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1. INTRODUCTION: RESULTS 

Let f(P) denote the number of unit distances between the points of the 
point set P, and let 

f(n) = max{f(P): P is a convex polygon with n vertices}. 

In 1959, P. Erdos and L. Moser [EM] conjectured that there exists 
a C> 0 such that f(n) < Cn for all n. They had a construction show- 
ing f(n) 2 $n + O(1). Recently, their lower bound was improved by 
H. Edelsbrunner and P. Hajnal [EH], f(n) B 2n - 7. Let 

F(n)=max(f(P): PC IX*, IPI =n]. 

P. Erdijs [E] showed that F(n) = O(n3/* ) and that the lattice points give 
F(n) > .1 + (C/h3 1% n), Th e upper bound was improved by Beck and Spencer 
CBS], Szemertdi and Trotter [SzT]. The best result now is F(n) < O(n4j3). 
Obviously, f(n) <F(n). There is no known better upper bound for f(n). 
The aim of this note is to show that f(n) is significantly less than F(n). 

THEOREM 1.1. There exists a c > 0 such that ,f(n) < en log n. 
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Remark 1.2. A point set P has property E, if for all p E P there exist 
pl, . . . . pk E P such that the distances d( p, pl), d(p, p2), . . . . d(p, pk) are all 
equal to each other. Danzer (unpublished) has an example, showing that 
there exists an arbitrarily larger finite convex P with property E3. (A finite 
point set P is called convex if P is the vertex-set of a convex polygon.) 
Erdiis conjectures that there is no finite convex P with property E,. 

Remark 1.3. Let g(n) denote the maximum multiplicity of unit distan- 
ces between the points of P, where P is an n-element point set on the 
surface of a 3-dimensional ball. Very recently Erdos, Hickerson, and 
Path [EHP] gave an example, proving that g(n) is superlinear, 
g(n) 2 O(n log* n), and another example on a sphere of radius l/d shows 
g(n) 2 O(n4j3). More related problems and results can be found in 
[Er; EP; or MP]. 

2. PROOFS 

A lemma on &l matrices. Let M be an a by b matrix with 0 and 1 
entries. Suppose that M does not contain a (i ! ;) as a submatrix. 
(* denotes an arbitrary entry, i.e., * = 0 or 1.) 

LEMMA 2.1. The total number of l’s in M is at most a + (a + b) Llog, bJ. 

Proof. An entry M(i, j) (in the ith row the jth element) is called type 
(j, k), where 1 < j < b, 1 < k 6 Llog, bJ if M(i, j) = 1 and there exist 
j’,j” such that M(i,j’)=M(i,j”)=l and j<j’<j” (<b), j’-j<2k, 
j” - j > 2k. There are bllog, bJ types. We claim that there are no two dis- 
tinct entries of M with the same type. Indeed, if M(il, j) = M(i2, j) = 1 and 
they have the same type (j, k) then the rows i, and i2 with the columns 
j, ji’, j;, form a forbidden submatrix (il < i?). 

Consider now a row i and let M(i, j,), . . . . M(i, j,) be the l’s in this row 
without any type, j, > jZ > ... > j,. Then for all s > 1 we have 

jl-j5<.is+l-j,; 

otherwise M(i, j, + I) has type (j, + , , Llog, (j, - jS+ i)J), a contradiction. 
SO the row i can contain at most 1 + Llog, b_l l’s without a type. 

Hence, altogether, the number of l’s in M, with or without types, is not 
more than bllog, b J + a( 1 + Llog, 61). 1 

We remark that the bound in Lemma 2.1 is the best up to a constant 
factor if b > a as it follows from the example: M(i, j) = 1 iff j > i and j - i 
is a power of 2. 
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A forbidden geometrical configuration. A line through the points x and y 
is denoted by Z(x, y). A halfplane with boundary 1 and inner point i is 
H(1, i). The distance between x and y is d(x, y). Let I be a line and suppose 
that the finite sets A and B lie on opposite sides of 1. Moreover, suppose 
that A u B is a finite convex set with JAI = a, JB( = b. The line I cuts 
conv(A u B) in a segment uv. 

A pair q E B, p E A has type [u, A] (or [u, B], or [v, A], or [Iv, B]) if 
there exists a halfplane H such that H contains A u B and p lies on its 
boundary (i.e., H is a supporting halfplane of conv(A u B) at the point p) 
and the intersection of H and H(Z(p, q), U) is a cone with vertex p and 
angle at most 742. (The definitions of other types are analogous.) 

Define an a by b matrix M= M[u, A] (and M[u, B], M[v, A], 
M[v, B]) in the following way: 

M(P9 4) = 
if d(p, q) = 1 and its type is [u, A], 

otherwise. 

PROPOSITION 2.2. The matrix M= M[u, A] does not contain a sub- 
matrix (i f, ;). 

Proof: Suppose on the contrary that M has two rows and three 
columns forming an M’ = (i ! ;). Denote the points of A(B) corresponding 
the ith row (column) of M’ by pi (qi). Then p1p2q3qzql (in this order) 
form a convex pentagon with d(p,, q,)=d(p,, q2)=d(p2, ql)= 
d(p,, q3)= 1, and with an acute angle at the vertex p2 (see Fig. 1). 
Consider the angles of the p2 p1 q, q3 quadrilateral. The angle at p2 is acute 
because q3p2 has type [u, A], the angles at p, and q3 are acute because 
they are angles from the symmetric triangles plql p2 and q3p2ql, respec- 
tively. The angle at q1 (the q3q1p1 angle) is smaller than the angle q2q,p, 
because these five points form a convex pentagon. But the q2ql p1 triangle 

-I P, 

9 4 \ 

92 \ 
93 \42 

\ 
B VI A 

FIG. 1. The ordering of the rows and columns corresponds to the natural ordering of A 
and B from u to v on the boundary of conv(A u B). 
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is symmetric as well, so its angle at q1 is acute. We obtained that the 
quadrilateral has four acute angles, a contradiction. 1 

COROLLARY 2.3. Let A be an a-set, B a b-set on opposite sides of a line 
I such that A v B is a finite convex set. Then the number of unit distances 
between A and B is at most (a + b)(2 log, (a + b) - 1). (a, b > 1.) 

Proof Every pair (p, q), p E A, q E B has at least one type from [u, A] 
or [v, A] and at least one type from [u, B] or [v, B]. So the total number 
of l’s in M[u, A], M[v, A], M[u, B], and M[v, B] is at least twice as 
large as the number of unit distances between A and B. Then, by 
Proposition 2.2, we can use Lemma 2.1 for these matrices. 1 

Proof of Theorem 1.1. Let P be a convex n-set. Without loss of 
generality we may suppose that there is no line I( p, p’) (p, p’ E P) parallel 
to the axis of a Cartesian coordinate system, and no points from P lie on 
the lines of the form 3y = 2k or 3x = 2k (where k is a arbitrary integer). Let 
Y be the set of lines of the form 3y = 2k or 3x = 2k (k E Z) which cuts P 
into two nonempty parts. For an I E Y define the closed, parallel infinite 
strip S(I) of width 2 and halving line 1. Every point of P is covered by at 
most six times by the strips S(I), hence 

lFy IS(l) n PI 6 6 IPI = 6n. (1) 

Every unit segment (p, q), p, q E P, has been cut by a line I from 55’; i.e., 
p and q lie on distinct halfstrips of S(Z). The number of such (p, q) 
segments in S(I) is bounded by 2s logs-s, by Corollary 2.3, where 
s = IS(l) n PI. Then (1) gives that the total number of unit distances in P, 

f(p) < c 2s(l)log s(l)-s(l)< 12n log n-6n. 1 
Ifs? 

If we use a random direction and parallel strips of width 2 instead of the 
lattice used above, one can obtain f(P) < 2xn log n - rcn. 
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