EXTREMAL PROBLEMS AND THE LAGRANGE FUNCTION FOR HYPERGRAPHS

BY

P. FRANKL AND Z. FÜREDI

Abstract. With every family $\mathcal G$ of k-subsets of $\{1, 2, \ldots, n\}$ one associates a polynomial, homogeneous of degree k. An extremal value of this polynomial called the Langrange function of $\mathcal G$, has an important combinatorial signification. We describe ways of estimating this function and using it for solving some extremal problems.

1. Introduction. Let $X = \{1, 2, \dots, n\}$ be a finite set, $n \ge k \ge 2$ and \mathcal{F} a k-graph, that is $\mathcal{F} \subset {X \choose k} = \{A \subset X : |A| = k\}$.

One can associate with every k-graph & a polynomial

$$p(\mathcal{G}) = p(\mathcal{G}, x_1, \dots, x_n) = \sum_{F \in \mathcal{G}} \prod_{i \in F} x_i.$$

Note that $p(\mathcal{F})$ is homogeneous of degree k and linear in every variable. Also, one has

(1.2)
$$p\left(\mathcal{G}, \frac{1}{n}, \cdots, \frac{1}{n}\right) = |\mathcal{G}|/n^{k}.$$

Often we will write $p(\mathcal{F}, \vec{x})$ to abbreviate $p(\mathcal{F}, x_1, \dots, x_n)$.

Let us define the operation called *blow-up*. Suppose that $\mathcal{F} \subset {X \choose k}$ and m_1, \dots, m_n are non-negative integers. Let X_1, \dots, X_n be pairwise disjoint sets, $|X_i| = m_i$. Set $\vec{m} = (m_1, \dots, m_n)$. We define

$$\mathcal{G} \otimes \vec{m} = \left\{ G \in \begin{pmatrix} X_1 \cup \cdots \cup X_n \\ k \end{pmatrix} : \{i: G \cap X_i \neq \emptyset\} \in \mathcal{G} \right\}.$$

Note that |G| = k implies that $|G \cap X_i| = 0$ or 1 for every i and for every edge G of $\mathcal{G} \otimes \vec{m}$. Set $m = m_1 + \cdots + m_n$.

(1.3) CLAIM.
$$[\mathcal{F} \otimes \vec{m}] = m^k p(\mathcal{F}, m_1/m, \dots, m_n/m)$$
.

Received by the editors April 21, 1988.

Proof. If $\{i_1, \dots, i_k\} \in \mathcal{F}$ then this gives $m_{i_1} \cdot \dots \cdot m_{i_k}$ edges in $\mathcal{F} \otimes \vec{m}$. Summing over $F \in \mathcal{F}$ gives (1.3).

For k-graphs \mathcal{F} and \mathcal{G} one says that the map $\varphi: \cup \mathcal{G} \to \cup \mathcal{F}$ is a homomorphism if $\{\varphi(i): i \in \mathcal{G}\} \in \mathcal{F}$ holds for all $\mathcal{G} \in \mathcal{G}$.

(1.4) The map $\rho: X_1 \cup \cdots \cup X_n \to X$ defined by $\rho(x) = i \Leftrightarrow x \in X_i$ is a homomorphism.

For example, a graph has a homomorphism into K_s , the complete graph on s vertices, if and only if its chromatic number is at most s.

Let $U = \{\mathcal{P}_1, \cdots, \mathcal{P}_t\}$ be a collection of k-graphs. Define $\operatorname{ex}(n, U)$ as $\max |\mathcal{F}|$ where $\mathcal{F} \subset {X \choose k}$ and \mathcal{F} contains no copy of any $\mathcal{P}_1 \in U$. Such an \mathcal{F} is called U-free.

A classical result of Katona, Nemetz and Simonovits [KNS] is the following.

(1.5) Theorem. $\exp(n, U)/\binom{n}{k}$ is monotone decreasing and therefore $\pi(U) = \lim_{n \to \infty} \exp(n, U)/\binom{n}{k}$ exists.

Call U closed under homomorphism (shortly closed), if $\mathcal{A} \in U$ implies that U contains (a copy of) every homomorphic image of \mathcal{A} .

E. g. for graphs $U = \{C_3, C_5\}$ is closed but $U = \{C_3, C_4\}$ is not. By (1.4) and this definition we have.

(1.6) If U is closed and \mathcal{F} is U-free then so is $\mathcal{F} \otimes \vec{m}$ for all $\vec{m} = (m_1, \dots, m_n)$.

(1.7) Define the Lagrange function $\lambda(\mathcal{G})$ as $\max p(\mathcal{G}, x_1, \dots, x_n)$ where $x_i \geq 0, x_1 + \dots + x_n = 1$.

Note that $\lambda(\mathcal{G}) \geq 1/k^k$ if $\mathcal{G} \neq \emptyset$.

(1.8) THEOREM. Let \mathcal{G} be U-free, where U is closed. Then $\pi(U) \geq \lambda(\mathcal{G})k!$ holds.

Proof. Let ε be an arbitrarily small positive number and choose non-negative rational numbers $x_1, \dots, x_n, x_1 + \dots + x_n = 1$ such that $p(\mathcal{G}, \vec{x}) > \lambda(\mathcal{G}) - \varepsilon$ holds. Let m be an arbitrary common

multiple of the denominators of x_1, \dots, x_n . Set $m_i = mx_i$. Using (1.3) and (1.6), $\mathcal{F} \otimes \vec{m}$ is *U*-free and $|\mathcal{F} \otimes \vec{m}|/\binom{m}{k} > k! \ p(\mathcal{F}, \vec{x}) > (\lambda(\mathcal{F}) - \varepsilon) \ k!$. Since ε was arbitrary and m can be arbitrarily large, the statement follows.

(1.9) REMARK. For $n \ge k \ge 2$ define the complete equipartite k-graph $\mathcal{P}(n, k)$ in the following way. Let $X = X_0 \cup \cdots \cup X_{k-1}$ be a partition with $|X_i| = \lfloor (n+i)/k \rfloor$, and set

$$\mathcal{O}(n, k) = \{ P \subset X : |P \cap X_i| = 1 \text{ for all } 0 \le i \le k - 1 \}.$$

(1.10)
$$|\mathcal{P}(n, l)| = \prod_{0 \le i < h} \left\lfloor \frac{n+i}{k} \right\rfloor = (1 - o(1)) n^{h} / k^{h}$$

whenever $n \to \infty$.

The (strong) chromatic number $\chi(\mathcal{A})$ of a k-graph $\mathcal{A} \subset {X \choose k}$ is the minimum integer l, such that there exists a partition $X = X_0 \cup \cdots \cup X_{l-1}$ with $|X_i \cap A| \leq 1$ for all i and $A \in \mathcal{A}$. Obviously, for $\emptyset \subset \mathcal{B} \subset \mathcal{A}$, $k \leq \chi(\mathcal{B}) \leq \chi(\mathcal{A})$ holds. If $\chi(\mathcal{A}) = k$, then \mathcal{A} is called k-partite.

It is obvious that if no member of U is k-partite, then $ex(n, U) \ge |\mathcal{P}(n, k)|$, i.e.,

$$\pi(U) \ge \frac{k!}{k^k}$$

holds. Erdős [E] proved that if any member of U is k-partite, then $\pi(U)=0$, and, even more, there exists a c=c(U)>0 such that

$$ex(n, U) = 0(n^{k-c})$$

holds.

The method of Lagrange function is useless if $\pi(U) = 0$, however it can be applied to determine $\pi(U)$ in various other cases.

2. Computing the Lagrange function. Throughout the rest of the paper \vec{x} will denote vectors (x_1, \dots, x_n) with $x_1 + \dots + x_n = 1$ and $x_i \geq 0$, $i = 1, \dots, n$.

For a family $\mathcal{G} \subset 2^X$ and $E \subset X$ define the *link* of E in $\mathcal{G}: \mathcal{G}(E) = \{F - E : E \subset F \in \mathcal{G}\}$. For $E = \{i\}$ we write simply $\mathcal{G}(i)$.

Simple computation shows the validity of the following statement. We use the notation $\vec{x}_{-j} = (x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_n)$.

(2.1) Proposition. Fix a real δ and $1 \le i < j \le n$. Let $\vec{x} = (x_1, \dots, x_n)$ and $\vec{y} = (y_1, \dots, y_n)$ where $y_i = x_i + \delta$, $y_j = x_j - \delta$ and $x_l = y_l$ for for $l \neq i$, j. Let $\mathcal{F} \subset {X \choose k}$ be a k-graph. Then

$$p(\mathcal{J}, \vec{x}) - p(\mathcal{J}, \vec{y})$$

$$= \delta(p(\mathcal{J}(j), \vec{x}_{-j}) - p(\mathcal{J}(i), \vec{x}_{-i}))$$

$$+ \delta^2 p(\mathcal{J}(\{i, j\}), \vec{x}_{-\{i, j\}}).$$

Let us note that $p(\mathcal{G}(i), \vec{x}_{-i}) = \partial p(\mathcal{G}, \vec{x})/\partial x_i$ is the partial derivative. For a vector \vec{x} define its support $S(\vec{x}) = \{i : x_i > 0\}$. For $S \subset X$ define $\mathcal{G}_S = \{F \in \mathcal{G} : F \subset S\}$. Call $\mathcal{G} \subset 2^X$ 2-complete if every $p \in \binom{X}{2}$ is contained in some edge $F \in \mathcal{F}$.

(2.3) Lemma. [FR] Let $\mathcal{G} \subset {X \choose k}$ be given and choose \vec{x} with $p(\mathcal{F}, \vec{x}) = \lambda(\mathcal{F})$ such that $S(\vec{x})$ is the smallest possible. Then $\mathcal{F}_{S(\vec{x})}$ is 2-complete.

Moreover, $p(\mathcal{F}(j), \vec{x}_{-i}) = k\lambda(\mathcal{F})$ holds for all $j \in S(\vec{x})$.

Proof. It follows from (2.2) that $p(\mathcal{F}(j), \vec{x}_{-i}) = p(\mathcal{F}(i), \vec{x}_{-i})$ for all $i, j \in S(\vec{x})$, otherwise by choosing δ very small and either negative or positive we obtain the contradiction $p(\mathcal{G}, \vec{x}) < p(\mathcal{G}, \vec{y})$. It there was no set $F \in \mathcal{F}$ with $\{i, j\} \subset F \subset S(\vec{x})$, then choosing $\delta = x_i$ or $-x_i$ according as $x_i > x_j$ or $x_j \ge x_i$ would produce \vec{y} with $p(\mathcal{F}, \vec{y}) = p(\mathcal{F}, \vec{x})$ but $|S(\vec{y}) < (S(\vec{x}))|$, a contradiction.

Fix $l \in S(\vec{x})$. Using the polynominal identity

$$kp(\mathcal{G}, \vec{x}) = \sum_{i} x_{i} p(\mathcal{G}(i), \vec{x}_{-i}),$$

we obtain

(2.2)

$$k\lambda(\mathcal{F}) = \sum_{i} x_{i} p(\mathcal{F}(l), \vec{x}_{-l}) = p(\mathcal{F}(l), \vec{x}_{-l})$$

as desired.

(2.4) Corollary. (Motzkin-Straus [MS]) Let $\mathcal{G} \subset \binom{X}{2}$ and let $w(\mathcal{G})$ be the clique number of G (i.e., maxs: K_s is a subgraph of G). Then

$$\lambda(\mathcal{G}) \leq (w(\mathcal{G}) - 1)/2w(\mathcal{G}).$$

Proof. Choose \vec{x} with $p(\mathcal{G}, \vec{x}) = \lambda(\mathcal{G})$. By (2.3) the graph

$$\mathcal{G}_{S(\vec{x})}$$
 is complete. Consequently, $s = |S(\vec{x})| \le w(\mathcal{G})$. Thus
$$p(\mathcal{G}, \vec{x}) = \sum_{(i,j) \in S(\vec{x})} x_i x_j \le {s \choose 2} \left(\frac{1}{s}\right)^2 \le (w(\mathcal{G}) - 1)/2w(\mathcal{G}).$$

Let $\sigma_k(S) = \sum_{F \subset S} \prod_{i \in F} x_i$ be the k'th elementary symmetric polynomial. Then by known inequalities (or one can use (2.3))

(2.5)
$$\sigma_k(S) \le {\binom{|S|}{k}} \frac{1}{|S|^k} \text{ holds.}$$

(2.5)Let $K_s(k)$ be the complete k-graph on s vertices, i. e., $\binom{S}{k}$ for

some s-element set S.

$$\lambda(K_s(k)) = \binom{s}{k}/s^k.$$

Proof. The inequality in one direction follows from (2.5), in the other one by setting $x_i = 1/s$ for every vertex.

(2.7) Conjecture. [FF] Suppose that
$$\mathcal{F}$$
 is a k -graph, $|\mathcal{F}| = z(z-1)\cdots(z-k+1)/k!$, $z \ge k$ is real. Then $\lambda(\mathcal{F}) \le {z \choose k}/z^k$.

Note that the case k=2 is a consequence of 2.4.

= k - 1 and $F_1 \triangle F_2 \subset F_3$.

(3.1) Problem. (de Caen [C]) Determine $\max |\mathcal{F}|$ where $\mathcal{F} \subset {X \choose k}$ and \mathcal{F} contains no three sets F_1 , F_2 , F_3 with $|F_1 \cap F_2|$

Actually, one can formulate (3.1) in terms of ex(n, U). Define $\mathcal{P}_{i} = \{\{1, 2, \dots, k\}, \{1, 2, \dots, k-1, k+1\}, \{i, i+1, \dots, i+k-1\}\}\$

and set $\mathcal{C} = \{\mathcal{P}_{12}, \mathcal{P}_{13}, \dots, \mathcal{P}_{k}\}$. Then (3.1) asks for the determination $ex(n, \mathcal{O})$.

Note that $\chi(\mathcal{P}_i) = k + 1$ for $2 \le i \le k$.

(3.2) Observation. If $\mathcal{F} \subset {X \choose k}$ is 2-complete and C-free then $|F \cap F'| \le k-2$ for all distinct $F, F' \in \mathcal{G}$.

Proof. Suppose that F_1 , $F_2 \in \mathcal{F}$ and $|F_1 \cap F_2| = k-1$. Then $|F_1 \triangle F_2| = 2$. By 2-completeness $F_1 \triangle F_2 \subset F_3$ holds for some $F_3 \in \mathcal{F}$. Moreover, $\{F_1, F_2, F_3\} \in \mathcal{O}$, a contradiction.

(3.3) Theorem. (Sidorenko [Si]) If $\emptyset \neq \mathcal{G} \subset {X \choose k}$ is Q-free then

$$\lambda(\mathcal{F}) = 1/k^k$$
 for $k = 2$, 3 and 4.

Proof. We have to prove $\lambda(\mathcal{F}) \leq 1/k^k$ only. In view of (2.3) we may assume that \mathcal{F} is 2-complete. Thus by (3.2) one has $|F \cap F'| \leq k-2$ for all distinct F, $F' \in \mathcal{F}$. Equivalently the links $\mathcal{F}(i)$ are pairwise disjoint, $i \in X$. Thus the polynomials $p(\mathcal{F}(i), \vec{x}_{-i})$ have no common term. Since $x_i \geq 0$, we infer using (2.5) that

$$\sum_{i} p(\mathcal{G}(i), \ \vec{x}_{-i}) \leq \sigma_{k-1}(X) \leq \binom{n}{k-1} / n^{k-1}.$$

Combining this with (2.3) we obtain

(3.4)
$$\lambda(\mathcal{F}) = p(\mathcal{F}, \vec{x}) \le \binom{n}{k-1} / kn^k.$$

For k=2, 3 the RHS is at most $1/k^k$ for all $n \ge k$. The same holds for k=4 and $n \ge 4$, $n \ne 5$. However, n=5 is impossible, because either $|\mathcal{F}|=1$ and then \mathcal{F} is not 2-complete, or $|\mathcal{F}|\ge 2$ and $|F\cap F'|=3=k-1$ holds for all $F, F'\in \mathcal{F}$ -contradicting $|F\cap F'|\le k-2$.

(3.5) COROLLARY. For
$$k = 2$$
, 3, 4 and $k \mid n$ one has $\exp(n, \mathcal{O}) = (n/k)^k$.

Proof. The upper bound follows from (3.3) and (1.2). To show the lower bound, consider the complete, equipartite k-graph $\mathcal{P}(n, k)$ which is \mathcal{C} -free.

(3.6) REMARK. In the case k=2 (3.5) is an old result of Mantel [M] (see also [T]). For k=3 it was proved by Bollobás [Bo] in a completely different way. Finally, for k=4, (3.5) is due to Sidorenko [Si]. Let us mention also, that actually $\exp(n, \mathcal{C}) = |\mathfrak{P}(n, k)|$ holds even if k does not divide n and $\mathfrak{P}(n, k)$ is the unique optimal family (see [Si]).

Recall that a S(n, k, t) is a family $\mathcal{S} \subset \binom{X}{k}$ such that every t-set $T \subset X$ is contained in a *unique* member of \mathcal{S} . For (n, k, t) = (11, 5, 4) and (12, 6, 5) there exists a unique S(n, k, t) W_5 , W_6 called the Witt-design, cf. Beth et al. [BJL].

In general, call a family $\bigcirc \subset \binom{X}{k}$ sparse if $|D \cap D'| \leq k-2$ for all distinct distinct $D, D' \in \bigcirc$.

(3.7) PROPOSITION. $\mathcal{D} \otimes \vec{m}$ is a C-free family for any sparse k-graph \mathcal{D} and all $\vec{m} = (m_1, \dots, m_n)$.

Proof. Clearly, \mathcal{Q} is \mathcal{Q} -free. The rest follows from \mathcal{Q} being closed.

(3.8) Theorem. $\pi(\mathcal{Q}) = k! \max \lambda(\mathcal{J})$ where the maximum is over all sparse k-graphs $\mathcal{J} \subset {Y \choose k}$ with $|Y| \leq k^k/k!$

Proof. Set $\lambda = k! \max \lambda(\mathcal{J})$. In view of (1.1) it is sufficient to show that $k! \lambda(\mathcal{G}) \leq \lambda$ for all \mathcal{C} -free k-graphs $\mathcal{G} \subset \binom{X}{k}$. By (2.3) we may assume that $S(\vec{x}) = X$ (otherwise replace \mathcal{G} by $\mathcal{G}_{S(\vec{x})}$) and therefore \mathcal{G} is 2-complete. By (3.2) \mathcal{G} is sparse. This leads to (3.4). For $n > k^k/k!$ the RHS of (3.4) is less than $1/k^k$, thus the maximum occurs for $n \leq k^k/k!$.

(3.9) Remark. (3.8) shows that the determination of $\pi(\mathcal{O})$ is a finite problem, however, the number of cases to check increases very fast. To compute or bound the value of $\lambda(\mathcal{O})$ for a specific sparse k-graph is very difficult in general. Let us mention without proof the following result.

(3.10) THEOREM.

- (i) $\pi(\mathcal{Q}) = 720/11^4$ for k = 5
- (ii) $\pi(\mathcal{O}) = 55/12^{3} \text{ for } k = 6.$

Moreover, for $n > n_0$ the only optimal \mathcal{O} -free k-family is obtained by blowing up the appropriate Witt design. (see (3.7)).

4. A problem of Katona and Bollobás. Let s(n, k) denote $\max |\mathcal{F}|$, where $\mathcal{F} \subset {X \choose k}$ and \mathcal{F} contains no three distinct sets F_1 , F_2 , F_3 with $F_1 \triangle F_2 \subset F_3$.

Clearly,

$$|\mathcal{P}(n, k)| \leq s(n, k) \leq ex(n, \mathcal{C}).$$

(4.1) CONJECTURE. (Katona [K] and Bollobás [Bo])

$$|\mathcal{P}(n, k)| = s(n, k).$$

From (3.5) and (3.6) it follows that (4.1) is true for k = 2, 3 and 4. It was proved in [FF1] that (4.1) holds for $n \leq 2k$.

Since the class of k-graphs excluded by (4.1) is closed, the analogue of (3.8) holds for this problem. One has only to add that

 \mathcal{D} contains no D_1 , D_2 , D_3 with $D_1 \triangle D_2 \subset D_3$.

Katona [K] asked what happens in the non-uniform case. Determine $s(n) = \max |\mathcal{F}|$, $\mathcal{F} \subset 2^{X}$ and \mathcal{F} contains no F_1 , F_2 , F_3 with $F_1 \triangle F_2 \subset F_3$.

(4.2) Conjecture. (Erdös-Katona [K])

249-253.

$$s(n) = s(n, [n/3]) = |\mathcal{P}(n, [n/3])|.$$

Let us note that $|\mathcal{P}(n, \lceil n/3 \rceil)| \leq 3^{n/3} = 1.44^n$. In [FF1] the upper bound $s(n) \le n \cdot 1.5^n$ is proved.

REFERENCES

[BJL] T. Beth, D. Jungnickel and H. Lenz, Design Theory, Bibliographisches Institut, Mannheim (1985).

[Bo] B. Bollobás, Three-graphs without two triples whose symmetric difference is contained in a third, Discrete Math., 8 (1974), 21-24.

[C] D. de Caen, Uniform hypergraphs with no blocks containing the symmetric difference of any two other blocks, Proc. 16th S-E Conf, Congressus Numerantium, 47 (1985),

[E] P. Erdös, On extremal problems of graphs and generalized graphs, Israel J. Math, 2 (1964), 183-190.

[FF1] P. Frankl and Z. Füredi, Union-free hypergraphs and probability theory, Europ.

J. Combinatorics, 5 (1984), 127-131. [FF] P. Frankl, and Z. Füredi, Extremal problems whose solution are the blow-ups of

the small Witt-designs, J. Combin. Th. A (to appear). [FR] P. Frankl and V. Rödl, Hypergraphs do not jump, Combinatorica, 4 (1984), 149-

159.

[K] G.O.H. Katona, Extremal problems for hypergraphs, in Combinatorics, Vol II.

(M. Hall et al. eds.) Math. Centre Tracts, 56 (1974), Amsterdam, 13-42. [KNS] G. Katona, T. Nemetz and M. Simonovits, On a graph problem of Turân (in Hungarian, English summary), Mat. Lapok, 15 (1964), 228-238.

W. Mantel, Problem 28, Wiskundige Opgaven, 10 (1907), 60-61.

[MS] T.S. Motzkin and E.G. Straus, Maxima for graphs and a new proof of a theorem of Turán, Canad. J. Math, 17 (1965), 535-540.

[Si] A.F. Sidorenko, Solution of a problem of Bollobás on 4-graphs, Mat. Zametki, 41 (1987), No. 3, 433-455 (in Russian).

[T] P. Turán, On the theory of graphs, Colloq. Math., 3 (1954), 19-30.

CNRS 15 Ouai A. France 75007 Paris

日本 東京 〒108 港區白金台 4-6-41-C-310 號 Institute for Mathematics and its Applications University of Minnesota Minneapolis, MN 55455 U.S.A. Permanent address:

Math. Institute of Hungarian Academy

1364 Budapest P.O. B 127