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It is shown that the shadow of a Sperner family can cover 10 percent of the Boolean algebra. 

Whether this can be improved to (100 - o(l))% remains open. 

1. Shadows of Sperner families 

Let [n] denote the set of the first n integers, 2tn1 its power set. The collection of 
all k-subsets of a set S is denoted by (z). Let 9 be a subfamily of 21n1. The 
neighborhood of 9, N(9), is defined as the family of sets in [n] whose Hamming 
distance is exactly 1 from 9, i.e. N(9) = {N c [n] :N $ 9 and there exists an 
FE 4such that JN n F( = l}. (If we identify the subsets of [n] with the vertices of 
the n-dimensional unit-cube, then N(9) is the usual neighborhood in the graph 
Qfl.) The shadow of 9, 39, consists of those members of N(9) which are 
covered by a member of 9, i.e. d9 = {S: S $9 and there exists an F E 9 such 
that S c F, IF\SJ = l}. 

The family 9 is a Sperner family if no two of its members contain each other. 
One of the oldest results in the theory of finite sets states that the size of the 
largest Sperner family is (L&J ) and the extremal family consists of all members of 
21”’ of size either [n/2] or [n/2] (Sperner [13]). The size of the shadow of such a 
family is again a binomial coefficient, so it is not more than (l&l). Engel [2] and 
independently Zuev [14] conjectured that there exists a positive real C such that 

1 a91 < c( J2) -=I C’ 5 (l-1) 

holds for every Sperner family 97 This was disproved by Kospanov [8] who 

* Research supported in part by Airforce Grant OSR-86-0076. 

**Research supported in part by NSF Grant MCS 83-01867, Airforce Grant OSR0271 and a 
Sloan Research Fellowship 

*** Research supported in part by NSF grant DMS 86-06225 and Airforce Grant OSR-86-0076. 

0012-365X/90/$03.50 0 1990- Elsevier Science Publishers B.V. (North-Holland) 



a8q ‘I? yens ~J!M dpq lawads e 30 a~~a~s!xa aq~ saydtu! s!q~_ (-9~ < u 3!) 
,z . 1.0 uleq~ lawal% sy 6 30 ~opeys ayl30 az!s papadxa ayl keys ~otjs lxau aM 

‘&ut?3 IauJads e s! & ‘lilsno!aqg ‘? > CS 1 ~J!M ([)x 30 SJaqruauI 
due U!~.IOCI $0~ op 1nq (?)x 30 JaquIauI e uguo:, q3gM slas iuaurala-1 + 1 + s 

asoy 30 li1p11e3 ayl s! !A alayM Z~ n . . . n 1~ = J se 6 4~1x1~3 aql auyap 

aM ‘@u!.4 ‘{f = “2 : (,:,) 3 _y} = (!);36 Lq pauyap @.ug umpuel aql aq (?)x $37 
.Lpuapuadapu! 1Clle~o~ uasoy3 aq 01 ale salqe!le,t uropue~ asaqL ‘I ‘ * . . ‘1 = 1 103 

d = (! = xz)qO.ld 

Q - I= (t-j = x$‘)qOJd 

‘3 = 

( > ’ 4 
I+s 

uogenba ayl6q d auyap 
put? (g.0 = 3 suogeln3Iw 8u!~ollo3 aq$ II!) leaI aay!sOd paxy e aq 3 $a? was-y 

30 (1)x ‘ . . . ‘(1)x say~tuq uropuel ~u!o[s!p auyap 01 8u!o8 ale aM *m((T)o 

+I)=? ‘la%alu! ue aq y lay .lensn se ‘kp Z,s~_a “;I T_(vz) = (x)@ alaH 

(T’Z) ‘,Z*“’ ozso((r>o + r> = ((F - )@ - (Qq uZ((TP + 1) = (1) 1xu 
S! 

aD!wI uealooH aql30 slaAal I alpp!w aql30 az!s aq) uaqL ‘s liq [z/(1 - u)] alouap 
pue ‘Zluh((l)o + 1) = 1 ‘Iai??aluy ue aq I Ia? .uado suywual punoq JE~!ILI~S B %~!a@ 
uorptwsuo3 )!3ydxa UIZ %u!puy 30 tualqold aqL euogDnqsuo:, uropw.~ e asn aM 

uo!plu~suor, uIoput?J aq& ‘Z 

‘MOUY ahi punoq laddn Jsaq aql s! y3!y~ 

‘uz ( ~ - 1 > lml 
&U %I > 

w.j$ sa!ldtu! [6] t?yy~olso~ 30 uIa.wyl V 

‘+ ~3 < Ise I xem 

1eq1 paMoqs 



Sphere coverings of the hypercube 131 

shadow. To prove this we show that every a-element set A belongs to dY with a 
probability at least 0.2 if s + 1 6 a ss + t and A c [n], and then we use (2.1). For 
a family 9 and a set A we use the notation $A for the induced subfamily, i.e. 
S”A = {F E 9: F c A}. Let X([i]) denote X(1) U e . . U X(i). 

Prob(A E aSi) 

2 Prob(X([i]), = 0)Prob(3x :A U {x} E Yi 1 X([i]), = 0) 

= Prob(X([i]), = 0)(1- Prob(Vx E [n]\A :A U {x} $ q ) X([i]), = 0)) 

= Prob(X([i]), = 0)(1- (Prob(A U {x} $ L$ ( X([i]), = 0))“-“) 

= Prob(X([i]), = 0)(1- (1 - Prob(A U {x} E $ 1 .X([i])A = 0))“-“) 

3 Prob(%([i]), =0)(1- exp[-Prob(A U {x} E Yi 1 X([i]), = 0)(n - a)]). (2.2) 

Here we used the inequality (1 - x) y C exp[-xy] which holds for all reals x c 1 
and y 2 0. We estimate separately the two probabilities in the last line of (2.2). 

Prob(%([i]), = 0) = (1 - ip)(k) 3 (1 - Q)(~F) = (l+o(l))exp[ -tp(“:‘)] 

= (1+ o(l))exp[-c]. (2.3) 
Moreover 

Prob(A U {x} E Si 1 X([i]), = 0) = (1 - (i - l)p)(“‘l’ - (1 - ip)(k”l) 

ap k” 1 (1 -ip)(k”l), 
( > 

Here the last factor is 1 - o(l), because 

(1 - ip)(k51) > 1 - ip (k”l)=l-~~(~)u_,“+~~~-u_~+l~ 
Moreover we have (see, e.g., in [lo, p. 1511) that 

ws:3 exp[-tk/s](l -o(l)). 

(2.4) 

(2.5) 

Applying this to (2.4), we obtain 

Prob(A U {x} E Si ( X([i]), = 0) >P(~ ” l)(l- o(1)) 

= 1-o(1) kp(l) ~,‘-,“~‘,kp(s~‘)exp[-l+o(l)] =(1+0(l)):. 
a-k+1 

Using this result in (2.2) we obtain 

Prob(A E aSi) a (1 - o(l))exp[-c]( 1 - exp[ - (n - a) i]) 

= (1 - o(l))exp[-c]( 1 - exp[ - $1) > 0.2003. . . . •I 

Remark. See also [9] for a similar, though simpler, construction. 
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3. The complexity of the Boolean functions 

The minimum number of conjunctions. Let f(x) be a Boolean function of n 
variables, f(xl, . . . , x,): (0, l}” + (0, l}. Let d(f) be the smallest integer d such 
that one can write f in a disjunctive normal form of d conjunctions, i.e. 
d(f)=:min{d:3K,** . Kd such that f(x) = K1 v * * - v K,}, where every term K 
has the form 

K=x”’ 
x ifs=l, 

I, . . f XT where xE = 
2 if&=-l. 

Korshunov [6] proved that there are positive reals c1 and ca such that 

2” 2” 
Cl log n log log n 

< d(f) < cz 
log n log log n (3.1) 

holds for almost all Boolean function f. Sapozhenko [12] gave a simple algorithm 
which provides a disjunctive normal form of length c2”/log n for almost all 
Boolean function. 

They also investigated the length of the longest irreducible normal form off. A 
disjunctive normal form of the Boolean function f is called irreducible if by 
removal of a conjunction or of a letter one obtains a disjunctive normal form 
which does not generate f. Let d,,(f) denote the maximum number of 
conjunctions among all irreducible disjunctive normal forms which generate f. 
Sapozhenzo [ll] proved that d,,,(f) - 2”-’ for almost all f. For a short proof 
see Korshunov [7]. 

Representations by systems of linear inequalities. In [l] and [5] Balas and 
Jeroslow introduced the following notion. Let Z be a subset of (0, l}“, i.e. a 
finite point set in R”. Then let I(Z) denote the minimum number of 1 of linear 
inequalities 

2 UiiXi s bi where i = 1, . . . , 1 (3.2) 

such that the set of all 0 - 1 solutions of (3.2) is exactly Z. If we identify the 
Boolean function f by its zero set, then this definition can be extended, i.e. let 
Z(f)=:{x:f(x)=O} and set l(f) =l(Z(f)). D enote by Q” the graph of the 
n-dimensional cube, i.e. the vertex set of Q” consists of all the (0, l)-vectors of 
length n, and two vectors X, y E (0, 1)” are adjacent if they differ from each other 
in exactly one component. For a graph % we denote the number of connected 
components by c(g). Let Z denote the complement of Z in (0, l}“. Then it is 
easy to see [5,4] that 

c(Q’z) < 1(Z) c 2”-l, 

and that [14] 

I(f)cd(f)- 
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An asymptotic formula, analogous to (3.1), is not known for r(f). It is possible, 
for example, that Z(f) = 1 while d(f) = (L&I). Z uev [14] proved that for almost 
all Boolean function f, r(f) 2 2”/n2 holds. 

Monotone Boolean function.~. A subset 2 c (0, 1)” is called monotone if x E Z 
and x my imply y E 2. A Boolean function Q, is monotone if Z(q) is monotone. 
Hammer, Ibaraki and Peled [4] proved that 

where ~1 runs over monotone functions. This was improved by Zuev [14] 

(3.3) 

(3.4) 

where N(n) denotes the maximum size of the neighborhood of a Sperner family 
in 21”‘. (Actually, his proof was not completely clear for the authors of this 
paper.) Then (3.4) implies that I(q) G (~2” log n)/n holds for all monotone q. He 
conjectures that the true order of the magnitude of maxp f(q) is given by the 
lower bound in (3.3). 
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