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C(v, k, 2) denotes the minimum number of k-subsets required to cover all pairs of a v-set.
Obviously, C(n*+n+1,n+1,2)=n*>+n+1 where equality holds if and only if a finite
projective plane exists. In this note the followmg conjecture of Mendelsohn is proved. If a
PG(2, n) does not exist, then C(n> +n+1)=n>+n +3.

1. Definitions

A hypergraph ¥ is a pair (V, E) where V, the set of vertices, is a finite set, and
E, the set of edges, is a collection of subsets of V. Let E(x) denote the set of
edges containing x € V. deg(#, x) stands for |E(x)| (i.e. the degree of x). If all the
degrees are d, then & is called d-regular. If all the edges have k elements, then ¥
is k-uniform. The hypergraph  is called intersecting if E N E’ #$ for all edges
E, E’ € E. Moreover it is called 1-intersecting if |E N E'| =1 holds for all distinct
edges. The restriction % | X stands for the hypergraph (VN X, {ENX:E €E}).
The dual hypergraph #* is obtained by interchanging the roles of vertices and
edges of ¥ keeping the incidencies, i.e. V(#*)=E and E(¥#*)={E(x):xe V}.
Now we are going to define two classes of hypergraphs, the linear spaces and the
2-covers.

A linear space < is a pair (P, L) consisting of a set P of points and a set of L of
subsets of P called lines with the properties that

(1) any two distinct points p and g are contained in a unique line, and

(2) every line contains at least two points.

The linear space is called trivial if it has only one line, L = {P}. The linear space
is called a near pencil if it has a line which contains all but one of the points of P.
In 1948 deBruijn and Erdos [3] proved that for every nontrivial linear space one
has

IL|=|P|. 1.1)
Moreover, here equality holds if and only if £ is either a near pencil or a finite
projective plane PG(n, 2).
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A pair (V, E) is called a (v, k, 2)-cover, (or briefly, a 2 -cover), iff

@ Vi=n,

(2) E is a collection of k-clement subsets of V, called edges,

(3) every pair of elements of V is contained in at least one edge.

Denote by C(v, k, 2) the minimum number of edges in a (v, k, 2)-cover. Then

Clv, k, 2)= ('2’) / ('2‘) 1.2)

Note that the dual of a 2-cover is an intersecting hypergraph, and the dual of a
1-intersecting family is a linear space. A finite projective plane, PG(n, 2), of
order nis a (n*+n+1, n+1, 2)-cover with n* + n + 1 edges. A hypergranh ¥ is
said to be embedded in the linear space &, if V() c P and E(3)L. Vanstone [5]

pointed out that if 3 is an (n + 1)-uniform, 1-intersecting hypergraph with at
most n?+n + 1 vertices, moreover

|E|=n?, (1.3)

then  can be embedded into a projective plane of order n. (This result was
recently improved by Metsch [4], who replaced (1.3) by |E| > n* — (n/6).)

2. Results

Theorem 2.1. Suppose that V is a set of n*+ n + 1 elements and E is a family of
(n + 1)-elements subsets covering all pairs of V, such that |E| =n*+n +2. Then E
contains a finite projective plane of order n.

Corollary 2.2.

- 2+ + - »
Cin*+n+1,n+1, 2){ nz n+l zf'a PG-(n, 2) exists,
=Zn“+n+3 oinerwise.
This was a conjecture of Assaf and Mendelsohn [1]). They investigated the
minimal 2-designs (what they call “imbrical” designs and “failed goemetries”).

They have an analogous conjecture for affine geometries, which seems to me
much more difficult.

Conjecture 2.3 [1].

C(nz n 2){ =n+n l:fa PG(”: 2) exists,
"N =n?+n 2 otherwise.

As Baker [2] showed, the direct analog of Theorem 2.1 is not true. Using Baer

subplanes she constructed minimal (n?, n, 2)-covers of size n>+ n + 1 for infin-
itely many values of n.



A projective plane is an outstanding 2-cover 323

3. Proof of the theorem

If £ is »ct a minimal 2-cover, i.e. E\{E} is still a 2-cover, then E\{E} is
necessarily a projective plane and the theorem follows. So from now on we
suppose on the contrary that every edge E € E there exists a pair {x, y} such that

{x, y} is covered only by E. 3.1)

As E(x) covers all vertices of V

deg(x)=n+1 3.2)
holds for all x € V. Moreover if equality holds in (3.2) then for all y € V\ {x}

{x, y} is covered by E exacily once. 3.3)
Denote W the set of those vertices whose degree exceeds n + 1. (3.3) implies that

if {x, y} is contained in more than one edge from E, then {x, y} =« W. We claim
thtat

Wl<n+1. 3.9
Indeed, we obtain an upper bound as follows.

P*+n+2)(n+1)= D |E|=D deg(x)=|V|(n + 1)+ |W|.
EeE x

We distinguish two cases.

(i) If W intersects all the edges of E.

Let p be any vertex from V\W. Then all the sets E\{p} intersect W for
E € E(p). But these sets are pairwise disjoint by (3.3), so we have

(W=D |[WNE|=deg(p)=n+1. (3.5)

peEE

Hence equality holds in (3.4). Now, (3.4) and (3.5) implies that for every edge E
with E ¢ W one has |[E N W| = 1. However

Y IENW|= D, deg(x)=|W|(n+2)=(rn +1)(n +2)>|E|.

E xeW
So there exist at least 2 edges E,, E, with |[E;NW|=2, and then E;c W
(i=1, 2). Therefore by (3.4), actually E;=W. Hence E, =E,, so E\{E,} also
forms a 2-cover, contradicting to (3.1). From now one we may suppose that

(ii) W N Ey=9 for some E,€E.

Let E,={E € E: E N E, #0}. By (3.3) we have that Ey(x) covers all vertices of
V\{x} exactly once. Hence the hypergraph (V, E,) is n+ 1l-regular and
|Eol =n*+n + 1. So there exists an edge E, € E disjoint from E,. Then for all
x € E, one has deg(E, x) =deg(E,, x)+ 1, i.e. E,NW. Therefore by (3.4) we
have

E,=WeE. (3.6)
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Moreover deg(x) =n +2 for all x e W. As we have supposed in (3.1) there is a
pair {x,y} c W which is not covered by E\{W}. Let 3, be the restriction of
E\{W} to (V\W)U {x,y}. Consider the dual of #,. The edges of ¥
corresponding to the vertices from V-W are denoted by A, the duals of x and y
are denoted by B,, B,, resp. Then #; is an (n + 1)-uniform hypergraph over
n’+n+1 elements. Moreover any two of its edges intersect in exactly one
ciement, except BN B,=0. As AU{B,} has more than n’> members (1.3)
implies that there is a family B such that A U {B,} U B forms a projective plane.
Then the restriction B | B, is a linear space. If it is trivial linear space, then we
obtain the contradiction that B, belongs to the line set of the projective plane, so
B, N B,#@. Finally, if it is a nontrivial linear space, then (1.1) leads to the
contradiction.

n=|B|=|B)=n+1.
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