
JOURNAL OF COMBINATORIAL THEORY, Series A 52, 129-147 (1989) 

Extremal Problems Whose Solutions Are 
the Blowups of the Small Witt-Designs 

P. FRANKL 

CNRS, Paris, France 

AND 

Z. F~~REDI 

MIT, Cambridge, Massachusetts, 02139* 

Communicated by the Managing Editors 

Received April 28, 1987 

Let f(k, n, .?Y) denote the maximum of 191, where f  t ((r~/‘)) and there are no 
F,,F,,Fj~g with IF,nF,I=k-1, F,dF, c Fj. The function f(k, n, Z) was 
determined for k = 2 by Mantel, for k = 3 by Bollobas and for k = 4 by Sidorenko. 
Here we determine it for k = $6 and n > no. Moreover, we show that the only 
optimal families, i.e., 191 =f(k, n, Z) arise from the unique (11, $4) or (12,6, 5) 
Steiner-systems by a simple operation, called blowup. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

Let X= { 1, . . . . n} be an n-element set and let 9 c (t) be a k-graph, that 
is, a collection of distinct k-subsets of X, 2 < k < n. Following de Caen [C] 
we consider the property: 

(C) there are no three edges F,, F,, F3 E 9 with IF, n F,I = k - 1 
and F3 2 F, AF,. 

Note that BAC = (B - C) u (C - B) and that for k = 2 (Z) means that 
the graph 9 is triangle-free. There is a related, stronger property, which 
was introduced by Katona [K]: 

(A) there are no three edges F,, F2, F3 E 9 with F, AF2 c F3. Note 
that for k = 2, 3 (Z) and (A) coincide. 

The simplest way to obtain a relatively large k-graph 9 with property 
(A) (and thus with (Z)) is to consider the complete equipartite k-graph. 
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Let X=X,u . . . u X, be a partition with LX1 Q IX,1 < [Xl for 1~ i < k and 
set 9=9’(k,n)= {FE(~): IFnXi( = 1, i= 1, . . . . k). Then 

(1.1) 

with equality on the right-hand side if k divides n. 
Define f(k, n, C) (f(k, n, d)) as max 151 where the maximum is over all 

9 c ( f) having property C(d ), respectively. 
By an old result of Mantel [M], 

f(2, n, 2) =f(2, n, A) = 
11 

c = 19(2, n)l. (1.2) 

Katona [K] conjectured and Bollobas [Bl ] proved, that for k = 3, 

f(3, n, z) =f(3, 4 A) = 1973, n)l. (1.3) 

Bollobas [B] conjectured that 

f(k n, A) = l~(k, n)l (1.4) 

holds for all n 2 k 84 as well. The authors [FF2] proved this for 
2k > n > k. This, by an easy averaging, implies 

for all n 2 2k. 

Recently, Sidorenko [S] proved Bollobas conjecture for k = 4. Indeed, 
he proved the stronger statement 

f(4,n, -v =f(4, n, A) = m4, n)l. 

Actually, both Bollobas and Sidorenko prove that equality holds only for 
the complete equipartite k-graphs. 

Sidorenko [S] provides a new proof for (1.3). For other proofs see [C] 
and [FFl 1. The aim of this paper is to give bounds on f(k, n, C). 

THEOREM 1.1. 

f(5, n, Z) d $ n5 with equality holding if and only if 11 In. (1.6) 
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THEOREM 1.2. 

f(6, n, Z)<gn6 with equality holding if and only if 121n. (1.7) 

For general k we prove 

THEOREM 1.3. For all k > 7 one has 

(l+O(~))n’/k!(~)el+l~C’pl)<f(k,n,Z)<n’/k!e(k~*); (1.8) 

moreover, for (i) 1 n the term 0( l/n) can be omitted. 

Comparing (1.5) and (1.8) shows that, in general, f(k n, A) is much 
smaller than f(k, n, C), answering a question of de Caen [Cl. Actually, 
for n>n, we shall determine f (5, n, Z) and f (6, n, C) exactly (see 
Theorem 7.1). 

For a k-graph ?? let ex(n, 9) denote maxI%), where the maximum is 
over all 5 c (f) which contain no subgraph isomorphic to $. Define 
$$={{1,2 ,..., k}, {1,2 ,..., k-l,k+l}, {k,k+l,..., 2k-1)). 

For k = 2, %* is simply a triangle. For k = 3, we proved in [FF2] that for 
n > 3000, f (3, n, C) = ex(n, $) holds. Here we prove 

THEOREM 1.4. For all fixed k and n + co, 

f(k, n, Z) < ex(n, gk’k) -C f(k, n, C) (1.9) 

holds. 

Actually, Theorem 1.4 will follow from a more general result, 
Theorem 8.4. 

CONJECTURE 1.5. For all fixed k and n > n,,(k), 

holds. 

f (k n, z:) = edn, %A (1.10) 

Remark 1.6 (on Turin theory). The number ex(n, 9) is often called the 
TurLin number of Q. Similarly, we can define ex(n, G), where G is a class of 
k-graphs (the so-called forbidden subgraphs). These numbers were widely 
investigated, we can refer to [B2] and [ES1 ] in the case of graphs (k = 2), 
and to [B3] and [FF3] for k > 3. 
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From an averaging argument of Katona, Nemetz, and Simonovits 
[KNS] it follows that ex(n, G)/(i) is monotone decreasing as a function of 
n. Therefore, 

Z(G)= lim ex(n, G) 
n-02 

exists for every class of k-graphs G. If G has a k-partite member then a 
theorem of Erdijs [E] says that there exists a 6 = 6(G) > 0 such that 

ex(n, G) = O(nke6). 

Hence rc(G) = 0. Otherwise, the example of a complete equipartite k-graphs 
shows that K(G) >k!/k“. The value of ~($9) is unknown for k 2 3 for all 
non-k-partite $9 except the above-mentioned four cases (i.e., rc(5&) for 
k = 3,4, 5, 6). 

2. THE LAGRANGE FUNCTION OF HYPERGRAPHS 

Let us fix some notation. For 9 c ($) and A c X define B(A) = 
{F-A:AcFeS}. For A=(y) we write also 5(y) instead of 9((y)). 
Define also ~~={(HE(~?,):HcFE~ holds for some FEP}, 89 is 
called the shadow of 9. 

The main tool of the proof of Theorems l.l-1.3-as in Sidorenko [S]-is 
the Lagrange function of hypergraphs. 

With every k-graph 9 c (c) we associate a homogeneous polynomial in 
n variables, the Lagrange polynomial A(9, x1, . . . . x,). We shall write 
A(9, x) for short: 

qs, x)= 1 n xi. 
Fe9 icF 

The Lagrange function A(9) is defined then by 

A(s)=max{l(B,x):x,+ ... +X,=1, Xi>O}. 

It has proved very useful in [FRl ] for the disproof of a longstanding 
conjecture of Erdos. Further applications of the Lagrange function are in 
[ FR2]. 

Setting xi= ... =x, = l/n one obtains the simple but important 
inequality: 

IFI < nkA(F). (2.1) 
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Let us mention that for graphs A(%-, x) was already used by Motzkin 
and Straus [MS] to give a new proof of Turan’s theorem [T]. 

The Lagrange function can be given a combinatorial interpretation as 
follows (cf. [FRl]): 

For a k-graph 99 c (,‘) and pairwise disjoint subsets {X,,: y E Y}, 
Ix,1 = *,, define the blowup g = Y @ in,,: y E Y} of 9 by 

&{fh(“kX’): {y:HnX,#0}EY . I 
Note that the definition implies that for every HE g one has IHnX,I < 1 
and setting x = (x! : y E Y) with x,. = n,/n, 

Thus 

1~81 = nkl(9, x) holds, where n= C nz. 
IE 1 

n(9) = lim supl5??:( nk, where the supremum is over n and all 
blowups of Y with n vertices. (2.2) 

Let us recall the following result which combines parts of Theorems 2.1 
and 2.3 of [FRl]. 

LEMMA 2.1. For every non-empty k-graph 9 c (i) there exists a non- 
empty subset Y c X and an evaluation xi = yi > 0, y, + . . . + y, = 1 such that 
the following hold 

(i) y; > 0 tf and only if i E Y. 

(ii) A(%, y) = A(%). 
(iii) A(%)=,?(Y) holds for 9= {FE%: Fc Y}. 

(iv) For every i, j E Y there exists G E $9 with {i, j} c G. 

(v) (a/iJxi)A(3, y) = kA(9) for all ie Y. 

The following crucial observation is due to Sidorenko [S]. 

FACT 2.2. Suppose that % c (f) has property (C) and 9 is defined by 
Lemma 2.1. Then 

I G n G’J < k - 2 holds for all distinct, G, G’ E Y. (2.3) 

Proof If IG n G’I = k- 1, then G, G’ and a set G” E 9, containing 
GAG’-which exists in view of (iv)-violate (C). [ 
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For illustrating the use of these tools, let us reproduce the proof of 
Sidorenko [S] showing 

A(9) = k Pk, 2 < k < 4, for every non-empty k-graph 9 with 
property (C). (2.4) 

Since A( { 1, 2, . . . . k}) = kpk, it is sufficient to show the upper bound part 
of (2.4). Suppose that 9 has property (Z). Choose, in view of Lemma 2.1 
and Fact 2.2, 9 c 9 satisfying (iii), (iv), (v), and (2.3). 

Note that (2.3) implies that for i#j the polynomials (a/8xi) A(%, x) 
and (8/8x,)1(9, x) have no common term. Suppose for simplicity 
Y= (1, 2, . ..) m> and recall the elementary inequality a!(y,, . . . . y,) d 
(7)~’ valid for y,>O, y, + . . . + y, = 1, where c, is the Ith elementary 
symmetric polynomial. 

Summing (v) over iE Y yields mk,I(%)<a,-,(y,,..., y,)~(~nt,) 
m ~ (k - l’, that is, 

I(%)<(m-1)~~~(m-k+2)/mk-‘k! (2.5) 

Remark 2.3. Let us note that if equality holds in (2.5) then equality 
must hold in the preceding inequality as well. In particular, every (k - l)- 
subset of Y is contained in at least (and consequently exactly) one member 
of 9. 

For k = 2, 3 the right-hand side is monotone decreasing as a function of 
m for m > k. Since for m = k the right-hand side is kpk, (2.4) follows. 

For k=4 and m 26 the right-hand side is again monotone decreasing 
and its value for m = 6 is 

5.4/63.4! =&$. 

For m = 4 its value is 4-4, while the case m = 5 is impossible, as (2.3) 
implies 191 G 1. Thus (2.4) is proved. 1 

Note that (2.4) together with (2.1) implies f(n, A) =f(k, L’) = (n/k)k for 
kin and 2<k<4. 

To prove the upper bound in Theorem 1.3 we shall simply use the 
inequality (2.5). However, for Theorems 1.1 and 1.2 we have to refine this 
argument. 

To close this section we shall prove a simple proposition. Let 9 c ( f) be 
k-graph, Y an m-element set disjoint to X. Define 

HnXeF, jHnYJ=l . 
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PROFQSITION 2.4. (i) 121 = IF[m; 

(ii) $9 has property (A) then so does Z, too. 

The proof is by inspection and it is left to the reader as well as that of the 
following. 

COROLLARY 2.5. Suppose that (1.4) holds for some k, k > 3. Then it 
holds for k - 1 as well. 

3. LOWER BOUNDS AND THE PROOF OF THEOREM 1.3 

Let 1 Yl = m. Recall that a family .%? c (l) is called a (m, k, k - 1 )-packing 
or, briefly, a packing if 

[RnR’I dk-2 for all distinct R, R’E%?. (3.1) 

It is easy to verify that every blowup of a packing has property (C) (cf. 
the definition of blowups in the preceding section). 

Clearly, for every packing 9i?, 

k holds. 

In case of equality, 9 is called a perfect packing or a (m, k, k - 1 )-Steiner 
system. 

It is known (cf., e.g., [BJL, N]) that unique (m, k, k - 1)-Steiner systems 
exist for m = 12, k = 6 and m = 11, k = 5. Let W,, and %?,, be such perfect 
packings. Note that l5&, 1 = 66, j.%i21 = 132. 

This implies 

4~,,)~4%,, (?I , . . . . A)) = 66/l l5 = 6/l 14, (3.2) 

ww 2 4&T (is , . . . . A)) = 132/126 = 1 1/125 (3.3) 

For arbitrary integers t 2 1 considering the blowups W,, @ (t, . . . . t) and 
B,, 0 (t, . . . . t) shows 

f(llt,5,C)>66t5, 

f(12t, 6, C)> 132t6, 

proving the lower bound parts of Theorems 1.1 and 1.2. 
Let us recall the following well-known result. (See, e.g., [GS]). 
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PROPOSITION 3.1. For every m 2 k there exists a packing 93 c ({), 
1 YI = { 1, . . . . m} satisfying 

1912 T 
( I! 

m. (3.4) 

Proof: For every 0 <b < m the family 9@)= {RE (l): CieR i-b 
(mod m)} is a packing and ZIR’b’l = (7). Thus for some 0 < b < m, 

m holds. 1 

Letting m = ($) and using that for O<x<f one has 1 -x> 
exp( -x - ix’), we obtain for k 3 7, 

m-i 
->exp 

m 

i 

-l<i~~-,++(k(k~l))’ . . 
0 2 

=e ~ I - (2k - 1)/(2k(k - 1)) > e - 1 - ll(k - I ). 

Consequently, choosing W from Proposition 3.1, and m = (:), k 2 7, for 
arbitrary integers t > 1, we obtain 

proving the lower bound part of Theorem 1.3. 
On the other hand, examining inequality (2.5) we find 

k-2 

(m-l). ... .(m-k+2)/mk-’ cm- ,IJl epilm = e-tkT ‘h/m. 

Differentiating we find that the maximum of the right-hand side is l/e(“; I), 
attained for m = (k; ‘), which yields the upper bound: 

k!. 

This together with (2.1) gives the upper bound in Theorem 1.3. 

4. SOME BOUNDS ON THE LAGRANGE FUNCTION 

In this section we address the following problem. Given n, k and m, 
1 <m < (;), determine or estimate l(n, k, m) = max{l(p): 9 c (f), 
IFI =m}. 
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Recall the definition of the reverse lexicographic order on (f): 

F<F’ iff max F- F’ < max F’ - F. 

CONJECTURE 4.1. A(n, k, m) is attained for the family consisting of the 
smallest m sets in the reverse lexicographic order. 

If this conjecture was proved, then most of our later computations would 
become superfluous and the proofs of Theorems 1.1 and 1.2 much simpler. 
Since it is still a conjecture, we shall use the following, much weaker result. 

LEMMA 4.2. Suppose that 0 d s < (I;-: z) and m = (;) - s. Then 

-sxk: x, y30, kx+(n-k) y= 1 . (4.1) 

ProoJ Suppose that l(n, k, m) = A(F, (x,, . . . . x,)). We may assume by 
symmetry that x1 < . . . d x, holds. 

Then x1x2. ... . xk is smallest among all (;) products of k terms which 
implies 

Thus it will be sufficient to show that the right-hand side of (4.2) is not 
greater than that of (4.1). 

To this effect let us maximize the right-hand side of (4.2). We claim that 
then necessarily x, = . . . = xk and xk + 1 = . . . = x, hold-which will prove 
(4.1). 

Indeed, if for some k < i < j < n, x, < xi holds then replacing both xi and 
xi by (xi + xj)/2, the right-hand side of (4.2) increases by 

c n xv, a contradiction. 
GE (“,<ii”) VPC 

Similarly, if xi <xi holds for some 1 < i < j< k and we replace both xi 
and xj by (xi + x,)/2 then the RHS of (4.2) increases by 
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However, by monotonicity of the x,, each product in the sum is at least 
as large as the other product on the extreme right, the number of terms in 
the sum is (;I :) > s, thus the change is non-negative. More exactly, it is 
positive unless s = (; 1:) and all x, with the possible exception of xi and xj 
are equal. 

That is, either we get a contradiction straight away or we get one by 
considering say xi and xj, for j’ # j, i. The proof of (4.1) is complete. 1 

Now Lemma 4.2 can be used to derive upper bounds for J.(n, k, m) for 
fixed values of n, k, and m. 

PROPOSITION 4.3. The following three inequalities hold: 

1(8,4, (i)-(;))<O.OlSl <8++, (4.3) 

A(9,4, (Z) - (i)) -Co.0175 < 9.5 .$, (4.4) 

1(10,4, (‘,o)-(;))<0.0196< 10.5;. (4.5) 

ProoJ: Since all these inequalities come by straightforward application 
of (4.1), we shall only prove (4.5). All the calculations summarized in 
Table I. In view of (4.1) it is sufficient to prove that the maximum of the 
RHS of (4.l)dall it p(x, y&is less than 0.0195... for 4x + 6y = 1, x, y > 0. 

If the maximum is attained for x=x0, y = y, then necessarily 
6(W) Ax,, ~0) = I Ax,, ~0) holds. 

That is, 

240~; + 12Oy;x, - 288y,x; - 744x; = 0 

Dividing by 24~: and setting t = x,/y, we obtain 

10+5t-12t*-31t3=0 

This equation has only one root for t > 0, namely t = 0.64325221... 
The corresponding values of x and y are: 

y = l/(6 + 4t) = 0.1166451..., 

x = ty = 0.0750322... . 

Substituting into p(x, JJ) we find that its value is 0.0195... ~0.0196, as 
desired. 1 
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TABLE I 

Inequality 

(4.j) (4.3) (4.4) (4.5) (4.6) (4.7) 

i 4 8 9 4 10 4 13 5 14 5 
SC s (;I:)) 15 21 28 153 28 

p(x, y) = -.d + 1 
OBlbk 

p,(x, y) = -14x4 + 16x3y + 36x2y2 + 16xy3 + y“ 

p4(x, y) = -20x4 + 2ox3y + 6ox*yz + 4oxy3 + 5y4 

ps(x, y) = -27x4 + 24x’y + 90xzy2 + 80xy3 + 15y4 

~&,y)=-152x~+40x~y+280x’y~+560x*y~+350x~~+ 56y5 

P,(x,Y)= -27x5+45x4y+360x3y2+840x2y3+630xy4+126y5 

43(X> Y) = -72x3 - 24x’y + 24x.v 2 + 12y3 

94(x, y)= -480x3.- lSOx*y+ 12Oxy*+ 12oy3 

95(x, y)= -744x3- 288x*y+ 12Oxy*+ 240~~ 

qdx, y) = -6280x4 - 1520~~~ - 1680x2y2 + 1960~~3 + 1400~~ 

q,(x, y)= -1440x4-1980x3y-2880x2y2+2520xy3+2520y4 

t = x/y. The following equations obtained from q,(x, y) 

o= -3r3- t=+ I+ 0.5 

o= -St’- 3t2+ 2r+ 2 

0= -31t3-1212+ 5f+ 10 

0= -157t4-38t3-42r2+49f+35 

o= -8r4-llt3-16r2+14r+14 

The only root 

0<1<1 0.625518... 0.636037... 0.643252... 0.692740... 0.905696... 

YE1 
n-k+kr 

0.15379... 0.13255... 0.116645... 0.08723... 0.07391... 

x 0.09619... 0.08430... 0.075032... 0.06042... 0.06694... 

max P(X, Y 1 0.01503... 0.01746... 0.019524... 0.003259... 0.003678... 
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By exactly the same kind of computations we obtain 

PREPOSITION 4.4. 

1(13,5, (;“)- 153)<0.00326< 13.6+ 

1(14, 5, (i$)-28)<0.00368< 14.6.;. 

(4.6) 

(4.7) 

The next lemma relates these bounds to the originial problem. 

LEMMA 4.5. Suppose that 9 is as in Lemma2.1 and it satisfies (2.3). 
Then 

m.k.I(‘S)<IZ(m, k- 1, kj%j) holds. (4.8) 

Proof: Consider the sum over i of the equation (v) from Lemma 2.1; 
this yields 

Since y,> 0, C yi= 1, the left-hand side is by definition at most 
A(m, k- 1, k/31), proving (4.8). 1 

5. THE PROOF OF THEOREM 1.1 

In view of (2.1), Lemma 2.1, and Fact 2.2 it is sufficient to show that 
A(s) < 6.11 P4 holds for every 5-graph 3 satisfying (2.3). 

From (2.5) this inequality follows unless 1 U 91 = m = 8,9, or 10. 
If ) YI = 8, then Z’= {Y-G: G ~a} is a (8,3,2)-packing; that is, 

IH n H’I < 1 for all distinct H, H’ E X. This immediately implies that every 
element of Y is contained in at most three sets in X, yielding 
(‘291 = (Xl < 8.3/3 = 8. 

This implies for m = 9: 191 < 9.8/(9 - 5) = 18, and thus for m = 10: 
I%\< 10.18/(10-5)=36. 

Using (4.8) and the above upper bounds for [Yl and [&!?I =51%1, we __ 
obtain for m = 8,9, 10 the following inequalities: 

8 .5 .2(g) 6 A(8,4,40) Q i1(8,4, (:, - (;,I, 

9.5 .A(%) < A(9,4,90) < A(9,4, (:, - (:I,, 

10.5~A(%)~11(10,4, 180)<;1(10,4, (‘,“)- t;,,. 
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Now L(s) < 6.11-’ follows from inequalities (4.3), (4.4) and (4.5), 
respectively, proving (1.6). 

In case of equality, 6 . n’/l l4 is an integer, proving 111 n. 1 

Remark 5.1. From the above proof and Remark 2.3 it is clear that 
n(g) = 6 . 11 P4 holds only if 9 is a perfect (11, 5,4)-packing. Since there is 
only one such packing, then 3 is necessarily the unique (11, $4)~Steiner 
system L%rr. 

6. THE PROOF OF THEOREM 1.2 

Again, as in the proof of Theorem 1.1, it is sufficient to show that 
A(9) < 11 . 12P5 holds for every 6-graph Q, satisfying (2.3). 

This inequality follows from (2.5) unless 1lJ 31 =m = 13 or 14. 
Moreover, the inequality is strict, unless m = 12 and Y is a perfect 
(12, 6, 5)-packing, that is, 9 = & the unique (12,6, 5) Steiner system. 

Now we bound 131 separately in the cases m = 13, 14: 

(a) lYl=IlJg]=13. For LIE(I) the family Y(A)={G-A: 
A c GE %} consists of pairwise disjoint 2-element subsets of the 9-element 
set Y-A. Thus IU Y(A)1 < 8; that is, there exists B, A c B c Y, I BI = 5 
such that B is not contained in any GE 9. 

In other words, considering the family z?J = ({) - 89, every A E (,‘) is 
contained in at least one of its members. 

Consequently, for all DE (r) one has ISd(D)l > r( v)/(i)1 = 19. This, in 
turn, implies 

(9Y’I = c Ic@l(D)l/(;) 2 19 . (;‘)/(;) = 148.2. 
DC(:) 

Thus IL%?/ > 149 holds. From this one derives 61$?1 = la%1 < ( y) - 149, i.e., 
1’31 <L((\))- 149)/6J= 189. 

Finally, this implies 

6141<6.189=(:3)- 153. (6.1) 

(b) I Yl = IU QI = 14. For DE (:) the family B(D) is a (11, 3,2)- 
packing. Thus IS(D)/ < L(y)/(:)J = 18. Consequently, IYl < L( :“). 18/(!) J 
= 327. We shall only use the weaker inequality 

6131~ 1974 = (:“) - 28. (6.2) 
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Now, as in the case of Theorem 1.1, the inequalities (6.1), (6.2), together 
with (4.8), imply 

13.6.A(?9)<1(13, 5, (;‘)- 153) (6.3) 

14.6 . A(3) d A( 14,5, (‘,“) - 28). (6.4) 

Thus A(9) c 11 . 12-5 follows from the inequalities (4.6) and (4.7) respec- 
tively. 1 

7. EXACT BOUNDS FOR LARGE VALUES OF H 

THEOREM 7.1. Suppose that k = 5 or 6 and 9jj is the unique S(k + 6, k, 
k - 1). Let % c (f) have property (Z); then for appropriate values of 
nl, . . . . nk+6, n, + “’ +nk+6=n, n>ndk), 191 <i%@(n19...,nk+6)i 

holds. 
Moreover, in case of equality, 

Proof Let % c (f) be a k-graph with property (E), x, y E X and sup- 
pose that {x, y} & F for all FE%. Define %(x)= (F-{x}:xEFE%}, 
the link of x. 

Sidorenko [S] defines the operator TX,, by 

and notes that if % has property (C) then so does TX,,(%) as well. It may 
be worthwhile to mention that Sidorenko’s operator is a direct 
generalization of Zykov’s symmetrization operator; see [Si]. 

Note that in T,,J%) the link of x and y is the same, namely, 9(x). 
Continuing to apply the operator TX,, for all uncovered pairs x, y with 

I%(x)1 > I%(y)1 leads to a new family #c ($) such that whenever 
s(x) # s(y) there exists some HE Y? with {x, y} c H, moreover, 
IW 2 WI. 

Define an equivalence relation x N y on X by x N y if X(X) = X(y). 
Let X,, . . . . A’,,, be the equivalence classes with [Xi1 = ni. Define the 

k-graph 9 c ( {l,.g”)) by GE Y if and only if 

G= {i: HnX,#@) for some HE A?. 
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It follows that Z? = Y @ (n,, . . . . n,). Define now yi= n,/n. Then y > 0, 
CT= 1 yi = 1. Set y = (y,, . . . . y,). Note that for x E Xi one has 

Suppose now that I%1 is maximal. 
Since 7’,, JX - {HE 2: {x, y } c Z-Z}) has property (C) and its size is 

I%( + IF(x)1 - IF(y)1 - I.F(x, y)l, we infer 

Combining (7.1) and (7.2) gives for every 1~ i < m 

2 49, Y) < 
n-2 

ah ( ) 
k-2 +~j~l~~(e,Y). I 

1. (7.2) 

Since % has property (C), 9 is a packing, implying 

j~,~“(“,y)=~(B~,y)6i(m,k-l,klbl). 
I 

(7.3) 

Suppose now that k= 5 or 6 and Y is not isomorphic to Yj. Then 
Propositions 4.3 and 4.4 and the inequality A(m, k - 1, (kn? ,)) < (km i) ml-‘, 
together with Remark 2.3, imply that for some E > 0, 

A(m, k - 1, kl3l) <m . k. (A.(Yk) - E) holds. 

Combining inequalities (7.1), (7.3), and (7.5) gives 

(7.5) 

klsfl = f n-%(8, y) 
i=, laYi 

i.e., 121 < nk(l(Yk) -s/2) holds for n > n,(k), contradicting the maximality 
of 121. 

In the remaining case 9 = gk4pk; that is, % is a blowup of $, as desired. 
To complete the proof of the uniqueness of the optimal families we must 
show that if Y? = $@(ni, . . . . n,), 191 = l&l and %‘= T,,.(9) then 
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% = 5yk @ (n; , . ..) ni). However, this is rather easy. Since % has property 
(C) one has IA nXil < 1 for all A E%(Y) and 1 <i< m. Thus for each 
A e%(y) there is an i= i(A) with A E%(Z) for all ZE Xi. If i= i(A) is the 
same for all A E%(Y) and z E Xi then %(y) c %(z) follows, i.e., 
% c Yj 0 (n; ) . ..) r&J. 

If i and i’ are distinct values attained by i(A), then property (C) implies 
A n (Xi u X?) = @ for all A E%(Y), and %(ybwhich corresponds to the 
blowup of a (m - 2, k - 1, k-2)-packing-turns out to be much smaller 
than %(x) and thus [%I < I#), a contradiction. 1 

Remark 7.2. Clearly, the same proof works for k = 4 as well and gives 
that for it > n, every optimal 4-graph with property (Z) is a complete 
equipartite 4-graph. However, to obtain the same result for all n requires a 
little more care. Also, the same proof would work for other values of k if 
we have the necessary bounds for the Lagrange function. In particular, it 
works, it for some k there exists a S(m,, k, k- l), where m, is the unique 
integer for which the right-hand side of (2.5) is maximized. However, 
nothing is known about the existence of Steiner systems for k - 1 = t 2 6. 

8. UNFOLDABLE k-GRAPHS 

For a k-graph % define its minimal (k- 1)-degree, dkP ,(%) by 
6,-i(%) =min{ IS(H HEd%}. In words, dk-,(%) 3b if and only if 
every (k - 1 )-set which is contained in some member of % is contained in 
at least b members of %. 

The following simple lemma is essential for the proof of Theorem 1.4. 

LEMMA 8.1. For every k-graph % c ( f) and every positive integer b there 
exists %O c % such that 

0) J,-,(%J>b 
(ii) I%-%OI <(b-1)(,:,). 

ProoJ Define %--(l) = %. We define recursively the families %(i), i 2 1. 
Suppose that %--(j) was defined. 

If ljkp,(%)2b then set %e=%ci) and stop. Otherwise take A(‘) E ~7%~‘) 
with I%(‘)(A(‘))I < b - 1 and define Sci+ ‘) = {FE %(‘): A(‘)F}. 

Note that I%(i) - %(j+ ‘)I <b - 1 and agci+ “5 a%(“. Thus this 
procedure will end in at most (k 1 i ) steps, proving the lemma. 1 

DEFINITION 8.2 Suppose that X is a k-graph U 2 = Y and y E Y is a 
vertex of degree one, i.e., X( { y}) = {K} for some (k - 1)-set K. Choose 

some y’~ Y-K. Then the hypergraph &“=(&‘- {Ku {y}})u 
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(Ku { y’} } is called an elementary folded copy of H. The operation cp 
defined by q(X) = 2’ is called an elementary folding. 

Now the k-graph S’ is called a folded copy of S, if it can be obtained 
from 2 by a series of elementary foldings. 

LEMMA 8.3. Let A? be a k-graph. Suppose that the k-graph 9 satisfies 
6, ~ , (9) > m - k, where m = 1 U &I. Moreover, 9 contains a folded copy of 
2. Then 9 contains a copy of 2 as well. 

Proof By the definitions it is sufficient to prove the statement if 9 
contains an elementary folded copy 2’ of 2, i.e., X’c 8. Since 
IU 2’[= IU 21-l =m- 1 and Ip(K)I >m-k=(m- 1)-(k- l), there 
is some FE 9 with Fn (U H’) = K. 

Now the k-graph H”=(X’- {Hu {y’}})u {F) is a copy of X 
in9. 1 

The folding defines a partial ordering over k-graphs. More exactly, let 
Y </H if Z is a folded copy of Y. If G is a family of k-graphs denote the 
subfamily of its minimal members with respect to the relation cf by Go. In 
other words, Go is the set of the unfolded members of G. 

THEOREM 8.4. Let G be a family of k-graphs and let m = 
max( ( U ‘91: 92 E G }. Denote the subfamily of unfolded members of G by Go. 
Then 

ex(n, G) < ex(n, Go) d ex(n, G) + (m - k)(,E 1). 

Proof Since Go c G, the lower bound is obvious. To prove the upper 
bound, consider an extremal k-graph F c (f) which contains no copy of a 
member of Go and satisfies ex(n, Go) = 181. Choose To c Y by Lemma 8.1 
applied with b = m - k + 1. Then Lemma 8.3 implies that F. is G-free. Thus 
we obtain ex(n, Go)= 191 < IF01 +(m-k)(k:l). 1 

Recall that n(G) denotes lim, _ co ex(n, G)/(z). Let Y be a k-graph and 
suppose that x, y E U 9 but {x, y} is not contained in any GE Y. Then the 
family B’=%-- {G: ~‘EGEY) u (G- {y}u {x}: ~EGES) is called an 
elementary compressed copy of 9. (Notice that 1271 < I%[.) We say A? is a 
compressed copy of Y, if it can be obtained from 29 by a series of elemen- 
tary compressions. Finally, the family of k-graphs G is called closed under 
compression if 9 E G, and X is a compressed copy of 9 then Y? E G. 

PROPOSITION 8.5. Let G be a family of k-graphs closed under com- 
pression. Then 

n(G) ; 0 dex(n, G)<n(G)g. 
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ProoJ: The lower bound is obvious (cf. [KNS]). Let 9 be a G-free 
family over n elements satisfying ISI = ex(n, G). Consider the blowup of 
9, F Q (t, t, . ..) t). We obtain another G-free family over nt elemens with 
cardinality 191 tk. Hence 

ex(n, G) tk 
(3 G”Ei”l. (8.1) 

If t + CO we obtain the desired upper bound. 1 

Proof of Theorem 1.4. It follows from Theorem 8.4. We have to note 
only, that if X={H,,H,,H3} is a k-graph with IH,nH,I=k--1, 
H, AH, c H3 then necessarily 39 is a folded copy of 4. 

Denote the class of k-hypergraphs {A, B, C} for which A AB c C by A,, 
and for which A ABc C and IA n BI =k- 1 by C,. (Then Co = (%k}.) 
These clases are closed under compression, so we can apply to Ck and A, 
both Theorem 8.4 and Proposition 8.5. 1 
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