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For given & and s let n(k, s) be the largest cardinality of a set whose pairs can
be covered by sk-sets. We determine n(k,q°+q+1) if a PG(2,q) exists,
k> g(g+1)% and the remainder of k divided by (¢ + 1) is at least \/E Asymptotic
results are also given for n(k, s) whenever s is fixed and k — co. Our main tool is
the theory of fractional matchings of hypergraphs. < 1990 Academic Press, Inc.

1. DEFINITIONS

This paper is organized as follows. In this section we recall some defini-
tions. The first part of the paper is devoted to the fractional matchings of
intersecting hypergraphs. (The proofs can be found in Section 7 and 8). In
the second part we apply the resuits to the following problem: How large
a set can be if its pairs can be covered by s k-sets.

A hypergraph H is a pair (V(H), E(H)), where V(H) is a (finite) set, the
vertices or points, and E(H), the edge-set, a collection of subsets of V(H).
If we want to emphasize that H contains multiple edges, then we call
H a multihypergraph. G is a subhypergraph of H if V(G)c V(H) and
E(G)<c E(H). The dual of H, H” is obtained by interchanging the role of
vertices and edges, ie, V(H")=E(H), and E(H")={E(p):pe V(H)},
where E(p)={E€ E(H):pe E}. A hypergraph is an r-graph, or r-uniform,
if all edges have r elements. The rank of H is max{|E|:Ee E(H)}. The
degree of a point p is degy(p)=:|{E:E€ E(H), pe E}|. The maximum
degree, max degy(p), is denoted by D(H). A hypergraph is regular if for all
p e V(H) we have deg(p)=D. A matching # is a subfamily of pairwise dis-
joint edges; the matching number v(H), is the maximum number of edges in
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a matching in H. If v(H) =1, ie, if En E'# ¢ holds for all E, E' e E(H),
then H is called intersecting. A cover T is a subset of V(H) which meets all
edges of H, and the covering number t(H) is the minimum size of 7. An
r-uniform hypergraph H is called a projective plane of order r—1 if
|V(H)| = |E(H)|=r>—r+1 and every two edges intersect in exactly one
element. Briefly, H is a PG(2, r —1). Projective planes are known to exist
whenever r—1 is a power of a prime. An r-graph is a truncated projective
plane (of order r—1) if it is obtained from a PG(2,r—1) by deleting a
vertex p and all the lines through p. A TPG(2, r — 1) is the dual of the affine
plane AG(2, r—1). The notations | x | and [ x] stand for the lower and
upper integer parts of the real x, respectively.

2. FRACTIONAL MATCHINGS OF INTERSECTING HYPERGRAPHS

A fractional matching of the (multi)hypergraph H is a non-negative
function on the edges w: E(H) - R™*, such that

Y wE)<1

peE

holds for every vertex pe V(H). The value of w, ||w|, is the total sum
> w(E). The supremum of |w|, denoted by v*(H), is the fractional
matching number of H. A fractional cover of H is a function on vertices,
t: V(H) - R™*, such that

Y Hx)=1

xeE

holds for every edge E€ E(H). The value of ¢ is ||¢] =3 .., t(x). The frac-
tional covering number, t*(H), of H is the infimum of |¢||. The calculation
of t* and v* are dual linear programming problems, so their optima
coincide, i.e., for all H we have

v<v¥=t¥*<<r <.

The value of 7* is always a rational, and there are optimal fractional
matching w:E(H) - Q* and cover #: V(H) - Q% with ||w|| = (¢| = t*(H).
In [Fii] the following theorem is proved.

(2.1) Suppose that H is an intersecting hypergraph of rank r. Then
either t*(H)<r—1, or H is a finite projective plane of order r — 1.

In the latter case T*(H)=r—1+ (1/r). In general, one cannot improve
(2.1), because if H is a hypergraph obtained from PG(2, r — 1) by deleting
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a line, then t*(H) =r — 1. There is another intersecting hypergraph G with
t*(G)=r—1, the so-called rwisted projective plane. Then [V(G)|=
|E(G)| =r*—r, it is r-uniform, every degree is r, and the edges cover all
pairs. Such a hypergraph is known to exist only for r <4 (see, e.g., in [F]),
and it is proved that its existence implies that r or r—2 is a square.
(Further constraints about the existence of twisted planes can be found in
[LMV])

(2.2) THEOREM. Suppose that H is an intersecting hypergraph of rank
g+ 1. Then either
(i) His a PG(2, q), and then t*(H)=gq+ 1/(g+ 1), or
(iil) H contains a truncated projective plane TPG(2, q), ie.,
TPG(2, q) < E(H), and then t*(H)=¢q, or
(ili) H is a twisted projective plane, and then t*(H)=gq, or
(itifa) H contains a twisted projective plane, and then t1*(H)=gq (in
this case g =12), or
(iv) t*H)<g—1/(g*+q—1).

The proof of this theorem is postponed to Section 7. Let e=¢(g+1)
denote the largest real such that in (iv) one can write t*(H) < g —¢. Delete
three nonconcurrent lines of a PG(2, q). The obtained hypergraph F has
fractional matching number t*(F)=g—1/(29—1). Hence in this case
£<1/(2g—1). It is known that &(3) =% (see[CFGG]).

(2.3) Conjecture. For rz4, e(r)=21/(2r—-3).

Later we will see some partial evidence that &(r) = O(1/r).
We determine the maximum of t* for another class of hypergraphs.
Define

t*(s)=max {t*(H):H is intersecting, |V(H)| <s}. (2.4)
It is not difficult to see that
HgP g+ ) <g+(g+1),

and here equality holds iff a PG(2, q) exists. (This was proved, e.g., in
[AKL, PS]). We will use the following improvement of this statement.

(2.5) TueorReM. Let H be an intersecting hypergraph over g*+q+1
elements (q an integer). If H does not contain a PG(2, q) as a subhypergraph
then T*(H)< g+ (g—1)/(¢>+q—1).
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If we replace a line L of a PG(2,q) by a superset Lu {x}, where
xe V(PG(2, q))— L, then for the obtained intersecting hypergraph F we
have equality in (2.5). So the upper bound in Theorem (2.5) could not be
improved in general. (To see that T*(F)=(q° + ¢ — 1)/(¢* + ¢ — 1) one can
consider the fractional matching w,

(g—1)/(¢*+q—1) if xeE E+LuU{x)}
w(E) = 2 .
q/(g°+q—1) otherwise,

and fractional cover ¢,

« )z{(q—l)/(q%q—l) if pelL
P g +q-1) if peV(F)-L,

with values ||w| = |¢]].)

3. COVERING OF PAIRS BY A SMALL NUMBER OF SUBSETS

C(n, k, t) denotes the minimal number of k-sets required to cover all
pairs of an n-set. For fixed k, and for n— oo, Erdos and Hanani [EH]

proved that
<;>/®<C(n, k2)<( +o(1))<;>/(§)_ (30)

This limit theorem easily follows from the following theorem of Wilson
[W1]. For all n>ng(k) if (3)/(%) and (n—1)/(k—1) are integers then a
Steiner system S{n, &, 2) exists. But the lower bound in (3.0) is very poor
if #n is not much bigger than £ Mills [M79] determined the solution of
C(n, k,2)=s for all s up to 12. For s=13 he [M84] and Todorov [T]
determine all (n, k) pairs with C(n, k, 2) =13, except the pairs (28,9) and
(41, 13) which are undecided.

Suppose s is given, and let n(k, s) =max{n:C(n, k, 2) <s}; ie., n(k, s) is
the largest size of a set whose pairs can be covered by sk-sets. In the
following theorem t*(s) was defined in (2.4).

(3.1) THEOREM. For all s and k one has

t*¥(s)k—s<nlk,s)<tX(s) k.

For any given s equality holds for infinitely many k.
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Mills [M79] also proved that lim, _, _ n(k, s)/k exists and equals to its
maximum. He has determined this limit for s < 13. With our notations his
results is the following:

s 1 2

6
) 11 2

(ST VS )
Wit
wie Lh

Some of his result (s <6) was rediscovered in [SVZ].

Proof of (3.1). Considering the dual problem we obtain

(3.2) ProposiTION. n(k, s)=max{|E(H)|: H is an intersecting (multi)-
hypergraph over s elements with maximum degree at most k}.

Then the upper bound follows from the fact that for all hypergraphs
|E(H)| < t*(H) D(H). (3.3)

(Indeed, w(E)=1/D is a fractional matching with value |E(H)|/D.)

To prove the lower bound let G be an intersecting hypergraph with
IV(G)| <5, t*(G)=1X(s). We may suppose that |[E(G)| < |V(G)| <s (see
[Fii], or later (7.4)) Let w: E(G) > R™* be an optimal fractional matching
of G. Replace every edge E of G by | w(E) k_| copies. We optain a multi-
hypergraph H:

n(k, s) > | E(H))
= Y | WEK]>Y WE) k—1)=t*s)k—-s. |

EecE(G)

In the case s=¢>+q+ 1 if a PG(2, q) exists, (3.3) and (2.5) imply much
more. We will state our main result in Section 5 after some preparations.

4. GENERALIZED F-COVERS

Let H be an intersecting hypergraph, r a non-negative integer, 0 <r<gq.
The pair of (multi)hypergraphs (B, L) over V(H) is a generalized r-cover of
H if the following holds

(i) L is a subset of edges of H (with multiplicities)
(ii) BuUH is intersecting (i.e., BUH UL is intersecting),
(ii) |E(B)| = |E(L)|,

(iv) EB)nEL)= (ie., an edge of H cannot appear in both B
and L),

(v) degg(x)<<deg,(x)+r.
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The value of the r-cover is v,(B, L)=|E(B)| —|E(L)|. Finally, v,(H)=
max{v,(B,L): (B, L) is a generalized r-cover of H}.

In this section H will be a finite projective plane P of order ¢. Let v,(q) =
max{v,(P): P is a projective plane of order ¢}.

(4.1) We have v,(q)=2rq—q+r.

Proof. We give a construction. Let L, be a line, {p,,..,p,} =L, an
r-element set. Then define L as (¢—r) copies of L,, and let E(B)=
{LeEP):L#Ly, L0{py,..p}#D} |

(4.2) We have v (q)<rq  forall 0<r<gq.
Proof. Every set Be E(B) has at least g+ 1 elements, so we have

rg*+q+1)2Y (degg(x)—degy(x))

= ) IBl= Y |ILIz(g+DUEB)—|EL)). B (43)

Be E(B) Le E(L)
(4.4) THEOREM. Ifrz\/_, then v,(q)=rqg—q+r.

For the proof we need a new definition and a lemma. A set B is a
blocking set of the hypergraph H if it intersects all edges but does not
contain any. The investigation of the blocing sets of block designs was
initiated by Pelikan [P]. He observed that there is no blocking set T of the
projective plane P of order ¢< 2, and for g3 one has |T| > ¢+ 1+ \/ﬁ

(4.5) (Pelikan [Pe], Bruen [B]) Suppose ¢>3 and 1< |TnL]<g+1
holds for all line of a PG(2, q). Then |T| > q + 1 +./q. Moreover if equality
holds then T induces a Bear subplane.

That is, the system {L N T:L is a line, [Ln T)> 1} is a projective plane
of order \/6

Proof of (44). Let (B, L) be an r-cover of P. If B contains a line, L,,
of P then by definition we have

v(B, L) = |E(B)| —|E(L)|

<1+ Y max{0, degy(x)—degy(x)}

xely
<l+(r—1)(g+1). (4.6)
If B does not contain any line, then |B|>1+¢g+ \/5 holds for all Be E(B),
by (4.5). Hence we have from (4.3) that

g +q+1)2=(q+1)-v,B L)+ ¥ (B—-q-1)

Be E(B)

>(q+1+./q)v,(B,L). (4.7)
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This implies

rg+r—ryq>v,B,L).
The left hand side is less than rg +r—gq for r > \/:1 i

The determination of v,(q) for 1 <r<./gq seems to be very difficult. The

following example shows that v,(¢) can be much larger than the lower
bound in (4.1).

(4.8) ExampPLE. Let P be a Desarguesian projective plane of order ¢,
where \/c; is an integer. Let By, .., B,_ ., be a decomposition of V(P)
into Baer subplanes. (Such a decomposition exists, see [Br, Y].) Let L, be
a line and let A= {4,,..,4,_ /,} be an intersecting family on L, such
that the maximum degree D(A)s\/}(l +0(1)). (It 1s easy to prove that
such a family exists.} Define

EB)= {A,-UB,JlSigq—\/g*.l}
E(L)=D(A) copies of L,.

Then (B, L) is a generalized 1-cover of P with value ¢—2 \/;+o(\/(;).
Hence

0,(q) > rg— 2r(/q + 0(/q)).

(4.9) CorOLLARY. v,(3)=1, and v,(4)=2.

Proof. v,(3) =1 follows from (4.1). v,(4) =2 is given by (4.8) with the
following modifications. Let B,, B,, B, be three disjoint Bear subplanes of
GF(2,4) (|B,|=7) and let Ly= {x,, .., x5} be an arbitrary line. Suppose
that B,nLy={x;} for i=1,2 and B;nLy={x;,x,,xs}. Then the
following family is a generalized 1-cover with value 2. B={B, U {x,, x;3},
B, {x4}, By}, L={L,}.

To obtain an upper bound for v,(q), the proof of (4.4) gives that if (B, L)
is a generalized 1-cover with B not containing any line, then v,(B,L)<1
by (4.6). v, > 1 implies |B| > v, ie., |B| =v, + 1. Hence (4.7) implies

P +g+12 g+ 14T/g Do +1/47
ie, v;(3)<1land v, (4)<2. |
Call a generalized r-cover (B, L) of P optimal if v.(B, L)=v,(g).

(4.10) PrROPOSITION. There exists an optimal r-cover (B, L) of P such
that every line L € L has multiplicity m(L) at most I_\/:]_](q —r+1)—-1L
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Proof. If v,(q)=rq+r—gq, then Example (4.1) is optimal, and_then
max m(L)=gq ~r. Consider the case v,(q)>rg+r—q. Then r< \/;1, by
Theorem (4.4). Moreover, (4.6) implies that B does not contain any line.
Hence (4.7) gives that

g +q+1)<(g+1)v(q)+ Y (IBl—g—1)

BeB

>(g+1)(gr+r—q)+/q711Bl,

implying [_\/(;_](q—r+ 1) > |B|. Finally, clearly, m(L)<|L] <|B|. |

5. THE CASE OF s=¢q>+q+1

(5.1) THEOREM. Suppose that a PG(2, q) exists and s=q°+ g+ 1. Let
k=(q+1)a+r, where 0<r<gq. Then if a is large enough (azq*+q—
rq — 1) we have

nlk,sy=(¢>+q+1)a+v,(q)

This is a large improvement on a result from [To] if £ tends to infinity.
Theorems (3.1) and (2.5) imply

(5.2) CorOLLARY. If a PG(2, q) exists then

n((g+1)a, ¢*+q+1)=a(g’+q+1)
and

n(g+)a+q. ¢ +g+)=alg®+q+1)+4’
hold for all integers a > 0.

(5.3) CorOLLARY. We have

n(da+1,13)=13a+1 if a=8,
n4a+2,13)=13a+5 if az5,
n(Sa+1,21)=2la+2 if a>15,
n(Sa+2,21)=2la+6 if azli,
n(Sa+3,21)=2la+11 if a=7.
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This corollary follows from (5.1) and (4.4) for r>./q. In the remaining
cases =1 and v,(3)=1, v,(4)=2 follow from Corollary (4.9).

Proof of Theorem (5.1). First we prove the lower bound. Suppose that
(B,L) is an optimal r-cover of P, and let m(L) be the multiplicity of
the line LeL, M=max{m(L):LeL}. Suppose that k=a(g+1)+r,
(0<r<gq), where a=> M. We may suppose that M < ]_\/;J(q —r+1) by
Proposition (4.10). Define the following hypergraph H with the vertex set
V(P): EH)=EB)u {(a—m(L)) L:Le E(P)}, ie.,, the muitiplicity of a
line from P is (a—m(L)). Obviously, D(H) <k, H is intersecting, and

|EH)| =(¢*+g+ 1 a+v(B,L)=(¢°+g+1a+uvlq). (54)

(54) and (4.1) imply that for @ > g —r one has

n(g+1)a+r,g*+q+1)=(g>+q+1)a+rg+r—q. (5.5)

Proof of the upper bound: Let H be an intersecting multihypergraph
over ¢°+ g+ 1 elements. According to Theorem (2.5) we distinguish two
cases.

(i) Ift*(H)<g+ (g—1)/(g*+qg— 1), then (3.3) and (5.5) imply that

IEH)| <((g+ 1D a+r)t*H)<(¢*+q+1)a
+rg+r—g<n((g+1)a+r,g’+q+1)

forazq(g+1-—-r)—1.

(i) If t*(H)>g+(g—1)/(g*+q—1) then a finite plane P is a
subhypergraph of H. Define the (multi)hypergraphs B and L as follows:
Denote the multiplicity of a line L e E(P) by m(L). Then E(L) consists of
the lines of P with multiplicities max{0; a—m(L)}. E(B) consists of the
edges of H different from the lines and with the lines L of P with multi-
plicities max{0; m(L)— a}. Then (B, L) is a generalized r-cover of P, hence

|EH)| =a(g* +q+1)+|EB) — |E(L)| <alg’+q+1)+v.(q). |

6. DIRECTION OF FURTHER RESEARCH

The method of the previous chapters is a powerful tool to determine
n(k, s) asymptotically, whenever we are able to calculate 7*(s). E.g.,
Theorem (2.2) easily implies the case s =g*+ 4.
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(6.1) THEOREM. Let H be an intersecting hypergraph over gq*+gq
elements. Then either

(i} H contains a TPG(2, q), or
(ii) H contains a twisted plane, or
(i) c*(H)<g—1/3(g+ 1)

The proof of (6.1) is analogous to the proof of (2.5) (see Section 9).
Suppose that a TPG(2, q) or a twisted plane on g*+ g vertices exist, let
k>104%, and write k in the forms k=a,q+r, =a,(g+1)+r,, where
0<r,<q, 0<r,<g+1. Then (6.1) and (3.3) imply that

n(k, >+ q) =max{a, ¢’ +v,(q), a,(¢° + q) + v} (q)}, (6.2)

where v%(g) is the maximum value of a generalized r-cover in a TPG(2, q)
(in the case o =1) or in a twisted plane (in the case o =2).

It seems to be hopeful to determine t*(¢°> + g + 1 + a) if |a| is small and
a PG(2, q) exists.

(6.3) Conjecture. We have

HgP+q+2)<q+2/2q+ 1),

and here equality holds if a PG(2, ¢) exists.

Our method also can be extended to the following generalization of
n(k, s) (also investigated in [M791]). Recall that C(n, k, t) denotes the mini-
mal number of k-sets required to cover all z-sets of an n-set. For large n
R&dl [R] proved that

() )<amssc s () )

We are interested in the case when k is large. Let n,(k, s)=
max{n:C(n, k, t)<s}, ie., the largest size of a set whose f-sets can be
covered by s k-sets. The followings are simple generalization of (3.2), (3.1).
H is r-wise intersecting if E, n --- n E, 5 (J for all ¢ edges of H.

(6.4) PrROPOSITION. n(k, s)=max{|{E(H)|:H is a t-wise intersecting
multihypergraph over s elements with maximum degree at most k}.
Let t*(s, t)=max{t*(H):H is r-wise intersecting over s elements}.

(6.5) PROPOSITION. T*(s, 1) k —s<n/k, s)<t*(s, t) k, and here equality
holds for infinitely many values of n.
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7. PROOF OF THEOREM (2.2)

A hypergraph H is called t*-critical if t*(H') < t*(H) holds for all sub-
hypergraphs H'; i.e., we cannot delete an edge without decreasing the value
of t*. Let w be an optimal fractional matching of the hypergraph H. The
support T of w is the set of vertices p for which 3, , w(E) =1, ie., the set
of saturated vertices. The following lemma easily follows from the basic
properties of linear programming.

(7.1) LeMMA. (see in [F88]) Let H be t*-critical and T be a maximal
support. Then |E(H)| < |T|.
This lemma implies, e.g., that if H is t*-critical of rank r then
|E(H)| < [V(H), (7.2)
|[E(H)| < rt*, (1.3)

and if equality holds, then V(H)=T. We will need the following
sharpening of (7.1).

(7.4) LemMa. Let H be t*-critical and T a maximal support. Then the
characteristic vectors of En T(E e E(H)) are linearly independent in R”.
Proof. Let v(E) denote the characteristic vector of En T, ie,,

1 f xeTnE

V(E)(x):{o if xeT—E

Suppose on the contrary that one has reals «(E) such that
> g o(E)v(E)=0. Suppose that > a(E)>0. Let z be a real, and w be an
optimal fractional matching with the maximal support 7. Then w(E)>0
for all edges. Define

w(E, z)=w(E)+ za( E).

This is a fractional matching of H if |z| is sufficiently small with value
iwl| +z 3 «(E). Start with z=0 and increase it until we hit a constraint
either of the type

wl(E, z) =0
or of the type

Z w(E, z)<1,

xeE
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where now x ¢ T. In both cases we get a contradiction to one of the earlier
constraints (i.e., that H is t*-critical, and T is maximal). ||

(7.5) LemMA. Let H be an arbitrary hypergraph and w: EH)->R™ an
optimal fractional matching, 1. V(H)>R™ an optimal fractional cover.
Suppose that for some p e V(H) we have t(p)>0. Then 3,z w(E)=1, ie,
p is saturated by w.

This is a well-known lemma in linear programming.

Proof. Let s(x)=3,.gw(E). Then we have

0<Y 1)1 —s(x)=Y 1t(x) =Y. Y 1(x) w(E)

xeFE

=r*—Zw(E)( Y t(x)><r*—Zw(E):O,
E E

xeE
ie, 1 —s(x)=0 whenever t(x)>0. |

We will prove Theorem (2.2) in the following form.

(7.6) TueOoREM. If H is t*-critical, intersecting, and (q + 1)-uniform and
*(H) =g —¢ where 0<e<1/(qg*> + q— 1), then H is either a truncated or a
twisted projective plane.

The next step of the proof requires the following

LEMMA. If T is a (g + 1)-element set and it intersects all edges of a
twisted plane H of order q, g =3, then Te E(H).

Proof. Suppose that T does not contain any edge of H. Let
m=max{|TnE|:EecEMH)}, |E,nTI=m. Let xe E,\T. There are ¢
disjoint edges of H through x which are pairwise disjoint outside of x.
This implies that

(g— D +|E,nTI<|T],

e, m<2. For g >3 there exists an x € E,\T such that all the ¢+ 1 edges
through x are disjoint outside of Ej\T. Hence |E,nT|=1. This is a
contradiction, because there is no (g+ 1)-element set intersecting every
edge in a singleton. |

Proof of (2.2) from (7.6). Let now H be an arbitrary intersecting hyper-
graph of rank g+ 1 with t* = g — ¢, Deleting edges we obtain a t*-critical
subhypergraph H' of H with t*(H)=t*(H"). If H' is not (g + 1)-uniform
we can add extra points of degree 1, obtaining H%. Then Theorem (7.6)
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implies that H” is one of two extreme cases. Neither of them has vertex of
degree 1, hence H! = H> In the case H' is a twisted plane and ¢ >3, we
obtain that H! = H, because if a (g+ 1)-element set T intersects all the
edges of H! then Te E(H') by the above lemma. |

The rest of this section is devoted to the proof of (7.6). Let w be an
optimal fractional matching of H with a support T of maximal size. As H
is critical we have

w(E)>0 for all edges £e E(H). (7.7)

For a vertex xe V(H) define s(x) =3 ..z w(E). Then 0 <s(x)< 1. Let E,
be an arbitrary edge, xe E,. We have

s(x)+q= Y, s(y)=Yw(E)ENE,|

vekEy

=t*(H) +qw(Ey)+ Y. wENEnE,—1). (78)

E# Eg

This implies that

s(x)+e¢

2 w(Eo) (79)

holds for all xe E e E(H). We can improve on (7.9) if deg(x) <q. Fix x
and add up (7.9) for all xe Ej e E(H). We obtain

g (s(x) + ) > 5(x),

i.e., s(x) < de/(q—d). Then (7.9) implies that

£

ez
q — d(x)

=w(Ey) (7.10)

holds for x e E; if deg(x)=d(x) <q. For this x
(g—1)e=d(x)e=s(x) (7.11)
Divide V(H) into three parts: T is the set of saturated vertices,

A={xeVH)-T: deg(x)<gq}, B={xeV(H)-T: deg(x)>q} The
inequality (7.10) implies that

deg(x) =g (7.12)
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holds for each point xe Tu B. If En 4 # ¢ for an edge Ee E(H) then we
have

[EnA|=1. (7.13)
Indeed, as we used in (7.8) we have

t*=g—e< Y s(X)S|E—Al+ Y s(x)

xe £ xeEn4d

However, by (7.11), for x € A one has s(x) < &(g— 1), so the right-hand side
is not larger than

(g+1)—|EnAl(1—-(q—1)e),

ie.,

[EnAl < (1+e)/(1—(g—1)e)|=1.
Let # ={EcEH):AnE#J}, || =a Now (7.13) implies that

Y s(x)<cea (7.14)

xeAd

Our next claim is

| <2q. (7.15)

Indeed, (7.9) and (7.10) imply that

q—8=1:*=Zw(E)<a£+(|E(H)I—a)%f.

Using |E(H)| <(g+1)(g—¢) (by (7.3)) and the fact that e <1/(3¢g—1) we
obtain (7.15).

(7.16) ProposITION. |TU B| =g*+ 4.

Proof. The lower bound for |Tu B| follows from (7.14) and from
(7.15).

ITUBlZ Y s(x)=(g+1)t*— Y s(x)

xeTuB xe A

>(q+1)g—¢)—eca=q*+q—e(g+1+a)>¢*+q—1.
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To prove an upper bound for |Tu B| start again with the inequality
D eees(x)=t* +gw(E) and add it up for all edge E. We obtain

Y s(x) deg(x) > |E(H)| t* + gt*.

Substract 3 deg(x)={(g+ 1)|E(H)| from both sides, we have after
rearranging that

|EH)[(1+e)—gr*= Y deg(x)(1—s(x)). (7.17)
xe V(H)
Continue it, using (7.12); we have

> ¥ deg()(1-sx)> ¢ ¥ (1-s(x))

xeTuB xeTuB

=q<\TuB|— Y s(x))?qlTuBl—q(q+1)r*. (7.18)

xeTuB

Rearranging between the extreme sides of (7.17) and (7.18) we have

i
—:;-f |E(H)| + qt*> | T B (7.19)
Using (7.3} we have

82
=|TuB|,

&
FHqg+1—e—

implying |Tu B| <q*+q in the case ¢>0. If e=0 and |E(H)| <gq*+¢—1
then again (7.19) implies that |TU B|<q*+gq. Finally, if t*=¢4 and
|EH) =¢*+q=(q+1)t* then by (7.2) we have that V(H)=T,
ie, A=B=(J, so the obvious |T|<(¢+1)1* inequality implies the
proposition. ||

Using the above Proposition (7.16) and (7.17) we improve on (7.15) by

(7.20) ProposiTION. || <g— 1.

Proof. If £=0 then T=V(H) so &« = . We may suppose that £¢>0
and so |E(H)| < ¢*+q. From (7.17) we have

|EM)|(1+e)—gr*> Y deg(x) (1 —s(x))

xeTuB

+ Y deg(x) (1 —s(x)). (7.21)

xX€eA
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Here

Y dogx) (1=s(x)>q ¥ (1—s(x))=q(q2+q— » s(x))

xeTuB xeTuB xeTuB

=q(qz+q—(q+1)r*+ Y s(x)>

xeAd

=(g+q)e+q ¥, s(x).

Then (7.21) implies
|[E(H)|(1+2)—¢*+ge>q%+qge+ ), deg(x)+ ) (g—d(x))s(x)

xe A xed

>q%+qe+a
Then we have
(EH) —g )1 +e)2a §
A corollary of (7.20) is

Y (1—s(x)) < 2¢e (7.22)

xeTuB

Indeed,

» (1~s(x))=q2+q—((q+1)r*— » s(x))<(q+1)s+ae.

xeTuB xeA
Another corollary of (7.16) and (7.22) is

(7.23) COROLLARY. If t*=gq then |T| = |V(H)| =¢*+4.
Indeed by (7.7) and (7.10) we have o/ = &, implying Tu B= V(H).
Then (7.22) gives that B= (.
(7.24) Coam. If degyu(x)=qg+1 for all xeTU B then H is a twisted
plane.
Proof. We have
(F+g)g+1)< Y deg(x)=Y |En(TuB)I<(g+ DIEH),

xeTuUB E

582a/54/2-9



264 Z. FOREDI

which implies that |V(H)| = |E(H)| =¢*+4, and H is (g + 1)-regular. Let
% be the set of pairs covered at least twice by E(H). Then every edge E
contains exactly one member of ¥, because

Y  |EnF —1=< y |EmF|)—(|E(H)| —1

Fe EMH)— {E} F#E

=<Z deg(x)—l)—(q2+q—1)=l.

xekE

This implies |%| < 3|E(H)| =1(g” + ¢). On the other hand every point is
covered by | %, hence |4| =1(¢” + q), and it is a matching. Then a simple
counting shows that E(H) covers every pair exactly once except the pairs
in ¢ are covered twice. Shortly, H is a twisted plane. |

(7.25) ProposITION. If x,€ E;,, E;e E(H) for i=1,2 and |E, nE,| > 1,
then

26+ 5(x,) +5(x,)

w(E,) + w(E>) < p

Here E, #E, but x, = x, is allowed.
Proof. (7.8) implies that

s(x1)+q—1t*=qw(E,) +w(E,),

and here the roles of E; and E, can be exchanged. Adding up these two
inequalities we obtain (7.25). ||

From now on we suppose that ¢ > 3. (In the case g =2 we can use the
fact that &(3)=1{; see (2.3).)

Let Q = {xe V(H):degu(x)=¢q} and define § = {Ee EH):EnQ# J}.
By definition Q = Tu B. By (7.24) we may suppose that

1Q1>1. (7.26)

(7.27) ProposITION. |J &< T U B.

Proof. Indeed, if xe EnQ, Ec E(H), then s(x)>1—2ge by (7.22).
Then by (7.9) we have

wE)=s(x)— Y w(F)zs(x)—(q—l)s(x;“.

xeF, E#F
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These imply that

1 3g—1
wE)sL 341, (7.28)
g q

On the other hand if EnA# ¢f then by (7.10) we have w(E)<e¢, a
contradiction to (7.28). ||

Until this point we used only that 0 <e<1/(4g—1). However, in the
next steps we really need that e <1/(g°+¢g—1).

(7.29) LEMMA. Every two edges of & intersect in exactly one element.
Proof. Suppose on the contrary that E;e & with x,e E.nQ for i=1,2

such that {E; n E,| > 1. We will get a contradiction in three steps. First we
suppose that x; =x, =x. By (7.22) we have

s(x) =1 —2ge. (7.30)

On the other hand (7.9) and (7.25) give

s(x)+¢ 2e+2s(x)
S — ’
W< lg=D = =
which implies that
S <5 (¢ +4-2) (7.31)

Now (7.30) and (7.31) imply that ¢ > 2/(q> + 5¢ —2), a contradiction.
As a second step we have

(7.32) Coam.  If degy(p)=gq then s(p)=1.

Proof. 1f e=0 then T=V(H) by (7.23), so there is nothing to prove.
Suppose that ¢ > 0. Denote the edges through p by E|, ..., E,. By the above
part of the proof of (7.29) these edges are disjoint outside p. Let
t:V(H)—>R™ be an optimal fractional cover. Then

g—e> Y 0=y ( » z(x))—(g—l)t(p)zq—(q—l)t(p).

xel E; i=1 \xek;

We obtained that #(p) > ¢/(¢— 1) >0. Then Lemma 7.5 implies s(p)=1. |
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Proof of (7.29) (Conclusion). Suppose now that x; #x,. Instead of
(7.30) we have s(x,)=1 by (7.32). Again (7.9) gives

1=s(x,)< (g 1)—q——+W(E)

yielding

I__MS w(E,).

Apply (7.25), we obtain

1—(g—1)e 242

2 <w(E)+w(E2)<q+1,

a contradiction if e < 1/(g* + g —1).

For a point x € Q define C(x)=TuB— u {E—{x}:xe E€ E(H)}. That
is xe C(x), C(x)c Tu B and it consists of those points which cannot be
reached from x by one step. Clearly, |C(x)| =¢ and

[C(x)NE| <1 for all Ee E(H). (7.33)

Indeed, (7.33) holds for the edges E if x € E, by definition. If x ¢ E then let

E,, .., E, denote the edges through x. As E;— {x} are pairwise disjoint and

E meets each of them, only at most one point of E can lie outside | E,.
This proof also gave that

ICx)NEl=1 if Eeé. (7.34)

(7.35) LeMMA  Suppose x,ye Q. Then either C(x)=C(y) or
x)nC(y)=.

Proof. 1If y e C(x) then all edges F through y intersect C(x) only in y by
(7.34). Hence

Cx)n (v {F~{y}:yeFe EH)}) =2
ie.,, C(x)c C(yp). If y¢ C(x) then the g edges through y cover the points of

C(x),s0 C(y)nCx)=. 1

Suppose that the collection {C(x):xe Q} consists of s sets C,, ..., C,.
These are disjoint g-sets and we have @ < u C;. Hence

Q] <gs. (7.36)
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Let |E(H)| = ¢*+ g —m. We have

(P+qg—m)g+1)=Y |El> Y deg(x)=(q+1)q*+q)—1Q|

xeTuB
This implies
Q] = m(g+1). (7.37)

Now (7.36), (7.37), and (7.26) give
s=m+1. (7.38)

(7.39) CLamM. ¢=0.
Proof. Suppose ¢>0. Then by (7.33) we have

Y s(x)=) wEJEnC,|<t*={C;|—¢. (7.40)

xe E

So C;n B# . As the C/s are pairwise disjoint we get that {B| = s. Apply-
ing (7.1) to H we have

¢ +qg-m=|EM)|<|TI<¢’+q—s.

This contradicts (7.38). |

From now on we suppose that ¢=0. As in this case every point is
saturated, (7.40) implies that

for all EeE(H) onec has |[EnC;|=1. (741)

(742) CLaM. m=gq.

Proof. Suppose first that m<gq. Then (7.41) implies that the charac-
teristic vectors v; of C, (1<i<m+1<s<qg+1) are linearly independent
together with the characteristic vectors v(E) (E € E(H)). Indeed, suppose
on the contrary that for some a; and a(E) reals we have

m+1
Y wv,+Y a(E)V(E)=0. (7.43)
i=1 E

Consider the scalar product of (7.43) with v;,. We obtain that

go,+ Y, a(E)=0 (7.44)
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holds for all 1< j<m+ 1. Now multipy (7.43) by the characteristic vector
of V(H). We obtain

m+1

q Y o;+(g+1)Y a(E)=0. (7.45)

=1
Now (7.44) and (7.45) imply that ay= --- =¢a,,, =0, and

Y a(E)v(E)=0.

E

But the vectors v(E) are linearly independent by Lemma 7.4. So we have
proved that all of these vectors are linearly independent, hence
|E(H)} + m+ 1< g%+ q, a contradiction. |1

If E(H)= g then every degree is exactly ¢. So we have obtained that H
is a g-regular intersecting hypergraph over ¢° + g elements, any two edges
and Cy, .., C,, , intersect in exactly one point. So it is a truncated projec-
tive plane. |

8. PROOF OF THEOREM (2.5)

Suppose that t*(H) > g+ (¢ — 1)/(¢* + ¢ — 1). We will prove that H con-
tains a PG(2, g) and hence t*(H)=g¢q+ 1/(¢+ 1). Every edge of H has at
least [t*(H) =g+ 1 elements. Let G consist of the ¢ + 1 element edges of
H. Put a weight 1/(g+2) into every vertex of H. In this way we have
covered all the large (i.e., > ¢+ 2 elements) edges and (g + 1)/(g + 2) part
of the edges of G. Hence

-1 2 1 %G
+——2q <1t*(H sq ik s +T ( ),
g +q-—1 q+2 q+2

q (8.1)

implying that t*(G)> ¢ — 1/(q* +q—1). Then Theorem (2.2) implies that
*(G) =g, and one of the cases (2.2)(i), (ii), or (iii) holds. In the case of
(2.2) (iii) G is a twisted plane on ¢°+ g points only. Then

1/(g+1) if xeV(G,
tHx)= 8.2
() {o if xeV(H)—V(G), (8-2)
is a fractional covering of H with value g, contradicting (8.1).

In the case (2.2) (ii) let A be a truncated projective plane of order g,
E(A)c E(G)c E(H). Let p=V(H)— V(A), and #={EcE(G):peE}. If
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# = then the cover (8.2) shows that t*(H)<g¢, a contradiction. If
|8 =1, ie, = {B}, then let

(g—1)/g> if x¢B,
L{x)=<1/g if xeB—{p},
1/q° if x=p.

This is a fractional cover of H with value g+ 1/¢% which is less then the
left hand side of (8.1). If |%| = 2, then E(G)= E(A)uv # is a subhypergraph
of a PG(2, q). If any line L of this plane is missing from G (this line L
contains p) then

z(x)__{(q_l)/(qz"‘Q“l) if xelL,
Ul +q-1) it x¢L

is a fractional cover of H with value ¢+ (g — 1)/(¢> + ¢ — 1), again contra-
dicting (8.1).

The only remaining case is when G contains a PG(2,q), so
*(H)=21t*(G)=q+ 1/(g+ 1), as desired.

9. PROOF OF THEOREM (6.1)

Let H, be the set of (¢ + 1)-clement edges of H. Suppose that (i) and (ii)
do not hold; then, by Theorem (2.2), we have

1

*H)<g— ——.
(Ho)<q q2+q_1

9.1)

Suppose that H is t*-critical, and let w:E(H)—> R™* be an optimal
fractional matching. Obviously t*(H) < g. (If every edge has at least g+ 1
elements then #(x)=1/(¢+ 1) is a fractional cover with |f| = ¢, and if there
is an edge with at most ¢ elements then t*(H)<t(H)<gq.)

Let t*(H) =g —¢, where ¢2>0; suppose ¢<1. Then every edge has at
least ¢ elements. Let E, be an edge of ¢ elements. Then

q= ), (Z W(E))>r*+(q—1)W(Eo)
implies

w(Ep)<e/(g—1)
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Thus
2
Y wE)<e L d (92)
IEI=¢ g-1
Then we have
(@ +q)—(g+ 1) t* =Y w(E)E| - (g+1) w(E)
> Y wE)- Y weE)
[El > g+ 1 |1El=¢q
This and (9.2) imply that
2
+
Y wE<(@+De+ T (9.3)
|El >q+1 q_l
Finally (9.2) and (9.3) imply that
2 _—
M EAHEL S B <ot (H) (9.4)
q—1 IEl =g +1

Then (9.1) and (9.4) yield that e > 1/(3(g + 1))

Note added in proof. Our main result (Theorem (5.1)) settles a conjecture of Todorov
[T89] for almost all n. However, as Proposition (4.10) shows, this conjecture does not hold
for every n.
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