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A family of mutually intersecting k-sets is called a k-clique. A k-clique is maximal 
if it is not contained in any larger k-clique. Using a classification result of Wettl we 
give a new upper bound for m(k), the minimum number of members of a maximal 
k-clique, proving m(k)< k2/2+5k+o(k) whenever k- 1 is a prime power. The 
proof is based on finite geometric results which are thought to be of independent 
interest. 0 1989 Academic Press, Inc. 

1. PRELIMINARIES ON MAXIMAL CLIQUES 

Let k be a positive integer. A k-clique (or intersecting family of rank k) is 
a collection of pairwise nondisjoint k-sets. A k-clique is maximal if it cannot 
be extended to another k-clique by adding a new k-set (and possible new 
elements). 

A set B is called a blocking set of the hypergraph 9 if Bn F# 0 for 
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every FE 9. Clearly if P is a k-clique then every superset of any FE Y is a 
blocking set, so we say a blocking set is nontrivial if it contains no member 
of 9. Thus a k-clique is maximal if and only if it contains no nontrivial 
blocking set of k or fewer elements. For example, the following 
hypergraphs are maximal k-cliques : 

all the k-subsets of a given (2k - 1 )-element set, (1.1) 

the system of lines of a finite projective plane of order k - 1. (1.2) 

Denote by m(k) the minimum size of a maximal k-clique. Erdos and 
Lo&z [lo] have given bounds for m(k), proving in particular that 
m(k) > $k - 3. This was improved by Dow, Drake, Fiiredi, and Larson [4] 
to 

m(k) 3 3k for ka4. (1.3) 

J.-C. Meyer [16] observed that m(1) = 1, m(2) = 3, and m(3) = 7. That 
m(4) = 12 follows from (1.3) and the fact, proved in [ 111, that 

m(k) d $k* whenever k is even and a projective plane of order 
k/2 exists. (1.4) 

For k > 4 the value of m(k) remains open. 
The determination of m(k) is one of a number of questions concerning 

minimum cardinality families which are maximal with respect to various 
restrictions. This type of problem was raised by Erdiis and Kleitman [9], 
and there has been little progress in these investigations. It was conjectured 
by Meyer [17] and Erdiis [7] that m(k) ZZ k*- k+ 1 (the bound being 
attained by (1.2) where k - 1 is a prime power). This was disproved in 
[11] (see (1.4) above), but it is still true that known constructions depend 
heavily on projective and alline geometries. There are at present just 
two other known classes of k-cliques of size less than k*. These give the 
following upper bounds : 

rrr(q”+q”~‘)~q*“+q*n-l+q*n~* (1.5) 

obtained from any n-uniform projective Hjelmslev plane of order y (Babai 
and Fiiredi [ 111 for n = 2, Drake and Sane [6] for all n): 

m(k) <$k* + Sk - 1 if k- 1 is an odd prime power, k> 8 
(Blokhuis [ 11). (1.6) 

The construction giving (1.6) was the first counterexample to the conjec- 
ture of [ 111 that any maximal k-clique 9 satisfies 191 2 1 lJ 91. Using an 
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idea of Drake [S], Blokhuis [ 1 J recently gave an ingenious inductive proof 
of 

m(k) < k5 for every k. (1.7) 

It seems reasonable to conjecture that at least m(k)/k + co (k -+ CO). 
(ErdBs [S, problem I.31 offers $500 for resolution of a somewhat stronger 
conjecture.) 

In this paper we show 

THEOREM 1.8. If k - 1 is a prime power then m(k) ,< k2/2 + 5k + o(k). 

(Actually we give the proof only for q = - 1 (mod 6), but the other cases 
are similar.) The proof, given in Section 4, is based on a result 
(Theorem 2.5) which is thought to be of independent interest. In particular 
it is shown (Corollary 2.6) that if B is a set of q + 1 points meeting all lines 
meeting a conic C of the Galois plane PG(2, q), then the points B\C-are 
collinear. 

2. MINIMAL COVERINGS OF THE SET OF LINES MEETING A CONIC 

Let (9, 9) be the hypergraph formed by the points and lines of the 
Galois plane PG(2, q). We write L(x, y) for the line spanned by (distinct) 
points x, y, and P(L, M) for the point of intersection of the lines L, M. 

Let Cc 9 be a proper conic, and define 

U(C)= {LE~:LnC#@}, 

the set of secants and tangents of C. Thus 

lU(C)l= “; l ( > +q+l (2.1) 

The following result was proved by Bruen and Thas [3] for q even and by 
Korchmaros and Segre [ 151 for all q : 

If B is a subset of S\C of size at most q + 1 meeting all lines of 
Y(C), then B is an exterior line of C. (2.2) 

(The hypotheses immediately give (B( = q + 1 and IB n LI = 1 for each 
L E 9(C).) In this section we generalize (2.2), describing all the minimal 
blocking sets of Z(C). For another nice generalization of (2.2) see [2]. 

We are interested in blocking sets of size q + 1 (the obvious lower 
bound) of the hypergraph U(C). Let us denote by 99(C) the collection of 
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such blocking sets which are not equal to C and are not lines of 9. For 
example, it is an easy exercise to verify 

PROPOSITION 2.3. Zf B E S?(C) satisfies 1 B\Cj < 3, then one of the follow- 
ing holds: 

(4 B= C\b> u (Y> with x E C and y E L,\(x), where L, denotes 
the tangent at x; 

(b) B=C\{u,u}u{w,x} with U,UEC, w~L(u,u)\(u,u} and 
x = P(L,, L,), where L, and L, are the tangents at u and v. 

(c) B=C\{uI,u2, ug) u {x1,x2,x3}, where u,eC and xi is the 
intersection of the tangent at ui and the secant spanned by ui+ 1, uifl 
(subscripts mod 3). 

Before giving a complete description of a(C) we recall a few geometric 
facts. Let L E 9 and let cr, . . . . c, be the points of C\L, I,, . . . . 1, the points 
of L\C (m E (q - 1, q, q + l}) indexed so that li lies on L(c,, ci). (As usual 
L(c, c) is the tangent at c E C.) If we multiply subscripts by the rule 

xy=z if 1, lies on L(c,, c,), 

then the set { 1, . . . . m} becomes an Abelian group (a consequence of 
Pascal’s theorem), which we denote G(L, cl). It was shown by 
Korchmiros [ 13,141 that G(L, cl) is cyclic if m E {q - 1, q + 1) and 
elementary Abelian if m = q. 

EXAMPLE 2.4. Let N be a coset of a subgroup of G(L, c, ), and let B be 
obtained by deleting from C the points of C\L corresponding to N and 
adding the points of L\C corresponding to N. N. Then 1 B( = q + 1 (since 
IN.Nl= INI) and so Beg(C). 

Notice that Example 2.4 includes the examples in Proposition 2.3. It is 
also easy to see that replacing c1 by ci gives the same examples since the 
system of cosets does not change. Our main geometric result is 

THEOREM 2.5. The only sets in W(C) are those given by Example 2.4. 

The proof of Theorem 2.5 depends mainly on establishing 

LEMMA 2.6. Zf BE 9?(C) then the points of B\C are collinear. 

We remark that Theorem 2.5 is closely related to results of Wettl [ 193 
and Bzdnyi and Wettl [ 181. They described the (q + 1)-element sets Q with 
the property that for some line L, Q\L is an arc (i.e., contains no three 
collinear points) and every line containing 2 points from Q\L avoids L\Q. 
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3. PROOF OF THEOREM 2.5 

We begin with a lemma of Korchmiros and Segre [15]. 

LEMMA 3.1. Suppose a, b, c are noncollinear points of PG(2, q) and D is 
a set of q + 1 points disjoint from {a, b, c} but meeting every line which 
meets (a, b, c}. Then the points Dn L(a, b), Dn L(a, c), and Dn L(b, c) 
are collinear. 

Let a, 6, c be collinear points disjoint from C and suppose that pa, pb, p< 
are points of the conic C such that each of {a, pb, pc}, (p,, b, p,}, 
{ pu, pb, c} is a collinear triple. Then the triangle { p,, pb, p,} is said to be 
associated with the triple {a, 6, c}. 

LEMMA 3.2 (folklore; see [ 151). The number of triangles associated with 
a collinear triple spanning a line 1 is at most 

1. 

2. 

ifq is even and 1 is not a tangent or 
q is odd and 1 is a tangent 

otherwise. 

Let BE B(C) and denote C\B by K, B/C by W, and IK) = ) WI by k. 
We first prove Lemma 2.6, after which Theorem 2.5 follows easily. Of 

course we may suppose k Z 3. Consider the following 2-design a on W: 

a= {Ln w: Ln wa2, LE9}. 

Our aim is to prove that a is a trivial design, i.e., 9 = ( W}. Clearly, 

La (‘i’)=(i), (3.3) 

CLAIM 3.4. CAEa (1fl)2$(i). 

Proof Indeed by Lemma 3.1 every triangle (a, b, c} s K is associated 
with a collinear triple of W. So by Lemma 3.2 the number of collinear 
triples in W is at least f(f;). On the other hand, the number of collinear 
triples in W is exactly x(Ii’). 1 

This immediately gives Lemma 2.6 if k = 3 or 4, so from now on we 
suppose that k 2 5. Suppose for Claims 3.5 and 3.7 that q is odd. 

CLAIM 3.5. For all A E 6Z we have 1 AJ 2 3. 
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Our main tool in the proof of Claim 3.5 is the fact: 

If LET, LnC={a,b}, LnK#Q, and Ln WfO, then 
{a,b}~K. (3.6) 

For if c1 E K, e.g., then each line through a carries just one point of B, and 
since Bn L contains a point of W it cannot also contain b. 

Proof of 3.5. Let p, qE W. Since k 2 5 there is some aE K such that 
both L=L(p,a) and L’=L(q,a) are secants of C. Set LnC={a,b}, 
L’ n C = {a, c}. By (3.6), b, c E K and applying Lemma 3.1 (with D = B) we 
find that L(b, c) n W is a third point of the block A of a containing 
P9 4. I 

CLAIM 3.7. There is an A, E c?Z with lAoI 3 $k + 1. 

Proof: Indeed with d=max{lAI:AEa} we have 

(the last equality by (3.3)), and the claim follows. 1 

Claims 3.5 and 3.7 quickly imply 2.6. For if A, is as in Claim 3.7 and 
PE W\A,, then the lines joining p to A0 contain at least 

1+2/A,/ >k 

points of W, a contradiction. 1 

For q even a similar argument shows that the points of W are collinear 
with the possible exception of the core (say r) of C. But in this exceptional 
case Lemma 3.2 demands at least (i) triples from the k - 1 points of 
W\{ t}, which is impossible. So again W is collinear. 

Proof of Theorem 2.5. We may suppose k > 2. Denote the line contain- 
ing W by L. We work in the group G = G(L, c,), where cr is some point of 
C\L. Denote by R and ti the subsets of G corresponding to K and W. By 
the definitions of B, K, W we have R. i E I&‘, whence 1 R. RI = ItI implying 
that iz is a coset of some subgroup of G. 1 

4. A MAXIMAL k-CLIQUE FROM .4?(C) 

For q a prime power, q + 1 - 0 (mod 6), let C be a proper conic of 
PG(2, q), L an exterior line, and c0 an arbitrary point of C. Let H be the 
6-element subgroup of the (cyclic) group G(L, cO) and denote by K and W 



AFFINEREGULARPOLYGONS 7 

the subsets of C and L corresponding to H. Then B = (C\K) u W is in 
S??(C). Set 

F=Y(C)u (L’EY: L’n W#d}u (B’E~(C): WGB’}. 

THEOREM 4.1. 9 is a maximal (q + 1 )-clique with 

\~;1<~(q+1)*+4(q+l). 

Proof: Clearly 9 is intersecting. It is also easy to see that no line not in 
B is a blocking set of 8, so the maximality of 9 follows from 

PROPOSITION 4.2. If B’ is a nontrivial (q + l)-point blocking set of 

Fo:=.2’(C)u {LET’: Ln W#@}u (B}, 

then WE B’E~#(C). 

Proof That B’ E ?8( C) follows from Y(C) E 9$. Set B’ = (C\K’) u W’ 
with IK’I = 1 W’I = k and suppose by way of contradiction that there exists 
XE W\W. 

Set L’ = L( W’). We must have L’ # L, since otherwise any exterior line 
through x avoids B’. Thus 

(WnL’(<l. (4.3) 

We will show 

lK\K’I d 2. (4.4) 

For suppose (a, 6, c} c Kn B’. Since L’ #L, one of the lines L(a, b), 
L(4 cl, L(b, c) (say L(a, 6)) does not contain p(L, L’). Let 
L(a, b) n W = { r }. Then y E W\ B’ implies that every line through y con- 
tains exactly one point of B’, a contradiction since L(a, b) contains two 
such points. This proves (4.4). 

By (4.3) some tangent to C at a point of K meets W in a point w  4 L’. 
Then w  is on 4 lines which meet C only in K, at least 2 of which avoid 
K/K’ (by (4.4)). These two lines, together with the (q- 1)/2 exterior lines 
through w, must be met by W’, whence 1 W’I > (q+ 1)/2. It follows that 
W’ = L’ = B’, contradicting the assumption that B’ is nontrivial. This 
proves Proposition 4.2. 1 

It remains to prove the upper bound on (81. As noted in (2.1) we have 

Imc)l= (“i’). (4.5) 
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Since at least 3 of the 6 points of W are exterior points (all 6 if 4 1 q + 1 ), 

I{Le-!T\2Z(C):Ln W#d}lG3q-5. (4.6) 

To bound the size of {B’ E g(C): WC B’} note that for any such B’, 
B’\C= W’ corresponds to a (proper) subgroup of G(L, q,) containing H. 
The number of such subgroups is the number of proper divisors of 
(q + 1)/6 and so is less than 2d+1)/6 - 1. The assertion 

~{B’E~$I(C): WcB’}l <4Jm-2 (4.7) 

thus follows from 

PROPOSITION 4.8. For any B’ E g( C) there is at most one B” E S?(C)\ 
{B’} for which B”\C = B’\C. 

Proof. Let B’\C= W’. It is clear that the complements of any two B” 
satisfying B”\C= W’ are disjoint inside C, since for such a B” and any 
c E C\B” we have 

u {L(c, d): de W’} 

But since all tangents to C at points outside such a B” meet W’, at most 
2) W’I points of C lie in C\B” for some B”, so the proposition is 
proved. 1 

Finally, the desired bound on [%I follows from (4.5)-(4.7) and the proof 
of Theorem 4.1 is complete. 1 

Similar constructions can be given for the remaining values of q. (Briefly : 
for q = 1 (mod 6) we may take L a secant and IH( = 6; for q = 2’ we may 
take L a tangent and 1 HI = 4; the linear term in the bound of Theorem 1.8 
derives from the cases q = 3k, where for some values of k we must take IH( 
as large as 9.) 
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