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Abstract. Two almost explicit constructions are given satisfying the title. 

I. Preliminaries 

Let I-n] denote  the set of the first n positive integers, 2 tnl its power  set. Somet imes 
2 tni will be called the Boolean lattice and denoted by B.. The  collection of all 

k - s u b s e t s o f a s e t S i s d e n o t e d b y ( ~ ) . A f a m i l y L # = { L o , L 1  . . . . .  Lt} c 2t"l is called 

a chain if its members  contain each other, Lo ~ L1 c ... c Lt. Such a chain is 
maximal if t = n, in which case I Lil -- i for all i. The family cg = 2(nl is a cutset of the 
Boolean lattice if ff fq L~ ¢ O for all maximal  chains LP. A minimal cutset ~ is a 
cutset with the p roper ty  that  for every C ~ c~ some maximal  chain avoids i f \  {C}. 

Fo r  example  the whole k-th level of the Boolean lattice ( [ ~ ] )  is a minimal  cutset. 

But there are minimal  cutsets of  much  larger size, e.g. the following family 

(C c In]:  ICtG{1,2}I = 1} (1.1) 

has size 2 "-1. Deno te  the m a x i m u m  size of  a minimal  cutset of  B,  by c(n). Ko-Wei  
Lib asked whether  c(n) = 2 "-1 in general. 

c(n + 1) _> 2c(n). (1.2) 

(Indeed, if °K is a minimal  cutset of  B,  then f lU  {CO {n + 1}: C ~ c~} is a minimal  
cutset of  B.÷I.) The  inequali ty (1.2) implies that  there is a limit of the sequence 
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c(n)/2 ~ whenever n tends to infinity. This limit is at least 1/2 by (1.1). In [4] Ko-Wei 
Lih gives a construction for n = 6 due to I~1 = 33 > 2 ~-~. Ji-Fa Chern in which 
(Unfortunately, his example contained a misprint. To fix it, the set {1, 2, 4, 5, 6} 
should be replaced by {1, 2, 3, 5, 6}.) It is natural to ask whether the answer is 
asymptotic to 2 ~. In this note we give an almost explicit construction proving that 

lim c(n)/2n= 1. (1.3) 
n - ~ o o  

"Almost explicit" means that we will define a large cutset (of size (1 - o(1))2") and 
prove that by deleting only 0(2 n) members of it one can obtain a minimal cutset. 

2. An Almost Deterministic Construction 

Let k > 3 be an integer, and suppose that n is divisible by k. Let $1 U-.. S,/k be a 
partition of [n] into k-element parts. Define the family rg as follows. 

= {C c [n]: 0 < ISiN C[ < k for all Si} 

U {C c [n]: 3Si and Sj with ISi n CI = 0, ISj N CI = k}. 

We claim that ~ is a cutset. Indeed, i f ~  = Lo c L1 c ... L, is a maximal chain then 
define t as the largest integer such that L, is still disjoint from some S i. Then Lt+l 
intersects all S~. IfLt÷l does not contain any Sj, then it belongs to the first part of~. 
If Lt÷a contains some Sj, hen Lt belongs to the second part of ~. 

A member C of a cutset ff is essential if i f \  { C} is not cutset. Define 

(go = {C c [n]: 0 < [SiN CI < k for all S~ and 3Si, Sj 

with [SIN CI = 1 ,  IajncI  = k -  I}. 

We claim that every member of cg o is essential in cg. Indeed, if C e cg o with I S~ n C I = 1 
and ISjN CI = k -  1, then every maximal chain containing C\Si, C and CU Sj 
avoids cg\ {C}. Starting with an arbitrary cutset one can always obtain a minimal 
cutset by deleting the unnecessary members one by one. But we can never delete 
an essential set. So all minimal cutsets contained in cg contain fro. We have 

I%1 = (2 k - 2) "/k - 2(2 k - k - 2) "/k + (2 k - 2k - 2) "/k 

(( ( )) ( k + 2 2n 
> 2 "  1- -2k  ] - - 2  1 ~ > 2 "  1 ~ 2exp . (2.1) 

Here we used the inequalities (1 - x) r < e x p [ - x y ] ,  which holds for - ~  < x < 1 
a n d y > 0 ,  and 1 - x y < ( 1 - x )  r ,which holds for 0 < x < l  a n d y > l .  I f n  
2 k log k, (i.e., k --~ log n - log log log n) then the (2.1) gives the following. 

Corollary 2.1. For sufficiently large n 

c(n)> 2"(1 41oglog n ) . l o g  n 

We shall improve this result in Theorem 4.1. 
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3. Filters and Ideals 

A subfamily ~ of 2 t"l is called a filter if F ~ ~ and F c F' c In] imply F' e ~ .  
Starting with any subfamily 5 p c 2 t"l one can obtain a filter ~(Sg)  as follows. 
~ ' (5  p) = {V c [n]: 3S ~ 5 ~ such that  S c F}. ~ ( 5  a) is the filter induced by 5 e. 
A family ~¢ is called an ideal if I ~ 3" and I' c I imply I' ~ J as well. Fo r  an 
arbi t rary family 5e c 2 t"~ we associate an ideal J( . fe)  in the following way. ,¢(5e) = 
{I c [n]: 3S ~ 5e such that  I N S = ~}. J ( 5  e) is the ideal induced by 5 P. (Warning! 
This definition differs from the usual one.) In this way o~(Se) and J (Se)  consist of 
complementary  pairs, i.e. A ~ ~ ( ~ ) i f  and only if(I-n] \ A)E J (SQ.  

The neiohborhood N((#) of a family ff is defined as the family of those subsets in 
[n] whose Hamming  distance from ff is exactly 1, i.e. N(ff) = {N c [hi:  N ¢ ff and 
~G ~ ff such that  [NAG] = 1}. Note  that  ff fq N(ff) = ~.  The complement ff of the 
family ff is defined as ~ = 2t<kff. The following idea underlies the construct ion in 
Section 2. 

Observation 3.1. Suppose that J is an ideal and o ~ is a filter such that there are no 
two sets I ~ J \ o ~  and F ~ o ~ \ J  such that 

I c F and I f \ I [  -- 1. (3.1) 

Then c~ _=_ ( j  f? ~ )  U ( J  f-I ~ )  is a cutset. Moreover, all members of N ( J )  f'l S ( ~ )  are 
essential. [] 

If we use an arbi t rary family 5 e to induce an ideal and a filter, then we obtain 

Lemm a  3.2. I f  for every S and S' ~ 5 ~ one has IS n S'l ~ 1, then the ideal J ( ~ )  and 
the filter o~(SP) fulfill Observation 3.1. 

Proof. Indeed, i fF  ~ ~ ( 6 e ) k J ( 6  e) then there exists an S 1 ~ 5 a such that  $ I c  F and 
F intersects all members  of 5 e. Moreover  if I ~ J ( S e ) k ~ ( S e )  then there exists an 
$2 s 5 ~ such that  $2 fq I = ~ and 1 does not  contain any member  of 6 e. So in this 
case [F\II = 1 would imply $1 fq 52 = F \ I ,  a contradiction.  [ ]  

4. A Random Construction 

In view of Lemma 3.2, all that  we need in order  to construct  a large minimal cutset 
is to find a suitable family 6 a that has a filter i f ( 6  e) with a big neighborhood.  In 
this section we describe a random family 6 e satisfying 

TS fq S'[ ¢ 1, (4.1) 

such that  for some positive constant  c 

(logn)% 
]N(~(be))i  > 2" 1 -- c 7 j "  (4.2) 

Of  course, the same lower bound  holds for I N(J (Se) )  I as well, thus 
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/ (log n) 3/2'~ 
IN(~(6e)) fq N(~C(Se))I > 2"~1 - 

So Lemma 3.2 yields that ~' = ~ N ~ U ( d ( ~ ) R  ~ ( ~ ) )  is a cutset with a 
large number of essential sets. 

(log n)a/2, ~ 
Theorem 4.1. There exists a c > 0 such that c(n) > 2" 1 - c  3 -j" 

Proof. To find such a family 5 e our method is a modified version of what was used 
in and in I-1] and in I-3] to construct a small filter with large neighborhoods. Suppose 
that n is divisible by 8, and let B1 U ' "  B,/2 be a partition of the underlying set into 

pairs. L e t k b e a n i n t e g e r k , , ~ n .  ForeveryK~([n/k2])let,rbearandom 

variable with 

Prob(~x = 1) = (1000 l°g n)3/2 (nk/8)-i x//- ~ = P  

Prob(~ K = 0) = 1 - p. 

These random variables are to be chosen totally independently. Let 5 a be the 
random family defined by 

5a = { U i ~ r B i :  ix = 1}. 

of  course, satisfies (4.1). We next show that the expected size of N(W( ))is 
as large as it was given in (4.2). This implies the existence of a family Y with fulfils 
both (4.1) and (4.2), proving Theorem 4.1. 

Let N be an arbitrary but fixed member of 2 t"l. Denote the number of blocks Bi 
which are contained in N by n2, and let N2 = {i: Bi c N}. Similarly, let N~ = 
{i: Ini fq NI = 1}, and INll = n~. We give an exact formula for the probability that 

NbelongstoN('(Se)).NbelongstoN('(5~))ifandonlyif~K = 0for allK ~ ( k 2 )  

and Cr = 1 for some k-set Kwith IK\Nzl = 1 and (K\N2) ~ N1. Since the variables 
CK are independent, we obtain that 

Prob(N ~ N(~-(Se))) = (1 - p)("k2)(1 - (1 - p),,(k"-5)) 

>(1-p(nk2))(1-exp[-pn,(k~l)]) (4.3) 

Now suppose that N is a typical member of B,. More exactly, define the collection 
JV" of typical sets N by 

j f f = { N ~ 2 t " l :  n2(N)-- 8 < ~ a n d  nl(N)-  4 <0.1n}.  

Then the well-known de Moivre-Laplace formula (see, e.g. in [6, p. 151]) gives that 
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There exists some positive constant  c such that  for every typical set N, 

p(nk2 ) (lO001°gn)3/2 (nkz) < c (l°gn)3/2 (4.5) 

and 

Pnl k -  1 = x /~  n 2 - k +  l(n/k8 ~ > 2 1 ° g n "  (4.6) 

(Here we used the inequalities for (1 - x) y from Section 2.) Then  (4.5)and (4.6)imply 
the following lower bound  in (4.3). If N ~ X then 

P rob (N ~ N(~(S°) ) )  > 1 - c (l°gn)3/z ~ (4.7) 

Then  (4.4) and (4.7) give that  the expected size E(N(o~(Se))) fulfils (4.2). Hence there 
exists a family 6 e satisfying (4.2). [ ]  

5. Problems, Remarks 

It is a natural  question how close c(n) can be to 2". Obviously,  2 " - c ( n ) >  
2"/n. Kostocbka  [3] proved that  for every filter ~ one has 2 " - I N ( ~ ) ]  > 
0.011.2"(log n)3/2/,,/~. So the method  presented in this note cannot  give a better 
bound  than Theorem 4.1. 

Another  possible direction for the further research is to extend the investigation 
to other  (popular) posets. (Cf. [-2], [5], [7]). 
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