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Abstract. With every family & of k-subsets of {1, 2,..., 2} one
associates a polynomial, homogeneous of degree k. An extremal value
of this polynomial called the Langrange function of &, has an important
combinatorial signification. We describe ways of estimating this function
and using it for solving some extremal problems.

1. Introduction. Let X = {1, 2,---, #} be a finite set, n=>2%k=>2
and & a k-graph, that is & c (}g) ={Ac X:|Al =k}
One can associate with every %-graph & a polynomial
(L.1) 2(G) = (G, @1, 2a) =D, [] @
Fag ieF
Note that p(5) is homogeneous of degree £ and linear inevery
variable. Also, one has

(12) p(g’_i_,..., _i—_)= | & | /et

Often we will write p(&, &) to abbreviate p(&, Z1," -+, Tu)-

Let us define the operation called blow-up. Suppose that
g c (‘;f) and #,,---, m, are non-negative integers. Let Xj,---, X,
be pairwise disjoint sets, |X;| = #m;. Set = (my,---, ms). We
define

I & ﬁz—_-{GE(XiU'}e'U X"):{f:GnX;%@}eg}.

Note that |G| =k implies that |G N X;| =0 or 1 for every i
and for every edge G of G @ . Set m = my +---+ .

(1.3) CrLAmi. |5 @] = m* p( G, my/m, -, ma/m).
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Proof. If {i,---, ix} € & then this gives my; - --- ¢ nt;, edges

in & @m. Summing over F € & gives (1.3).

—

For k-graphs & and ( one says that the map ¢: U G — U &F
is a homomorphism if {¢(i) :i = G} € 5 holds for all G € &.

(14) Themap p: X, U - U X, — X defined by p(2)=isze X;
is a homomorphism.

For example, a graph has a homomorphism into K, the
complete graph on s vertices, if and only if its chromatic number
is at most s.

Let U= {®A4,---, #1:} be a collection of k-graphs. Define
ex(#, U) as max|5| where & c (‘;f) and & contains no copy of
any (A1 € U. Such an & is called \U’-free.

A classical result of Katona, Nemetz and Simonovits [KNS] is
the following.

(1.5) TurOrREM. ex (%, U)/ (;:) is  monotone decreasing and
therefore =(U) = limg.wex (2, U)/(fg) exisis.

Call U closed under homomorphism (shortly closed), if (4 U
implies that U contains (a copy of) every homomorphic image
of (A.

E. g. for graphs U = [Cs, Cs} is closed but U = {Cs, C:} is not.

By (1.4) and this definition we have.

(16) If U is closed and & is U-free then so is & ® m for all
ﬁ = (mis"'s m»)-

(1.7) Define the Lagrange function 1(&) as max p(SF, 1, -+, Tu)
where x; >0, 2y + -+ x, = 1.
Note that (&) = 1/k* if &+ @.

(1.8) THEOREM. Let & be U-free, where U is closed. Then
=(U) = 2(&)k! holds.

Proof. Let & be an arbitrarily smalill positive number and
choose non-negative rational numbers =z, -, Tn 21+ -+ 2s=1
such that p(&F, Z) > (&) — ¢ holds. Let # be an arbitrary common
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multiple of the denominators of xy,---, 2a. Set m; = mz;. Using
(1.3) and (16), & @ is Ufree and l@'@ﬁz!/(’g)>k!p(g;ﬁ)
> (&) —e)&!. Since ¢ was arbitrary and #m can be arbitrarily
large, the statement follows.

(1.9) ReEMARK. For m#>k>2 define the complete equipartite
k-graph £P(#, B) in the following way. Let X=X, U---U X;-; be
a partition with | X;| = (s + i)/k), and set

P, BE)=[{PcX:|PNX;[=1 forall 0<i<k—1).

(1.10) |96, D= TT| 234 | = @ - o)) /e

0=i<k k

whenever 2 — oo, S

The (strong) chromatic number »(#) of a k-graph 7 cC (‘%)
is the minimum integer [, such that there exists a partition
X=XU---Uu X, with |[X;NA| <1 for all ¢ and A e A
Obviously, for @ c B c ), k< 2(£B3) < 2x(GA) holds. If »(GA) =4k
then (A is called k-partite. | -

It is obvious that if no member of U 1is k-partite, then
ex(n, U) = |P(m, k)|, ie,
k!
kk
holds. Erdds [E] proved that if anmy member of U is k-partite,
then =(I7) =0, and, even more, there exists a ¢ =¢(U) >0 such that

ex (g2, U) = 0(x*~¢)

=(U) =

holds.
The method of Lagrange function is useless if =(U) =0,
however it can be applied to determine =(U) in various other

cases.

2. Computing the Lagrange fumction. Throughout the rest
of the paper Z will denote vectors (@, -+, &x) with x4+ 4+, =1
and 2, =0, i=1,---, n.

For a family 5 c2¥ and E c X define the link of E in
G:59(E)={F—E:EcFe &}. For E=I{i} we write simply

& ().
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Simple computation shows the validity of the following
statement. We use the notation Z-; = (xy,- -+, Tj-1) Tjs1," s Tn).

(21) ProprosIiTION. Fix a 7eal 6 and 1<i<j<mn  Let
Z= (xl" " Ty :Bﬁl) and 'Zf. = (?}1,' Ty y#) where Yi = T + 0, Yi=x; — o
and x; =1, for for 14, j. Let & C (‘E) be a k-graph. Then

(5, %) — (& W)
(2.2) =0(p(F (), Z-;) — (G (E), Z-i))
+ 3 p(& {4, 71), Z-u.p)-
Let us note that p(&(), Z_;) = ap(9J, #)/8x; is the partial
derivative. For a vector Z define its support S(z) = {i:x:>0}.
For Sc X define Fs={Fe F:FcS}. Call & c 2% 2.-complete

if every p (}2’?) is contained in some edge F = &.

(2.3) LEMMA. [FR] Let & c (i{-') be given and choose % with

(G, B) = NG) such that S(ZF) is the smallest possible. Then
sy is 2-complete.
Moreover, p(F(j), T-;) = kAF) holds for all j = S(Z).

Proof. It follows from (2.2) that p(F(f), ZF-;) = p(T (1), Z-i)
for all 4, j € S(&), otherwise by choosing ¢ very small and either
negative or positive we obtain the contradiction p(5, ) <p(5F, ¥).
It there was no set F e & with {4, j} ¢ F c S(Z), then choosing
0 =x; or —x; according as x; > x; or x; = x; would produce ¥
with p(&, ¥) = p(&, &) but [S(T) < (S(Z)|, a contradiction.

Fix I € S(z). Using the polynominal identity

kp(g! 3‘) T Z X P(g(z)- 5:'-—-:') ’
we obtain _
RAEF) = Z‘: x; p(TU), Z-1) = p(FD), T-1)

as desired.

(24) CoROLLARY. (Motzkin-Straus [MS]) Let G (% ) and let w(C)
be the clique number of & (i.e., maxs: K, is a subgraph of 3).
Then

2(G) < (w(G) — D/ 2w(G).
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Proof. Choose Z with p(G, &) = 2(G). By (2.3) the graph
Gs@y is complete. Consequently, s = [S(Z)| < w(&). Thus

G D= 3 wma<(3) (31) < (w(G) — 1)/2w(S5) .

5
i, j1e8(z)

Let 0i(S) = XpcsIlierx: be the Eth elementary symmetric
polynomial. Then by known inequalities (or one can use (2.3))

- |S] 1
(2-3) Gk(s) = ( E )_lsrk holds.
Let K,(k) be the complete Iz-.graph on s vertices, i.e., (’%) for
some s-element set S.

(2.6) PROPOSITION.

NE®) = (§)/5"

Proof. The inequality in one direction follows from (2.5), in
the other one by setting x; = 1/s for every vertex.

(2.7) Conyecture. [FF] Suppose that & is a k-graph,
|F1=2(z—1)--(z—k+1)/R!, 22k is real. Then ()< (£)/2"
Note that the case 2= 2 is a consequence of 2.4. '

3. de Caen’s problem.

(3.1) ProBrLEM. (de Caen [C]) Determine max|5| where
g c Gf) and 5 contains no three sets Fy, Fy, Fy with |F; N Fy|
=k—1and F; AF:; C F.

Actually, one can formulate (3.1) in terms of ex(#, U). Define
Gli=11 2+ B, {1, 2o k=L B+ 1), (5, i+1,-, i+ k—1}}
and set @ = {l, s, -+, ). Then (8.1) asks for the
determination ex(s, (@ ).

Note that y»(Z;)) =%k + 1 for 2<i<E

(3.2) OsBSeErRVATION. [f & C X is 2-complete and ©@-free then
k

|IFNF|<k—2 forall distinct F, F' € 4.
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Preoof. Suppose that Fy, Fo € &F and |F, N Fs) =%2—1. Then
[ Fy AFsl =2. By 2-completeness Fy ALy, c Fy holds for some
F; € . Moreover, {Fy, Fs, F3} € (@, a contradiction.

then
M) =1/ for k=2, 3 and A

Proef. We have to prove A(5) < 1/E* only. In view of (2.3)
we may assume that & is 2.complete. Thus by (3.2) one has
|FnE'|<k—2 for all distinct F, F' € &/. Equivalently the links
&F(i) are vpairwise disjoint, 2z X, Thus the polynomials
(5 (Z), ¥-;) have no common term. Since x; =0, we infer using
(2.5) that

> AT, 3D S D < (7 )
Combining this with (2.3) we obtain
(3.4) NG =G, B < (7 4 )/t

For =2, 3 the RHS is at most 1/&* for all # > % The same holds
for k=4 and n# =4, 5. However, # =5 is impossible, because
either |&| =1 and then & is not 2-complete, or |&|=>2 and
|FNF'|=3=Fk—1 holds for all F, F! € F-contradicting |F n F’|
<k-—2

(3.5) COROLLARY. For k=2, 3, 4 and kin one has
ex (n, @)= (n/k)*

Proof. The upper bound follows from (3.3) and (1.2). To
show the lower bound, consider the complete, equipartite k-graph
&P(2, k) which is @-free.

(3.6) REMARK. In the case k=2 (35) is an old result of
Mantel [M] (see aiso [T]). For k2= 3 it was proved by Bollobds
[Bo] in a completely different way. Finally, for 2 =4, (3.5) is due
to Sidorenko [Si]. Let us mention also, that actually ex(#, @)
= [B(#,, £)| holds even if % does not divide # and P(#, &) is the
unique optimal family (see [Si]).
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Recall that a S(#, k&, ) is a family <f (‘;f) such that every
t-set T c X is contained in a usnigue member of <. For (7, & )
= (11, 5, 4) and (12, 6, 5) there exists a unique S(#, &, t) W, We
called the Witt-design, cf. Beth et a/. [BJL].

In general, call a family @ < (if) sparse if |DND'|<k—2
for all distinct distinct D, D' € ().

(3.7) PR‘OPOSI'I;ION. DR is a @-free family for any sparse
k-graph () and all = (n2g,- -+, M)

Proof. Clearly, (@ is @-free. The rest follows from @ being
closed.

(3.8) THEOREM. =z(@) = k! max () where the maxinum is ovey
all sparse k-graphs () C (3};) with | Y| < kt/k

Proof. Set 2 = k! max i(J). In view of (1.1) it is sufficient
to show that B! A(&F) < 1 for all @-free k-graphs & C (—;f) By
(2.3) we may assume that S(Z) =X (otherwise replace & by
Ssay) and therefore & is 2-complete. By (3.2) & is sparse. This
leads to (3.4). For s> E:/E! the RHS of (3.4) is less than 1/&%
thus the maximum occurs for 2 < E*/k!.

(3.9) REMARK. (3.8) shows that the determination of =z(@) is a
finite problem, however, the number of cases to check increases
very fast. To compute or bound the wvalue of 2({) for a specific
sparse k-graph is very difficult in general. Let us mention without
proof the following result.

(3.10) THEOREM. _
(i) =(@)="720/11* for k=5
(ii) =(@) =55/12® for E= 6.

Moreover, for #>, the only optimal @-free A-family is

obtained by blowing up the appropriate Witt design. (see (3.7)).

4. A problem of Katona and Beollobas. Let s(z, £) denote
max| |, where & c (‘;f) and & con*ains no three distinct sets
F1, Fz, Fs with F[ AF\; = F};.
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Clearly,

| P(2, B)| < s(m, B) < ex(sm, ©@).

(4.1) Conjyecture. (Katona [K] and Bollobas [Bo])
| P(2, k)| = s(n, k).

From (3.5) and (3.6) it follows that (4.1) is true for k=2, 3 and
4. It was proved in [FF1] that (4.1) holds for # < 2Z.

Since the class of k-graphs excluded by (4.1) is closed, the
analogue of (3.8) holds for this problem. One has only to add that
(]} contains no Dy, D, Dy with Dy AD; C Ds.

Katona [K] asked what happens in the non-uniform case.
Determine s(#) = max |5 |, & € 2¥ and & contains no F, I3, Fs
with Fy A Fs c Fs.

(4.2) ConjecTUre. (Erdss-Katona [K])

s(#) = s(#, [2/3]) = | P(#n, [2/3])] .

Let us note that |£P(m, [2/3])] < 3"* = 1.44". In [FF1] the upper
bound s(#) < 2 1.5* is proved.
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