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A (D, c)-coloring of the complete graph K” is a coloring of the edges with c colors such that 

all monochromatic connected subgraphs have at most D vertices. Resolvable block designs with 

c parallel classes and with block size D are natural examples of (D, c)-colorings. However, 

(D, c)-colorings are more relaxed structures. We investigate the largest n such that K” has a 

(D, c)-coloring. Our main tool is the fractional matching theory of hypergraphs. 

1. Definitions 

This paper is organized as follows. In this section we recall some definitions and 

introduce notations. The first part of the paper is devoted to the fractional 

matchings of r-partite hypergraphs. In the second part we apply the results to the 

(D, c)-colorings of the complete graphs. 

A hypergruph H is a pair (V(H), E(H)), w h ere V(H) is a (finite) set, the set of 

vertices or points, and E(H), the edge set, is a collection of subsets of V(H). If 

we want to emphasize that H contains (or might contain) multiple edges, then we 

call it a multihypergruph. If H does not contain multiple edges then it is called a 

simple hypergraph. G is a subhypergraph of H if V(G) c V(H) and E(G) c 

E(H). The dual H* of H is obtained by interchanging the role of vertices and 

edges and keeping the incidences, i.e. V(H*) = E(H) and E(H*) = {E(p) :p E 
V(H)}, where E(p) =: {E eE(H):p EE}. A hypergraph is an r-graph, or 

r-unifurm hypergraph, if all edges have r elements. The rank of H is r if 

max{ JEJ : E E E(H)} = r. An r-graph H is r-partite if the vertex-set has a partition 

V(H)=XIU-.. UX, such that lXi fl El = 1 holds for all E E E(H), 1 c i s r. 

The degree of a vertex p is degn(p) = I{E :p E E E E(H)}l. The maximum degree, 

max deg(p), is denoted by D(H). A matching At is a subset of E(H) consisting of 

pairwise disjoint edges. The matching number, v(H), is the maximum number of 

edges in a matching in H. If v(H) = 1, i.e. E fl E’ #$!J for all E, E’ E E(H), then 

H is called intersecting. A cover T of H is a subset which meets all the edges of H, 

and the covering number, r(H), is the minimum size of a cover. An i-cover, 
where i is a positive integer, is a function t : V(H)+ (0, 1, . . . , i} such that 

holds for all E E E(H). The complete graph on n points is denoted by K”. 
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An r-uniform hypergraph H is called a finite projective plane of order r - 1 if 

IV(H)1 = IE(W = r* - r + 1 and every two distinct edges intersect in exactly one 
element. Briefly, H is a PG(2, r - 1). Projective planes are known to exist 
whenever r - 1 is a prime or prime power. An afine plane, AG(2, r - l), is 
obtained from a PG(2, r - 1) by deleting an edge E0 from V(PG(2, r - 1)) and 
setting the edge set E(AG(2, r - 1) equal to {E \ E0 : E,, # E E E(PG(2, r - 1))). 
An r-graph is called a truncated projective plane of order r - 1 (or briefly a 
TPG(2, r - 1)) if it is obtained from a PG(2, r - 1) by deleting a vertex p and the 
r edges through p. It is the dual of an AG(2, r - 1). Let A be an AG(2, q), 

p E V(A), and let El,. . . , Ei+l be edges through p (i s q). Then the following 
function t is an i-cover: 

{ 

i ifx =p, 

t(X) = 1 if x E (lJ Ej) - {p}, 

0 otherwise. 

Hence, for 1 s i <q we have 

r,(A) s (i + 1)q - 1. (1. I) 

On the other hand let t be a minimal i-cover (1 s i s q - 1). Then there exists a 
vertex x E V(A) with t(x) = 0. Considering the q + 1 lines through x we obtain 

i(q + 1) s r,(A). (1.2) 

Hence equality holds in (1.1) for i = q - 1, i.e. for every affine plane A of order q 
we have 

r,_,(A) = q* - 1. (1.3) 

There are other cases when (1.2) gives the optimal bound. If q is a power of 2, 
and A is a galois plane, then there exists a hyperoval C c V(A), i.e. IC( = q + 2 
and IC rl E( ~2 for all E E E(A). Then V(A) - C is a (q - 2)-cover with 
cardinality (q + l)(q - 2), i.e. in this case 

r,_,(A) = q* - q - 2. (1.4) 

We use the notations 1.~1 and [XI for the lower and upper integer part of x, 
respectively. 

2. Fractional matchings of r-partite hypergraphs 

A fractional matching w of the hypergraph H is a non-negative function on the 
edges, w : E(H)+ R+, such that 

p.E w(E) =z 1 
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holds for all vertices p E V(H). The value of w, ]]w](, is the total sum C w(E). 

The supremum of ]I w 11, denoted by v*(H), is the fractional matching number of 
H. A fractional cover of H is a function on the vertices, t : V(H)+ R+, such that 

holds for all edges E E E(H). The value of t is lltll =: C,,Vt(x). The fractional 
covering number, r*(H), of H is the infimum of lltll. As the calculation of t* and 

v* are dual linear programming problems their optima coincide, i.e. for all H we 

have 

vsv*= z*Cz<ry. 

Hence the value of r* is always rational, and there is an optimal fractional 

matching w and a cover t with llw]l = lltll = r*(H). In [8] the following theorem is 

proved. 

(2.1). If H LY an intersecting hypergraph of rank r, then either z*(H) s r - 1, or H 

ti a finite projective plane of order r - 1. 

In the latter case r*(H) = r - 1 + (l/r). One cannot improve (2.1) in general, 

because if H is a truncated projective plane of order r - 1, then z*(H) = r - 1. 

However, we show the following sharpening of (2.1). 

Theorem 2.1. Suppose that H is an r-partite, intersecting hypergraph. Then either 

z*(H) s r - 1 - (l/(r - l)), or H is a truncated projective plane of order r - 1 

(and then r*(H) = r - 1). 

We remark that if we delete a line of a truncated projective plane, then we 

obtain an r-partite hypergraph with t* = r - 1 - l/(r - 1). 

For the proof we split into two parts the statement of the theorem. 

(2.2). Suppose that F is intersecting, r-partite and t* = r - 1. Then F is a truncated 
projective plane. 

(2.3) Suppose that H is intersecting, r-partite and z* < r - 1. Then t* G r - 1 - 

l/(r - 1). 

Remark 2.2. It is easy to prove a weaker version of (2.3) using the following fact 

from [5]. Let G be an arbitrary hypergraph. Write r*(G) in the form u/v, where 

u, v are positive integers and (u, v) = 1. Then v s rtrr*. To finish the proof of the 

weaker form of (2.3) write t*(H) in the form u/v. Then v <r-(i), hence 

t*(H) <r - 1 - r-(g). 

The proof of Theorem 2.1 combines the methods of [7] and [8]. We are going 
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to use the following lemma. Let H be an arbitrary hypergraph, and w be an 

optimal fractional matching. The support S of w is the set of vertices p for which 

c peE w(E) = 1, i.e. the set of saturated points. The hypergraph H is t*-critical if 

z*(H’) < r*(H) holds for every subhypergraph H’, i.e. we cannot delete an edge 

without decreasing the value of r*. 

Lemma 2.3. Let H be t*-critical and S be a maximal support. Then IE(H)I c IS]. 

Proof . Let w E REcH) be an optimal fractional matching of H with support 

Then w lies on the boundary of the polytope P defined by the inequalities 

w(E) s 0 for all E E E(H), 

c w(E) c 1 for all p E V(H). 
PEE 

There is vertex w. of P such that w. is also an optimal fractional matching, and 

lies on all the facets of P which contain w. This means that the support of 

s. 

wo 
wo 

contains the support of w, i.e. it is also S. Moreover H is r*-critical, so we have 

that w,(E) > 0 holds for every edge E E E(H). Thus P is full dimensional. Then 

the number of facets of P through w. is at least (E(H)]. 0 

As a corollary we have (see [5]): ifH is z*-critical, then 

]E(H)I 6 t*r. (2.4) 

Proof. Let S be a maximal support, then Lemma 2.3 implies that 

I-W-VI s IS/ 6 c (c w(E)) = 2 IEl w(E) c t*r. 
PEVW) POE 

Furthermore, equality holds in (2.4) if and only if E c S for all edge E E E(H), 
i.e. every non-isolated point is saturated. Cl 

As w(E) = l/D is always a fractional matching with value IE(H)I/D, we have 

IE(H)] cz r*D, (2.5) 

for all hypergraphs H. 

Proof of (2.2). Let H be a r*-critical subgraph of F with t*(F) = z*(H) = r - 1. 

Without loss of generality we may suppose that V(H) = U {E: E E E(H)} with 

parts X1, . . . , X, (i.e. IXi fl El = 1 for all E E E(H), 1 =G i s r). Then (2.4) implies 

that 

[E(H)1 s (r - 1)r. 

Claim 2.4. For all i one has ]Xil = r - 1. 
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Proof. Every Xi is a cover, hence IX,1 Z= t > t* = r - 1. To prove an upper bound 

for IXi( we distinguish two cases. If IE(H)J = r(r - l), i.e. equality holds in (2.4), 

then every point is saturated. So IV(H)1 = rr* = r(r - l), and we are done. So we 

can suppose that 

IE(H)l c r(r - 1) - 1. (2.6) 

Let w be an optimal fractional matching of H. We write s(w, p) for CpeE w(E), 

and if it does not cause confusion we write s(p), briefly. Let p be a vertex and 

p E I&, E E(H). Then 

s(p)+@- 1)s c s(q)= c IE fl EoJ w(E)%* +(I-l)w(&). (2.7) 
qE.% EsE(H) 

Hence 

s(p) z= (I - l)w(E,). (2.8) 

If we add up (2.8) for every edge E0 which contains p, then we have 

s(p)deg&) 2 (r - US(P). (2.9) 

As w(E) > 0 for all E E E(H), (2.9) implies that 

deg(p)sr-1 (2.10) 

holds for all p E V(H). Finally, (2.10) and (2.6) imply that IX,1 < (r(r - 1) - 

l)/(r - 1) <r, proving Claim 2.4. •i 

Now we return to the proof of (2.2). Joint a new element x to V(H), and define 

the hypergraph G by the vertex set V(G) = V(H) U {x} and the edge set 

E(H) U {Xi U {x} : 1 c i < r}. Define w’ : E(G) + R+ as follows: 

if E E E(H), 

if E E E(G)\ E(H). 

Then w ’ is a fractional matching of G with value II w I( (r - 1)/r + 1. Thus G is an 

intersecting r-graph with t* 2 r - 1 + l/r. Hence G is a finite projective plane, by 

(2.1), and H is a truncated projective plane. 

It is easy to see, that if H is a truncated projective plane, and C is an r-element 

cover which intersects every part Xi as well, then C E E(H). This implies that 

H=F. Cl 

Proof of (2.3). We may suppose that H is z*-critical. Let w be an optimal 

fractional matching of H with maximal support S, that is S = {p E V(H) : s(p) = l}. 

Denote the parts of H by X1, . . . , X,. As Xi intersects every edge in exactly one 

element we obtain 

ISnXil~ c s(p)=v*(H)<r-1. 
PEX 

(2.11) 
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Hence ISI < T(T - 2). Then Lemma 2.3 implies that 

]E(H)] s r(r - 2). (2.12) 

LetA={pEXi:degp 2 r - l} . By (2.12) we have 

IAl s r(r - 2)/(r - 1) <r - 1. (2.13) 

If IX,] <r - 2, then r* s rs 1X,] s r - 2, and we are done. From now on we 

suppose that IX,] 2 r - 1. Then (2.13) implies that there exists a vertex p E Xi \A. 

The inequality (2.7) holds for all intersecting r-graphs. So let p E E,, E E(H), then 

r-1-r* 2 (r - l)w(E,) -s(p). (2.14) 

Adding up (2.14) for all E,, with p E EO, we have 

deg(p)(r - 1 - r*) 2 (r - 1 - deg(p))s(p) 2 S(P), (2.15) 

since deg(p) s r - 2. We now add up (2.15) for all p E X,\A, and obtain 

(r(r - 2) - JAI (r - l))(r - 1 - t*) 

2 (lE(W - p_A deeW)(r - 1 - t*) a c S(P) 2 r* - I4 
p EX,-A 

Rearranging the extremes of this inequality, we obtain that r* c r(r - 2)/(r - l), 

as stated. Cl 

3. (D, c)-colorings of complete graphs 

In this section we deal with the following Ramsey type problem. Color the 

edges of a complete graph by c colors. How large is the largest monochromatic 

connected component? A (D, c)-coloring of the complete graph K is a coloring of 

the edges with c colors so that all monochromatic connected subgraphs have at 

most D vertices. A (D, c)-coloring can be viewed as c partitions of a ground set 

into sets of cardinality at most D such that all pairs of the elements appear 

together in some of the sets. Resolvable block designs with c parallel classes and 

with blocks of size D are natural examples of (D, c)-colorings. However, 

(D, c)-colorings are more relaxed structures since the blocks may have any sizes 

up to D, and the pairs of the ground set may appear together in many blocks. Let 

f(D, c) denote the largest integer m such that K” has a (D, c)-coloring. 

Obviously, 

f(D, c) =s + c(D - 1). (3.1) 

The function f(D, c) was introduced by Gerencser and Gyarfas [9] in 1967. The 

value of f(D, 2) = D and f(D, 3) were determined in [l] and [9]. In [lo] there are 

further results on f(D, c). The problem of determining f(D, c) was rediscovered 
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by Bierbrauer and Brandis [3]. In [4] the value of f(D, c) was given for all c < 5 

or Ds3. 

Theorem 3.2 [4]. 

f (073) = { 
4p ifD=2p 

4p+l ifD=2p+l 

9p ifD=3p 

f(D,4)= 9p+l ifD=3p+l 

9p+4 ifD=3p+2 

16p ifD=4p 

f (D, 5) = 
16p + 1 if D = 4p + 1 

16~ + 6 if D = 4p + 2 

16p+9 ifD=4p+3 

f (2, c) = ( 
c+ 1 ifcisodd 

c ifciseven 

5 ifc=3 

f (3, c) = 
2c ifc=O(mod3), cs6 

2c+l ifc=l(mod3) 

2c-1 ifc=2(mod3). 

In [2] and [3] there are further results for the case D <c. They use strong 
results from the theory of resolvable block designs. In this paper we give a 
theorem which asymptotically determines f (D, c) whenever D is large, c is fixed, 
and c - 1 = q is a prime power. Further interpretation off (D, c) from the point 
of view of Ramsey theory can be found in [6]. 

With a (D, c)-coloring of K” we can associate a hypergraph H with V(H) = 

V(K”) and the edges of H as the vertex sets of the connected monochromatic 
components. The dual hypergraph H* of H is a c-partite, intersecting hypergraph 
(where multiple edges are allowed). So we have 

Proposition 3.2. f (D, c) = rnp IE(G)(, where G runs through all c-partite, 

intersecting multihypergraphs with maximum degree at most D. 

Recall the definition of the i-cover, Ti(H) is the maximum of C t(x) where 

t: V(H)+ (0, 1, . . . , i} such that 2 xsE t(x) > i holds for all E E E(H). For an 
integer i, whenever a projective plane of order q exists, define 

ti(q) = min{ Ti(A) : A affine plane of order q}. 
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Let z,,(q) = 0. We need one more definition. 

t,* = max{ t*(H) : H is c-partite and intersecting}. 

By Theorem 2.1 we have that r,* = q if a PG(2, q) exists, and r,* c q - (l/q) 

otherwise. 

Theorem 3.3. 

and for any fixed c there are infinitely many D for which equality holds. 

By Theorem 2.1 this implies that (see [lo]) 

f (D, c) s D(c - 1). 

Theorem 3.4. Suppose that there exists an afine plane of 

D = q [D/q] - i where 0 <i<q. Thenfor D==q’-q wehave 

f (D, q + 1) = [D/q1 q2 - r;(q). 

(3.2) 

order q, and let 

For D > q2 - q .an extremal multihypergraph is obtained only from a truncated 

projective plane by multiplying itstdges. 

The case D = 0 (mod q) was proved in [4]. Their lower bound for f (D, q + 1) 

for general i is probably slightly smaller than the one given in Theorem 3.4. 

Proof of 3.3. Let H be a c-partite, intersecting multihypergraph with maximum 

degree D. Then by (2.5) we have 

which implies the upper bound. 

To prove the lower bound, consider a r*-critical, c-partite, intersecting 

hypergraph G with r*(G) = t,*. (Such a G exists.) Let w : E(G)+ R+ be an 

optimal fractional matching. Define the multihypergraph H on the edge set E(G) 

such that the multiplicity of an edge E is [w(E)D]. Then D(H) < D, and 

IW-QI ‘& (w(EP - 1) = CTD - IE(G)I. 

Here lE(G)I < ct:, so (3.3) implies the lower bound. Cl 

(3.3) 

Proof of Theorem 3.4. Let D = q [D/q] - i and n = q’[D/ql - r,(q). Using the 

affine planes we construct a (D, c)-coloring of K”, which implies the lower bound. 

Let A be an AG(2, q) with an i-cover t: V(A)+ (0, 1, . . . , i} such that 

C t(X) = Z,(q). Let 21, . . . , Lfq+l be the parallel classes of A, that is _Yu = 

{LllJJ :l<v<q} such that IJ!Z~=EE(A) and L,,,flL,,,=0 for l<v<w<q. 
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Replace each point p of V(A) by a [D/q] -t(p) element set Z(p), and define 
Z(E) = lJ {Z(p):p E E}. Then Z(9Q (1 S u <q + 1) is a (D, q + 1)-coloring of 

Z(V(A)). 
To prove the upper bound for f(D, q + 1) we are going to use Proposition 3.2. 

Suppose that H is a (q + 1)-partite, intersecting hypergraph with D(H) c D, and 
IE(H)I =f(D, q + 1). Then the above construction and (1.1) imply that 

I,!?(H)1 2 q’[D/ql - qi - q + 1 = qD - q + 1. (3.4) 

By (2.5) we have that IE(H)I G Dz*(H), so (3.4) implies that 

r*(H)aq -q. 

Hence for D >q2- q we obtain that t*(H) >q - (l/q). Apply Theorem 2.1. 
Hence H is a multihypergraph obtained from the truncated projective plane P. 

Denote the multiplicities of the edges E E E(P) by m(E). We claim that 

m(E) 2 ]D/q] (35) 

holds for every edge E. Indeed, if m(E,) > [D/q], then 

]E(H)I = cm(E) = -qm(&) + c (c m(E)) s -q [D/q] -q + (q + 1)D. 
PS-% PEE 

This is less than the right hand side of (3.4), thus (3.5) follows. Let f(E) = 

[D/q1 -49. Th en t is an i-cover of the dual of P, that is C t(E) 2 zi(A) 2 

xi(q). Finally, 

lE(H)l =q2]%] - c t(E) sq2]D/q] - rik). •I 
EEP 

The case D = q* - q also follows from the above argument. 
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Note added in proof 

The main result of the second part (Theorem 3.4) verifies a conjecture of 
Bierbrauer [ll]. He also conjectures that Gyarfas’ lower bound [4] for f(D, q + 1) 
coincides with the value given in Theorem 3.4. Moreover, he determines 
f (D, 6) = 5D - 3 for D 2 89, D T+ (mod 5). 
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