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It is shown that the shadow of a Sperner family can cover 10 percent of the Boolean algebra.
Whether this can be improved to (100 — 0(1))% remains open.

1. Shadows of Sperner families

Let [n] denote the set of the first n integers, 2" its power set. The collection of
all k-subsets of a set S is denoted by (§). Let & be a subfamily of 2\"!. The
neighborhood of %, N(%), is defined as the family of sets in [#n] whose Hamming
distance is exactly 1 from %, i.e. N(¥)={Nc[n]:N ¢ % and there exists an
F € % such that [N A F| =1}. (If we identify the subsets of [n] with the vertices of
the n-dimensional unit-cube, then N(%) is the usual neighborhood in the graph
Q") The shadow of %, 3%, consists of those members of N(%) which are
covered by a member of %, i.e. 3% ={5:5 ¢ ¥ and there exists an F € & such
that S ¢ F, |[F\S| =1}.

The family & is a Sperner family if no two of its members contain each other.
One of the oldest results in the theory of finite sets states that the size of the
largest Sperner family is (|,/»)) and the extremal family consists of all members of
2[" of size either [r/2] or [n/2] (Sperner [13]). The size of the shadow of such a
family is again a binomial coefficient, so it is not more than (},7;;). Engel [2] and
independently Zuev [14] conjectured that there exists a positive real C such that

n

n , 2
/2)<C W (1.1)

holds for every Sperner family %. This was disproved by Kospanov [8] who

10F| < C(
n
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showed that
max |0F| > cn 82",
Griggs [3] also constructed a family whose shadow was larger than log n(,)},). The

aim of this note is to prove

Theorem. There exists a Sperner family & over n elements such that |3¥|>0.1 - 2"
(for all n > ny,).

Conjecture. There exists a ¢ <1 such that |3S}\<c2" holds for every Sperner
family &.
A theorem of Kostochka [9] implies that

(lognﬁ) .
100Vn /*’

which is the best upper bound we know.

|asp|<(1—

2. The random construction

We use a random construction. The problem of finding an explicit construction
giving a similar bound remains open. Let ¢ be an integer, ¢t = (1 + 0(1))Vn/2, and
denote |(n —¢)/2] by s. Then the size of the middle ¢ levels of the Boolean lattice
is

s+t

A (Z) =1+ o(l))2"(¢<%) - (- %)) = (1 +0(1))0.520...-2". (2.1)

Here ®(x)=(Q2xn)}[*.edy, as usual. Let k be an integer, k= (1+
0(1))Vn/2. We are going to define disjoint random families (1), ..., %(t) of
k-sets. Let ¢ be a fixed positive real (in the following calculations ¢ = 0.75) and
define p by the equation

s+t
('} )=

For every K € (1)) let £ be a random variable with

Prob(Ex=0)=1—1p

Prob(§x =i)=p
fori=1,...,t These random variables are to be chosen totally independently.
Let %(i) be the random family defined by ¥(i) = {K € (14!): Ex = i}. Finally, we
define the family & as =% U---UT, where & is the family of those
s +i+ l-element sets which contain a member of #(i) but do not contain any
members of X(j) with 1 <j <i. Obviously, & is a Sperner family.

We next show that the expected size of the shadow of & is greater than 0.1 - 2"

(if n>n,.) This implies the existence of a Sperner family with such a large
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shadow. To prove this we show that every a-element set A belongs to 8 with a
probability at ieast 0.2 if s + 1<a <5+t and A c {n], and then we use (2.1). For
a family & and a set A we use the notation %, for the induced subfamily, i.e.
Fy={FeF:.FcA}. Let ¥([i]) denote X (1)U - - - U K().
Prob(A € 35))

= Prob(¥#([i])a =#)Prob(IAx:A U {x} € & | H([i])a =0)

= Prob(¥#([i])a = #)(1 — Prob(Vx e [n]\A: A U {x} ¢ &, | H([i]) 1 = 0))

= Prob(#([i]) = #)(1 — (Prob(A U {x} ¢ & | H([i])x = ))"*)

= Prob(%([i]) = #)(1 — (1 - Prob(A U {x} € % | #([il) = ))")

= Prob(#([i])a = 0)(1 — exp[—Prob(A U {x} € & | X([i)a = 0B)(n —a)]). (2.2)
Here we used the inequality (1 —x)” < exp[—xy] which holds for all reals x <1
and y = 0. We estimate separately the two probabilities in the last line of (2.2).

Prob(H([i])s =90) = (1 — ip)® = (1 — 1p) ) = (1 + 0(1))6"?[ — (S : t)]

= (1+ o(1))exp[~—c]. 2.3)
Moreover

Prob(A U {x} € S; | #([il)a =) = (1 = (i — 1)p)&= — (1 — ip)*™)

=p(, * Ja-pye. 2.4)

Here the last factor is 1 — o(1), because

NG = — a >= _,(a) k =1_ ck
(1 =ip)i0=1 ’p(k—l B AVY Py e Ry
Moreover we have (see, e.g., in [10, p. 151]) that
+t
(”) > (s )exp[—tk/s](l — o(1)). @.5)
k k
Applying this to (2.4), we obtain
Prob(A U (x) 5, | #(iDa =0 =p(, * J1-01)

1-0(1 1-0(1
“aeare() =iy ] et o= aror

Using this result in (2.2) we obtain
Prob(A € 35;) = (1 — o(l))exp[—c](l - exp[ —(n—a) 5])
S

2¢

=(1—- o(1))exp[—c](l - exp[ - ]) >0.2003.... O

e

Remark. See also [9] for a similar, though simpler, construction.
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3. The complexity of the Boolean functions

The minimum number of conjunctions. Let f(x) be a Boolean function of n
variables, f(xq, ..., x,): {0, 1}"— {0, 1}. Let d(f) be the smallest integer d such
that one can write f in a disjunctive normal form of d conjunctions, i.e.
d(f)=:min{d:3K, - - - K, such that f(x)=K; v - -- v K;}, where every term K
has the form

x ife=1,

K=x;...x7 wherex‘"‘={_ .
x ife=-1.

Korshunov [6] proved that there are positive reals ¢, and ¢, such that

2" 2"

_— <
@ lognloglogn a(f) @.1)

Sc lognloglogn
holds for almost all Boolean function f. Sapozhenko [12] gave a simple algorithm
which provides a disjunctive normal form of length ¢2"/logn for almost all
Boolean function.

They also investigated the length of the longest irreducible normal form of f. A
disjunctive normal form of the Boolean function f is called irreducible if by
removal of a conjunction or of a letter one obtains a disjunctive normal form
which does not generate f. Let d_.(f) denote the maximum number of
conjunctions among all irreducible disjunctive normal forms which generate f.
Sapozhenzo [11] proved that d,.(f) ~2""" for almost all f. For a short proof
see Korshunov [7].

Representations by systems of linear inequalities. In [1] and [5] Balas and
Jeroslow introduced the following notion. Let Z be a subset of {0, 1}", i.e. a
finite point set in R”. Then let I(Z) denote the minimum number of / of linear
inequalities

2 a;x;<b; wherei=1,...,1 (3.2)
=1

such that the set of all 0 — 1 solutions of (3.2) is exactly Z. If we identify the
Boolean function f by its zero set, then this definition can be extended, i.e. let
Z(f)=:{x:f(x)=0} and set I(f)=1(Z(f)). Denote by Q" the graph of the
n-dimensional cube, i.e. the vertex set of Q" consists of all the (0, 1)-vectors of
length n, and two vectors x, y € {0, 1}” are adjacent if they differ from each other
in exactly one component. For a graph % we denote the number of connected
components by c(%). Let Z denote the complement of Z in {0, 1}". Then it is
easy to see {5, 4] that

QP <sl(Z)y=s2"1,
and that [14]
I(f)=d(f).



Sphere coverings of the hypercube 133

An asymptotic formula, analogous to (3.1), is not known for /(f). It is possible,
for example, that I(f) =1 while d(f) = (|.}2}). Zuev [14] proved that for almost
all Boolean function f, /(f)=2"/n? holds.

Monotone Boolean functions. A subset Z = {0, 1}" is called monotone if x € Z
and x <y imply y € Z. A Boolean function @ is monotone if Z() is monotone.
Hammer, Ibaraki and Peled [4] proved that

) =msx1@= (7))
- = max/ = s 3.3
n\|n/2] ? 2 |n/2] G-3)
where @ runs over monotone functions. This was improved by Zuev [14]
1+1
) <Nm)— 2= +1, (3.4)

where N(n) denotes the maximum size of the neighborhood of a Sperner family
in 2", (Actually, his proof was not completely clear for the authors of this
paper.) Then (3.4) implies that {(¢) < (c2" log n)/n holds for all monotone ¢. He
conjectures that the true order of the magnitude of max, /(¢) is given by the
lower bound in (3.3).
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