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SHADOWS OF COLORED COMPLEXES*

PETER FRANKL, ZOLTAN FUREDI, and GIL KALAT**
Abstract.

Let .# be a family of k-subsets of a set V. The shadow of #, AF is defined by
AF ={Sc V:|S|=k—-1,Sc TeF}.

The well-known Kruskal-Katona Theorem determines the minimum cardinality of 4.# as a
function of the cardinality of #. A family % is r-colored if there is a partition of V.
V=V, uV,u...uV such that for every Se# and every 1 ZiZr, |V, NS Z1. The
minimum size of the shadow of an r-colored family of k-sets .#, |#| = m is determined. These
results generalize the Kruskal-Katona Theorem, and imply (combined with known results) a
complete description of f-vectors of completely balanced Cohen-Macaulay complexes.

1. Introduction.

Let V be a set. Denote by (}) the set of k-subsets of V. A family
F < (¥) is r-colored if there exists a partition V =V, u...uV, of V
(Vi.....V, are pairwise disjoint), such that for every Ae #, |[A n V]| = 1.
i =1,2,....r. For a family # < (}), the shadow of .#, A7 is defined by

AMF) = {Re(kf l):R c Sef}.

More generally for 1 =1 = k—1 the [-shadow of .7 is

A,(.F):{Re(lg R c Se.#‘}.

The well-known Kruskal-Katona Theorem [5], [4] gives a sharp lower bound
for the size of the shadow of a family .# < (}). | #| = m. In this paper we
extend this result to r-colored familes.
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As in the case of the Kruskal-Katona Theorem the extremal families are
certain lexicographically initial families, and the rather complicated expressions
below become natural when the structure of those families is studied.

For integers n,k,r,n 2 k, r 2 k > 0 define a = |n/r}, r, = n—ra. Note that
0Zr, <r.

Let X,,..., X, be pairwise disjoint sets, |X;] =a+1 for 1 =i =r, and
X =aforr, <iZr.

Define the complete r-colored k-graph . (n, k,r) by

H(nkry={F:|Fl=k [FnX]|SLi=1,..,r.

Define also (}), = |.#'(n, k, r)|. Note that (}), = () holds for n = r. In general,

n\ & (r\(r—n e
(L.1) (k)r—jgo(j>(k_j>(a+l)’u J,

LemMA 1.1. Let r 2 k be positive integers. Every positive integer m can be
written uniquely in the form

o ™ gy s
“2) m_<k)r+(k_1>r—l+‘“+(k_s>r—s’

wheren, >n,_,>...>n_,2k—s>0.

Given this representation of m define

ar = nk nh-s
(1.3) cilm) (k—l),+“'+(k—s—l>,_;

For | £1 £ k—1 define similarly

Chulm) = ("f) +. 4+ (7:) ,

where (§) = 1, and (?) = 0 for ¢ < 0.
THEOREM 1.2. Let .7 < ({) be an r-colored family, | #| = m. Then
(i)
(1.4) 47| 2 ¢i(m).
(i) |47 2 Chp(m).
Moreover, these bounds are sharp.

Note that part (ii) of Theorem 1.2 is obtained by repeated applications of
part (i).
In Section 2 we study the lexicographic ordering for colored sets. An example
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of an r-colored family for which (1.4) holds with equality is provided by an
initial family of sets with respect to this ordering. The proof of the theorem is
given in Sections 3 and 4.

Some related results are considered in Section 5.

Let us mention that Theorem 1.2 combined with results of [7] and [1]

gives a characterization of f-vectors of completely balanced Cohen-Macaulay
complexes.

2. The lexicographic ordering for multi-colored sets.

For an integer n = 1 define [n] = {1,...,n}. Let r 2 k 2 1 be fixed integers.
Let N be the set of positive integers. For 1 £ i < r set

I

N; = {neN:n = i(modr)].

For an integer neN define 7 to be its residue modulo r, that is 7 =i if
and only if neN; holds.

For a set F < N define its projection F = {f;f eF].

Let us define next the main object of our study, the set of all r-colored
k-sets, .# (k,r):

Mk, r)= (l;:) = {Fe(llj) (|[F AN, £ 1 for all i}.

Equivalently, F e (}) is in (%), if and only if |F| = k.

The lexicographic order on (}) is defined by F < G iff max{i:ie F—G} <
< max{j:jeG—F).

We consider the restriction of this order to (',f ),. It is clearly a linear order

and e.g. setting
(V) -(V)n ()
(V)]-G).

and these are the first (), sets in the restricted linear order.
In general, for arbitrary m = 1 let .#(m,k,r) denote the first m sets in
#(k,r). When it causes no confusion we write simply . (m).

one has

ProoF oF Lemma 1.1. For k=1, m = () = (7), gives the unique re-
presentation.
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Apply induction on k and suppose that for k' < k the lemma is verified.

Let us consider .#(m) = .#(m,k,r). Let n be the largest integer such that
F(m) > ([,:']), holds. In case of equality m = (}), gives the desired repre-
sentation.

Now every member of .#(m)— ([,'('] )» contains n+ 1. Define

F*={F—{n+1:n+1eFef(m).

Now .#* is a collection of (r—1)-colored (k—1)-subsets of N—Nz.
By the induction assumption we obtain a unique representation :

¥ — o [M) [ LEN
I‘ﬂ l " (k),. (k_l)r—l++ (k—s>r—s.

Setting n, = n we obtain the desired representation, because

n + n _(n+1
k r k_'l r—1 - k r
implies n > n,_,.

The uniqueness follows by induction from

ny (n—1 _— n—k+1 1
k r—— k—1 r—1 1 r—h-1 '

i.e., there could be no representation with n, < n.
PROPOSITION 2.1. A.# (m) is an initial set of M (k — 1,r) and |A.% (m,k,r)| = Oi(m).

The easy proof is left for the reader.

3. Shifting.

Suppose that we have a family .# < (': ),. Eventualy we want to show that
replacing .# by a lexicographically initial set of (': ), of the same
size, the shadow does not increase. As in many of the proofs of the
Kruskal-Katona theorem the first (and easy) step is to replace .# by an initial
set of .#(k,r) with respect to some weaker partial order. Define <, on
Mk,r) as follows: For S, Te.#(k.r), S=lay....qy}, T = b,....b),
ap <...<ayand by <...<b set S<, T if q;<bh, forevery | SiZk A
family .# < . #(k,r) is shifted if whenever Te.7 and § <, T. Se./#(k,r) then
Se. 7.

PROPOSITION 3.1. Let .# < .4/ (k,r). There exists a shifted fumily .7 * such that
| #F* = |F| and |A.7*| £ |A7|.

Proor. The proof is standard cf. e.g.. Katona [3].
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4. Proof of the main theorem.

In the previous section we reduced Theorem 1.2 to the case of shifted
colored families. In order to apply successfully an induction argument we
need to extend the statement of the theorem in a somewhat technical way.

We need a few further definition.

For G < N let s(G) denote the smallest element of G.
Forr — k + 1z j z 0 let us define the family

NY .
M) = Mk, r, )= {Ge<k> 4G A [s(G)] £ s(G)—j},

in other words, there are at least j numbers i, 1 £i < s(G) such that
GNN;=.
Note that

M(0) = (:l) and . A(r—k+1)= {Ge(':) G n[r]= ¢}.

Note also that for G e .#(j) always G n[j] = ¢ holds.

Call a family # < .#(j) shifted if Fe # and G <, F imply Ge # for all
F,Ge . #()).

Similarly, let #(m,k,r, j) denote the smallest m sets in .#(j) in the
lexicographic order.

In view of Proposition 3.1 the next result implies Theorem 1.2 (with j = 0).

THeOREM 4.1. Let k,r, j be fixed integers,r Z k > 0, r—k 2 j 2 0. Suppose
that & < M (k,r, j) is a shifted family, |#| = m. Then

@4.1) |A(F)| 2 14(F (m, k,r, j))
holds.

ProoF. The case m = 1 is trivial. We apply induction on m. We will consider
several families derived from & and £ (m, k,r,j), and compare their sizes using
the induction hypothesis. For convenience set . = #(m,k,r, j).

We make the following definitions:

For1 =ik,

Fi={SeF:j+ieS.Sn[j+i] =i}
For Se % set

K(@S) = {j+i:SeF%.
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(Thus, |K(S)| = |{i:Se F}|.) For 0 < | < k define:
F(l)y={SeF |K©S) =1].
For Se # define § = S\K(S) and define
F()={S:SeF()).

Define .#%, .#(l), and .#(l) in the same way.
The following lemma is crucial for the proof.

CLaim 4.2
() 14F| =Y IF ().
(i) AF() S F(+1).

PROOF. (i) For Se #' let R(S) = S — {i + j}. R(S)e A% and we will show
that every set in A% can be expressed uniquely as RYS) for some
1 £i £ kand some Se #'. This gives

k
4= Y |F1= 2 IF Dl
i=1 1z1

Note that if Se .#(k,r,j) and R< S, |IR| =k—1 then Re.#(k—1,r, ).
Suppose that Re A%. Put R, = [r]\R. It remains to show that there is a
unique x, x € R, such that [R n[x]| = x—j—1,and S, = R U {x} € #. (Then
S,€ #*79). The uniqueness is clear: the ath element x, in R, satisfies
IR n [x,]l = x,—a, therefore we must choose x = x;, ;. In order to show that
S.e % we will show that S, is the unique minimal set, with respect to the
partial order <,, which contains R and belongs to .#(k,r, j). Indeed, let
ToR, |T|=k Let y=T\R. If y<x then since Te.#(k,r,j), y>r,
T>,S.1fy2xthenclearly T 2,8,.

(ii)) Let Se #(I), K = K(S) and ae S\K. Put R = $\a. We have to find
b such that T =R u {b} e #(I+1). Consider R, and let x be the (j+ 1)th
element in R.. As in part (i), it is easy to see that T = R U {x} is the unique
minimal (with respect to =,) set in .#(k,r, j) containing R and that
TeF(+1)

ProoF OF THEOREM 4.1. (continued). Next, we consider .#(l), | 2 0. For
Se #(k,r, j) denote by S* the successor of S in #(k, r, j) with respect to the

order <. Define for an integer i = 0, $” = S and S = (S~ V)*. We need the
following:

Camim 43. If Se #(l),1 2 1, then St e £ (I-1).
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PROOF. Let S € .#(l), a = max K(S). Let us define
b=min{xeN,x > a, 3¢S — {a}}.
Then S* = S\{a} U {b}, K(S*) = K(S)\{a}, and thus S* e #(I—1).

Now consider .#(l), | 20. By Claim 4.2, A#()<S #(+1) holds. If
R = (S\K(S))e.#(I+1), then R = (S* \K(S*)). Let S be the last set in .¥
and suppose that Se.#(ly). Then A#(I—1) = .#(l) holds for all | except | = I,.
Define

It =g UV IS

Then £*(I) = #()for | 2 Iy and |#*(I)] = |#(l)|+ 1 when 0 £ | < I,. Clearly
AZH ()= F*(I+1) for every | 2 0.

We want to compare .#(I) and #(I). Note that .# (/) may be regarded as
a shifted family in #(k —1I,r, j+ 1), so we may apply the induction hypothesis
to ().

We are ready for the heart of the proof of Theorem 4.1. By Claim 4.2 (i)
we have to show that

.1) YuFOz Y 120

Iz1 Izl
CLamm 4.4. | F(0)] = |.£(0)).
PRrROOF. Assume on the contrary that |#(0)] > |.#(0)].

Casgl. £ =47, then AF) = F(I + 1) or every | = 0. But Claim 4.2 (ii)
asserts that AZ(I) S F(I+1) for every I 2 0. Therefore by the induction
hypothesis of Theorem 4.1 |.#(I)] 2 | (). So

5 70| 2

Y ()

121 21

and

IZO)=m— 3 |FDI=m— Y £ =|SO).

1z1 121
A contradiction.

Cast II. # # #*. Then |£1(0) = I.:Q'(O)l + 1 From |#(0)] = |.# *(0) we get
by the same argument as above that |#(l)| = |.# * (})] for every | and

YIFOIZ Y ETOI> L .

Iz1 lz1 lz1

A contradiction.
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PROOF OF THEOREM 4.1. (end). Claim 4.4. says that

4.2) YIFOz Y 1S

121 121
In order to prove (4.1) it is enough to show that for every r = 1
(4.3) Y IFOIZ Y 1F.

lzr I2r

It is enough to show that if |# (x)| > |#(«)| then |#(B) = |#(B)l for every
B > o. Indeed, if |#(a) > |.#(«)| then |# (a)| 2 |.# *(a)| and thus by Claim
4.2(i1)) and the induction hypothesis we get (exactly as in the proof of
Claim 4.4)

\F(B) 2 15+ (B) 2 £ (B)

for every f > a. This proves (4.3) for every r 2 1, and with it completes the
proof of Theorem 4.1.

Let us mention that Theorem 4.1 generalizes the Kruskal-Katona Theorem.
Indeed, for # < (§)), # < (1)), holds for r = n. Also, #(|#, k, r) consists simply
of the lexicographically smallest |#| sets in (). Then Theorem 4.1 asserts
[0F| = |0.#(|F|)|, which is exactly the Kruskal-Katona Theorem.

Another important special case of Theorem 4.1 is when k = r. This could be
called the Kruskal-Katona Theorem for k-partite k-graphs.

5. A numerical version.

The binomial coefficient (§) can be defined by

x\ _ x(x—=1)...(x—k+1)
k)~ k!

for all real numbers x.

Lovasz [6, Problem 13.31] proved that if # < (',f), |#| = (§), x 2 k then
|0, %| 2 (}) holds for all 1 £ | = k.

The next result gives the corresponding statement for multicolored families.

TuroREM S.1. Suppose that F <= (}), and x 2 0 is defined by |F| = ()x*.
Then for all 1 =1 = k one has

(5.1) 10,7 2 C) X

Note that for integer values of x, (5.1) is best possible.
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PRrOOF. For A€ () define # , = {FeZ : F = A}. For Be(%)),(0,% ) s defined
similarly. The following should be clear

IZ] = Y17l

I&,,?l = Z |(al57')3|,
B
(01 F4)p < (O1F ).
Using these relations we infer
r—I _ .
(5.2) <k——l> 10.7] 2 Z 10U(F 2.
A e([i})

Suppose now that (5.1) is proved for r =k Define x(4)=0 by
|Z,4 = x(A). Using (5.1) for #, and substituting into (5.2) gives

("’)m,f\;(k) Y x(A).
k—1 I
Ae([;])

Note that y”* is a concave function and x(4)' = | F(A4)|"*.
Applying the Jensen inequality to the RHS, we obtain

(o= ()

which is equivalent to (5.1).
It remains to prove (5.1) for r = k.
In this case we may apply an inequality due to Shearer (cf. [2]) which states

K\\@
17150 = 1 I(alf)slé(Zlazf)al/<,>> .

BE(”{‘)

Using |#| = x* and taking the (1/(}))th power of the two extreme sides we

obtain
k
x' < Iazfl/<l>,

as desired.
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