appears. 

Lemma 3.1. 
least m is at most n(n - l)/m. 

For any m > 0 the number of edges of % with multiplicity at 

Proog The total sum of multiplicities is at most twice the number of 
critical pairs, i.e., it is at most 2(3.  I 

An upper bound on the number of light paths. Let m be an arbitrary 
positive number. A critical path is called light if it has two edges, and both 
have multiplicity less than m. We are going to give an upper bound (de- 
pending on n and m) for the number of light paths. To do this we recall 
some definitions and results from the extremal hypergraph theory. 

A 3-graph (or 3-uniform hypergraph) X is a pair ( V ( X ) , E ( X ) ) ,  where 
V ( X )  is a finite set (the set of vertices), and E(X) is a set of 3-element sub- 
sets of V ( X )  (the set of edges). X is called linear if every two distinct edges 
intersect in at most 1 element. Three edges of a hypergraph form a triangle 
if they pairwise intersect, but no vertex is contained in all the three of 
them. For example, a triangle in a linear 3-graph is isomorphic to {{1,2,3}, 
{3,4,5},{5,6,1}}. Denote by RSz(n) the largest number of edges in a 
triangle-free, linear 3-graph over n vertices. Ruzsa and SzemerCdi proved 
the following theorem: 

Theorem 3.2 [S]. RSz(n) = o(n’). 

(Actually, they also proved that RSz(n) is larger than n2-‘ for all positive 
c, but we need the upper bound only.) 
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EXTREMAL GRAPHS OF DIAMETER 2 85 

Lemma 3.3 The number of light paths is less than 27mRSz(n). 

Proof: Define the 3-graph X I  with vertex-set V ( % )  as the set of 3- 
element sets determined by the light critical paths of %. Consider a light 
critical path P(u,  u) =: {{u, c}, {c, u}}.  The critical pair {u, u} does not 
appear in any other triples from XI, so there are at most 2(m - 1) further 
triples intersecting {u, c ,  u} in 2 elements. Keeping the triple {u, c,  u} and 
deleting those from X1 that intersect it in 2 elements, then continuing this 
process until no two triples left with intersection size 2, one obtains a 
linear hypergraph X z  such that 

E(X*)  C E ( X 1 )  and lE(X2)l L lE(X1)1/(2m - 1) .  (3.4) 

A 3-graph X is called 3-partite, if one can partition its vertex-set V ( X )  = 

6 U V, U V, such that for every edge E E E ( X )  and for all i (1 I i I 3) 
one has IE rl Kl = 1. Erdos and Kleitman proved the following simple but 
important fact: 

Fact 3.5 [5] .  
subhypergraph X‘ of it such that 

Let X be an arbitrary r-graph. Then one can find an r-partite 

Applying Fact 3.5 to X z 7  one obtains a 3-partite, linear hypergraph X 3  with 
parts V, V,, V,, such that 

Let P(u, u) be a critical path with edges {u, c} and {c, u}. The vertex c is 
called the center of the triple {u, c,  u} .  Without loss of generality we may 
suppose that at least 1/3 of the triples of X 3  have its center in 6. This 
means, that there is a subhypergraph X4 of X 3  such that 

and with the additional property that if { u 1 , u 2 , u 3 }  is a triple of X4 with 
ut E K then { u l ,  u3} is its critical pair. 

Proposition 3.8. X4 is triangle-free. 

Proof: Suppose, to the contrary, that three triples P,, P2, P3 of X4 form 
a triangle. Then PI U P2 U P3 intersects r/; (1 5 i 5 3) in at least 2 ele- 
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ments. As lPl U P2 U P31 = 6, we obtain that each V contains exactly two 
vertices from the triangle. Let (PI U P2 U P3) n K =: {al, b,} and PI =: 
{al, a 2 ,  a3}. Without loss of generality, we may suppose that P, intersects PI 
in ai,  i.e., P2 =: {b l ,a2 ,b3}  and P3 =: {bl,b2,a3}. Then (b l , b2 ,u3)  and 
(bl, a 2 ,  u 3 )  are two disjoint paths from b1 to u3 ,  which contradicts the earlier 
constraint that {bl ,a3} is a critical pair. I 

The End of the Proof of Lemma 3.3. Proposition 3.8 and Theorem 3.2 
imply that IE(X4)l 5 RSz(n), and (3.4), (3.6), and (3.7) imply that IE(X1)l I 
27mlE(X4)1. I 

The asymptotic upper bound on IE(%)I. Let m =: dn2/54RSz(n). Note 
that m =: h ( n )  tends to infinity 'according to Theorem 3.2. Delete all 
edges of % whose multiplicity is at least m, and those edges that appear in 
a light critical path. Denote the obtained graph by 310. Lemmas 3.1 and 3.3 
imply the following upper bound on the number of deleted edges: 

(3.9) 

Deleting these edges from %, we have destroyed all critical paths of 
length 2. In other words, if ( u ,  c, u) is a critical path in % (with critical pair 
{u, u}),  then the neighborhoods of u and u in %,, are disjoint. This implies 
that E(crit %) C E(disj %o), i.e., 

IE(crit %)I I IE(disj Y o ) \ .  (3.10) 

As the edge-set of % is the union of critical paths, and after the deletion 
every V(P(u,u))  contains at most one edge of %o, we conclude that the 
number of edges in is not more than the number of critical pairs in 
%, i.e., 

IE(gO)l I IE(crit %)I.  (3.11) 

The inequalities (3.10) and (3.11) imply, together with Lemma 2.1, that 

Finally, (3.12) and (3.9) give 

Corollary 3.13. IE(%)I I (n2/4) + (2n2/m) = (1 + o(1)) (n2/4). I 

4. crit % HAS A GIANT BIPARTITE SUBGRAPH 

We continue the proof started in the previous section. Suppose that 
IE(%)( > (i - S)n2 for some 6 5 As RSz(n)/n2 + 0 there exists an no 
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EXTREMAL GRAPHS OF DIAMETER 2 87 

such that for n > no one has 

(The proof given in [8] implies that no is not larger than a power tower of 
2’s of height Inequality (4.1) implies that m > 400,000. Define E such 
that c2/4 > 6 + (2/m), e.g., E = 1/200. 

C E(%) and E(crit %) C E(disj %o). Equa- 
tion (3.9) implies that 

We have four graphs, 

The huge values of no and m were needed to satisfy the inequalities E I 
0.005 and (4.2). In the proof we use only these two constraints. The value 
of no probably can be lowered. 

First we formulate the fact that crit % and disj %o are close to each other. 
Equations (4.2) and (3.11), then (3.10), and finally (3.12) imply that 

n’ n‘ 
4 4 

(1 - E’)- < IE(crit %)I 5 lE(disj %i0)l < (1 + E ~ ) - .  (4.3) 

Hence we have IE(disj 
satisfying (4.4)): 

- IE(crit %)I < g2n2/2. Let A4 =: {u E V: not 

Note that the left-hand side of (4.4) is always nonnegative. This implies 
that 

Proposition. For all but less than ~n vertices u E V,  the following holds: 

ProoJ: Let A5 denote the set of exceptional vertices, i.e., the set of ver- 
tices u E V ,  which does not fulfill (4.5). Suppose, to the contrary, that 
\As( L ~ n ,  and let B C A5,  IBJ =: b = [En]. Delete B. Then for the ob- 
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tained graph %o\B we can apply Lemma 2.1. 

IE(%o)l + IE(disj %dl 

I (n - b)'/2 + bL(1 - &)n].  

Here the right-hand side is at most i(1 - E2)n2 and the left-hand side is at 
least 21E(%o)l (by (3.12)). This contradicts (4.2). I 

Let u be a vertex with maximum degree in %,,, i.e., d =: deg,,(u), and 
for all u we have degu,(u) 5 d. Denote N%&u) by D ,  and its complement 
V(%)\D by C. By (4.2) we have 

(4.6) 
n 
2 

d > -(1 - E ' ) .  

No edge of disj %o is contained in D; hence 

holds for ally E D. This and (4.5) implies that 

degu,,(y) > d - en 

holds for all y E D\As. 

Proposition 4.9. d < 0.7%. 

ProoJ: Equation (4.2) and the above inequality (4.7) imply 

1 1 
2 2 

5 -((n - d ) ( n  - 1) + d ( n  - d) )  < -(nz - d 2 ) .  

This leads a contradiction if d 2 0.75n and E is small. I 

Moreover, (4.5) imply that degd,,lu,(y) > n - d - E n  for ally E V\A5. 
As disj %o I D is empty, we have the following lower bound for the number 
of disj go edges connectingy to C: 

degd,sjy,l(y,C) > - d - (4.10) 

holds for all y E D\As. In other words disj %"[C, D]  is almost a complete 
bipartite graph. 
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EXTREMAL GRAPHS OF DIAMETER 2 89 

Consider the bipartite subgraph of crit %, induced by C and D ,  i.e., 
the edge-set is defined by E(crit %(C, D ) )  =: {{x,y} E E(crit %): x E C, 
y E D}. The inequalities (4.10) and (4.4) imply 

holds for ally E D\(A4 U A S ) .  So crit %[C, D] is almost a complete bipar- 
tite graph, as well. 

Let A h  be the set of vertices x E C having at most 6sn crit % neighbors 
in D. 

Proposition 4.12. 1,461 < 5.91. 

Proof: Equation (4.11) implies that 

This and (4.6) imply 4.12. I 

5. % HAS A GIANT BIPARTITE SUBGRAPH 

It is impossible that for some vertex u both 

hold. Suppose, to the contrary, that (5.1) holds for some u E V. Since 
IA4 U AsI < 2sn, there is y from N,,(u) n D\(A4 U A s ) .  By (4.11), at 
least n - d - 2sn edges of crit % adjacent to y go into C. Noting that 
lNs,l(u) fl CI 2 2.92, there exists an edge {x,y} of crit % with x E 
N,,(u) n C. But then (x,u,y) is the critical path belonging to the critical 
pair {x,y}, which contradicts the definition of %o. I 

Call a vertex u of type C (or 0) if it has at least 2sn %o neighbors in C (in 
D ,  respectively). Eventually, a vertex with a small %,-, degree has no type. 
But as every %" degree in D\As is between d and d - En, by (4.8), we 
obtain that they have types. The aim of this section is to show the follow- 
ing lemma, which leads to the fact that % is (almost) a complete bipartite 
graph. Let Do be the set of verticesy E 0\A5 with type D ,  do =: IDo~. 

Lemma 5.2. (Dol < 3 m .  
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Proof: Suppose, to the contrary, that IDo[ 1 3 ~ n .  The first step of the 
proof of 5.2 is to show that 

Proof of (5.3). Consider the bipartite graph go(D0,D\(Do U A S ) ) .  If 
y E D\(Do U A S )  (i.e., it has type C ) ,  then ING,(y) f l  Do[ 5 [N%&y) n 
DI < 202. Hence 

On the other hand, every point in y E DO has type C,  i.e., deggo(y, C )  < 
2 ~ n .  Soy has more than deggO(y) - 2 ~ n  %O neighbors in D. Hence, by (4.8), 

for ally E Do. Soy has more than lD\(Do U A s ) ]  - 3 ~ n  neighbors in D\ 
(Do U As). Thus, 

Rearranging (5.4) and (5.6), and using the fact /As i l  DI < ~ n ,  we have 

This implies (5.3) since do 1 3 m  and d > 18m. I 

Consider the induced graph % o [  Do. Equation (5.5) implies that every 
-vertex from Do has at least IDo[ - 3 ~ n  %o neighbors in Do, and do - 3 m  > 
2do/3, by (5.3). Hence every two vertices of Do have at least do/3 common 
neighbors in Yi0. So in this case Do (and by (5.3) D)  induce almost a com- 
plete graph (in %lo). Consequently, Do does not contain any edge from 
disj 930, from crit % and there is no edge of % in Do of type I. 

Consider the induced bipartite subgraph %[c\A6, Do]. (Warning! % and 
not %o .) 

Proposition 5.7. Let x E C\A6. Then deg&,Do) 5 1, i.e., there is at 
most 1 edge of % from x to Do. 

proof of^.^ Suppose that there are 2 such edges of % {x, yl} and {x, y2} 
withyl,yz E Do. We have that ID\No(yl) n Ng(yz)J is at most 6 ~ n  by (5.5). 
So there exists a critical edge {x , z }  E E(crit %) with z E D n N % ( y l )  n 
N,(yz), as x @ As. Then (x,yl, z )  and (x,yz, z )  are two distinct paths in %. 
But this contradicts to the criticality of {x, z} .  I 
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EXTREMAL GRAPHS OF DIAMETER 2 91 

Let F be the set of those vertices in Do that are not connected to C\A, 
in %. 

Claim 5.8. IF1 < 23m. 

Proof of5.8. We obtain 5.8 by estimating IE(%[F])I. Let IF1 =: f and 
supposef > 0. The number of %(, edges in F is at least 

(5.9) 

by (5.5). The set F (and Do) contains no critical pair. So each of the edges 
of % I F has type 11, so they belong to critical paths of length 2. Hence 

(5.10) 

If {y, z}  is an edge of % contained in F, then let (x, y ,  z )  be a critical path 
containing it, {x, z}  E crit % and {x, y} E E(%). By definition, C\A, is not 
connected (in %) to F, so we have that x @ C\A6 (andx @ Do). Now we can 
easily give an upper bound on the number of critical pairs {x, z} ,  such that 
x 4 Do U (C\A,) and z E F. This is at most 

by 4.12 and (5.3). Then (5.9)-(5.11) implyf < 2 3 ~ n .  I 

The end of the proof of 5.2. Denote Do\(F U A4) by D1. For every 
y E D1, let x =: x(y) be a vertex of C\A6 such that {x,y} E I?(%). By 
Proposition 5.7 these second end points are all distinct. Let Cl =: {x(y): 
y E Dl}. Then (5.3) and Claim 5.8 imply that 

n 
-(1 + E * )  > n - d 2 lC11 
2 

= 1 ~ ~ 1  = do - f - IA4( > (d - 5 ~ n )  - 2 3 ~ n  - E 

n 
2 

> - - 30m. (5.12) 

Let ID1) =: dl.  Consider two arbitrary edges {x, y} and {x', y'} of % be- 
tween C1 and D1 with x, x' E C1 and y, y' E D1. If {x', y} is a critical pair, 
then either {x,x'} or {y,y'} is not in I?(%). This, and the structure of 
%[Cl, Dl], imply that 
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By (4.11) we have thaty E D1 has at least d l  - 2.92 crit % neighbors in C1. 
This and the above inequality imply 

deg&,C1) + degu(y, Dl )  I d ,  - 2 + 2 ~ n .  (5.13) 

Summing up (5.13) for the d ,  edges of % connecting C1 and D1, we ob- 
tain that 

It is obvious that the number of edges of %" not included in C1 U Dl is not 
more than 

(n  - 2dl)d. (5.15) 

Finally, the sum of (5.14) and (5.15) gives 

As the function g(dl) is monotone decreasing for d ,  < d, and dl 2 d - 
29sn by (5.12), we have 

3 
2 IE(%o)l I g(d - 2 9 ~ ~ )  = - - d 2  + (1 + 30~)nd  + 391.5~~n* 

< -1.5d2 + 1.15nd + 0.01n2. 

We used that E I 0.005. Here the right-hand side is less than 0.241~' for all 
real d. This contradicts (4.2). I 

6. THE END OF THE PROOF 

Claim 6.1. 
% to all but less than 6sn vertices in C, i.e., deg,,,,,(y, C) > ICI - 6 ~ n .  

Everyy E D\(A4 U A ,  U Do)  is connected by type I edges of 

Note that Lemma 5.2 (and (4.4) and (4.5)) imply that IA4 U A ,  U Dol < 
5En < ID[. 

ProoJ The deg9,,(y) > d - ~n by (4.81, as y  AS. IN,,(y) n DI < 2 ~ n  
by (5.1), as y @ Do U A, .  Hence 

deg,,,( y, C )  > d - 3 ~ n  . (6.2) 
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EXTREMAL GRAPHS OF DIAMETER 2 93 

As d > n - d - ~ r z  by (4.6), we have that the right-hand side of (6.2) is at 
least ICI - 4 ~ n .  Moreover, degCrltg(y,C) > ICI - 202 by (4.11), as y @ 
(A4 U As) .  S o y  is connected to more than ICI - 6.92 vertices in C with %O 
(so (8) edges, such that these edges are also critical pairs. That is, these are 
edges of type I. I 

As a byproduct, (6.2) implies that n - d = ICI > d - 3 .~2 ;  hence 

n 3  d c - + - E n .  
2 2  (6.3) 

Let D7 be the set of verticesy E D with at least an + ~n type I neighbors 
in C,  i.e., 

n 
4 E D: degtYpeI(y,C) I - + E n  

Analogously, let 

n 
4 

x E C: deg,,,,,(x,D) I - + EIZ 

As E is small, Claim 6.1 implies that D7 3 D\(A4 U As U DO),  hence 

Again Claim 6.1 and a simple counting argument yields that 

Indeed, like in (4.11), we have 

 10970118, 1992, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.3190160110 by U

niversity O
f Illinois A

t, W
iley O

nline L
ibrary on [17/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



94 JOURNAL OF GRAPH THEORY 

Let A7 =: (C\C7) U (D\D7). Summarizing the above inequalities, 

From now on we will not deal with %o; we return to investigate directly 
%. The following proposition is implied by Claim 6.1 in the same way as 
(5.1) is implied by (4.11): 

Proposition 6.6. For every u E I/ either JNu(u) f' Cl < 6.91 or INdu) fl 
D( < 5-92 holds (or both). I 

Split A7 into three parts. Let As consist of those vertices of A7 whose 
degree is less than $n + 2 6 m .  Let Cx ( D s )  consist of those vertices OfA7\Ax 
that have at least 6m % neighbors in D\A7 (in C\A7, respectively). Note 
that Cx is not necessarily a subset of C.  Proposition 6.6 implies that 
CR fl Ox = 0, and A*, Cx, and Ds form a partition of A T .  

Forx E Cs deg(x) 2 (44)  + 26sn and IN(x) n CI < 6 m ,  so we have 

n n 
4 4 deg(x, D )  > - + 2 0 m ,  and similarly, deg(y, C) > - + 20sn (6.7) 

for every y E DR. (Here and from now on deg and N simply means deg, 
and Nu unless otherwise stated.) 

Our next aim is to give an upper bound for IE(%)I using the above parti- 
tion I/ = C7 U Cx U D7 U Ox U A x .  Obviously, we have that the number 
of edges adjacent to A s  is 

For brevity use the notations C' =: C7 U Cx, c' =: IC'I and D' =: D7 U 
DR,  d' =: ID'[. As for arbitrary a, b E C' we have " (a ,  D)l + IN(b, D)l > 
i n  + 2.91 2 ID1 + 2 ,  we have 

Proposition 6.9. C' (and similarly D') contains no critical pair. I 

As for arbitrary a E C7 and b E C ' ,  we have 

This implies 

Proposition 6.10. There is no % edge connecting C7 to Cs, and there is no 
edge in C7. Similarly, E(%[D,]) = 0, and E(%[D7, Ds] )  = 0. 
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EXTREMAL GRAPHS OF DIAMETER 2 95 

Classify the edges of % in C' U D' as follows: 

(ii/C) In this class we have those edges {a, b} that are contained in C' (so 
in c8 by 6.10) and are part of a critical path (a, b, c) with c E D'. 

(ii/D) The definition is analogous to (ii/C), i.e., {a, b} E E(%) belongs to 
this class if a, b E Dx and there is a critical path (a, b, c)  with 
c E C'. 

(i) First of all we have the edges connecting C' and D'. 

(iii) The rest of the edges are in C' U D'. 

First we prove an upper bound for the edges of type (iii). Consider an 
edge {a,b} of type (iii). Say it is included in Cx. As a and b have a lot of 
common neighbors in D' (by 6.9), the type of {a, b} is 11. Then it is a part of 
a critical path (a, b, c) of length 2, and by definition, c @ D'. C' does not 
contain the critical pair {a, c} by 6.9, so c @ C', too. So {a, b} belongs to a 
critical pair {a,c} with c E Ax. As a E A7\&, the number of such critical 
pairs is bounded above by IA7\Ax1 / A 8 ( ;  hence 

For each edge {a, b} from the classes (ii/C) or (ii/D), one can associate a 
critical pair {a,.} such that one of a and c lies in C' and the other lies in 
D ' ,  but {a, c} is not an edge of %. The pair {a, c} is not associated to another 
edge of type (ii), so in this way we have that the number of edges in 
class (ii) is not more than the number of nonedges between C' and D'. In 
other words, the number of edges of types (i) and (ii) is at most ID'\ IC'I. 
This and (6.8) and (6.11) give 

(6.12) 

Here E < 1/4, so IA71 < (n/4) + 2 6 ~ n  by (6.5). This implies that 

(: + 2 6 ~ n  + (A71 - lA81 (AxI 5 - + 2 6 ~ n  IA71 I d ' (n  - c' - d ' ) .  1 (: 1 
In the last step we used that d '  > d - 5 ~ n  by 6.1, and this is larger than 
(n/2) - 6 ~ n  > (n/4) + 2 6 ~ n .  So the right-hand side of (6.12) is at most 
d'(n - d ' )  5 Ln2/4J, as desired. 1 

Equality can hold in (6.12) only if n - c' - d' = 0, i.e., A8 = 0. Then 
there is no edge of type (iii) by (6.11). 

Moreover, every nonedge between C' and D' must be a critical pair. 
There is no edge between C7 and Cs (and between D7 and D x )  by 6.10, so 
for every critical pair e E E(crit %) that is a nonedge, we have e n 
(c8 U 0 8 )  f 0. So 'X[C7, D7] is a subgraph of %. 

 10970118, 1992, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.3190160110 by U

niversity O
f Illinois A

t, W
iley O

nline L
ibrary on [17/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



96 JOURNAL OF GRAPH THEORY 

Suppose that (E(%[C8])1 2 IE(%[&])l; the other case is similar. Let 
P =: {u E c8: deggLc,,(u) > O},p =: IPI. Then (6.5) gives 

Letx E P be chosen arbitrarily, and let {x, y} be an edge of % contained in 
CS. Then, by (6.4) and (6.7), deg(x, D7) > deg(x, D )  - 5sn > (44 )  + 15m. 
Similarly, deg(y, D)  > (44)  + 15m, so 

This yields at least 2 8 ~ n  edges {x, z} ,  z E D’ of type 11. So the number of 
edges of type I1 between C8 and D‘ is at least 28snp. Each of such edge is 
a part of a critical path of length two, with a critical pair between C’ and 
D’ (by 6.9). So the number of nonedges between C ‘  and D’ is much more 
than the right-hand side of (6.13), if p > 0. Thus IE(%)I 2 Ln2/4J implies 
that p = 0. That is, $4 is a bipartite graph, and then a complete bipartite 
one. I 

7. REMARKS AND PROBLEMS 

We can construct a large nonbipartite minimal graph A of diameter 2 as 
follows: Let V ( & )  =: X U Y U {z}, where 1x1 =: L(n - 1)/2J, IYI =: 
[(n - 1)/21, and let x E X ,  y E Y. The graph A obtained from the com- 
plete bipartite graph X [ X , Y ]  by deleting the edge {x,y} and adding the 
edges {x, z}  and {z,  y}. With a little more effort, the above proof gives the 
following slightly stronger statement: 

Theorem 7.1. Suppose that % is a minimal graph of diameter 2 over n ele- 
ments, n > no. If IE(%)( 2 L(n - 1)2/4J + 1, then either % is a complete bi- 
partite graph, or it is isomorphic to A. I 

Let now % be an arbitrary graph with n vertices. Let k be an integer and 
define disjk % as follows: The pair {x,y} belongs to E(disjk %) if they have 
at most k common neighbors, i.e., IN(x) n N(y)J I k .  In this way disj % 
defined above is just disjo %. If we use directly the Szemer6di lemma [9] in- 
stead of Theorem 3.2, then we can obtain the following statement, which 
was the essence of the proof presented in Section 3: 

Theorem 7.2. Let k be a fixed integer. Then from any graph % on n ver- 
tices one can remove o(n2)  edges such that the following holds: If x and y 
had at most k common neighbors in %, then in the obtained new graph Yik 
they have no common neighbor anymore, i.e., E(disjk %) C E(disj % k ) .  I 
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EXTREMAL GRAPHS OF DIAMETER 2 97 

The following would be a powerful sharpening of the above theorem. 
For simplicity we state only the case k = 1. 

Conjecture 7.3. One can remove o(n’) edges from any graph % on n ver- 
tices such that the following holds for the obtained graph 93’: For everyx 
and y E I/ either N9,(x)  n N,,(y) = 0, or / N w , ( x )  f’ N9,(y)l > 1. 

Recently Duke and Rod1 [4] have had some remarkable results in this di- 
rection. (They investigated bipartite graphs only.) 

The following conjecture generalizes our main theorem: 

Conjecture 7.4. Let % be a graph over n vertices and suppose that every 
two vertex is connected by at least k paths of length at most 2. Suppose 
further that % is minimal with respect this property. Then IE(%)I 5 

Here the extremal graph would be complete 3-colored graph with parts 
of sizes L(n - k + 1)/2], r(n - k + 1)/2j and k - 1. Caccetta and 
Haggkvist raised the following conjectures, which also generalize Conjec- 
ture 1.1: 

Conjecture 7.5 [2]. 
where d denotes the average edge-degree in 3, i.e., 

(k - l ) (n  - k + 1) + l(n - k + 1)*/4J. 

If % is a minimal graph of diameter 2, then 2 5 /V(%)I, 

2 = c (deg(x) + deg(y))/lE(%)I = c (deg(x))*/IE(W. 
{I, YP=(W x E  V (  ‘8) 

Conjecture 7.6 [2]. 
then IE(%)\ I (1 + o(l))n2/2(k + 1)*. 

The conjectured extremal graph consists of two complete bipartite 
graphs 5’C[A0,A1] and XIAk-l,Ak] where IA,I - n/ (k  + l ) ,  and lAll =: 
IAk-,l, and IAl( disjoint path of length k - 2 connecting the points ofAl to 

The method presented in this paper does not seem to be applicable in 
proving Conjecture 7.5, but it may be useful for attacking the last one. To 
find further problems (and results) about diameter critical graphs, one can 
see, e.g., [3] or [l]. 

Remark 7.7. Maybe it is worth noting that this proof is the first applica- 
tion of Szemeridi’s Regularity Lemma, where an exact result is obtained (at 
least for n > no). 

If % is a minimal graph of diameter k, with k > 2, 
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