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Consider the usual graph Q” defined by the n-dimensional cube (having 2” ver- 
tices and n2”-’ edges). We prove that if G is an induced subgraph of Q” with more 

than 2” - ’ vertices then the maximum degree in G is at least (4 - o( 1)) log n. On the 
other hand, we construct an example which shows that this is not true for 
maximum degree larger than & + 1. 0 1988 Academic POW, inc. 

1. PRELIMINARIES 

Denote by Q” the graph of the n-dimensional cube, i.e., the vertex set of 
Qfl consists of all the (0, 1)-vectors of length n, and two vectors 
x, ye (0, l}” are adjacent if they differ from each other in exactly one 
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component. For a graph G = (V, E) we denote the maximum degree by 
d(G), i.e., 

d(G) = us;;, deg,(u). 

The average degree d(G) is defined to be C,, Y(GJ deg,(v)/l V(G)J. We say 
GE Q”(N) if G is an induced subgraph of Q” with N vertices, i.e., 
I V(G)1 = N V(G) E (0, I>“, and E(G) = E(Q”)n (V(G) x V(G)). 

Qfl is a bipartite graph, so we have a GE Q”(2”- ‘) without any edge, 
namely, G”,,, and GzVf,,,, where V(G”,,,)= {x~ (0, I}“: C;=r xi= 1 
(mod 2)}, V(Gf&) = (0, l}“- V(G&). Our main result shows that even 
though the average degree of a graph GE Q”(2”- ’ + 1) can be very small 
(only 2n/(2”- ’ + l)), these graphs must have large degree. 

THEOREM 1.1. Let G be an induced subgraph of Q” with at least 2”- ’ + 1 
vertices. Then for some vertex v of G we have 

deg,( v) > f log n - t log log n + 1. (1.1) 

On the other hand, there exists a GE Q”(2”-’ + 1) with 

LqG)qG+ 1. (1.2) 

2. RELATED RESULTS AND PROBLEMS FROM COMPUTER SCIENCE 

A (Boolean) function f: (0, 1 }” -+ { 0, I} is said to depend on coordinate i 
if there exists an input vector x such that f (x) differs from f (x”‘), where x(‘) 
agrees with x in every coordinate except the ith. In this case x is said to be 
critical for f with respect to i. The function f is called nondegenerate if it 
depends on all n coordinates. For an input vector x, let c(f, x) denote the 
number of coordinates i such that x is critical for f with respect to i, and let 
c(f) :=max{c(f, x): XE (0, I}“}. c(f) is called the critical complexity off: 
This notion is due to Cook and Dwork [3] and Reischuk [S], who 
showed that log, c(f) is a lower bound to the time needed by a parallel 
RAM to compute the function f (where A = +(5 + fi) =4.7.. .). (A 
parallel RAM is a collection of synchronous parallel processors sharing a 
global memory with no write-conflicts allowed. For precise delfinitions, see 
Cl].) Simon [6] showed that the critical complexity of any nondegenerate 
Boolean function is at least 

a(n):=$logn-floglogn++, (2-l 1 
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which implies a O(log log n) lower bound for parallel complexity. More 
results on this topic can be found in [7]. 

Call a subgraph G of Qfl nondegenerate if E(G) contains edges from each 
of the n directions. Thus, the crucial point of the above problem can be 
reformulated as follows: 

Let U, V be a partition of (0, 11” and consider the induced 
bipartite graph G(U, V). If G( U, V) is nondegenerate then 
A(G) > a(n). (2.2) 

This is completely analogous to our theorem (even the proof is similar). 
However, we need a slightly more powerful lemma (see Lemma 4.1). 
Reischuk (see [S] ) has a simple example proving that in (2.2), 
d(G) = Llog n_l+ 2 is possible, and it is very likely that this is the right 
value of 

b(n) = min{d(G): G as is in (2.2)}. 

Another interesting property of the induced bipartite graphs is proved by 
Ben-Or and Linial [2] (also dealing with a problem arising in theoretical 
computer science): 

If U, V is a partition of (0, 1 }” then there exists a direction i 
such that at least min{ 1 UI, 1 VI }/n edges go from U to V 
parallel to i. (2.3) 

They have an upper bound of log n min{ 1 UI, I VI }/n and also this seems 
to be the right order of magnitude. 

3. FWXF OF THE UPPER BOUND 

Denote the set of integers { 1, 2, . . . . n} by [n]. Since there is a natural 
bijection between (0, 1 }” and 2[“‘, so we will speak about families of 
finite sets with the underlying set [n]. There exists a partition of 
[n] = F, u ... u Fk such that Ik- &I < 1 and I IFJ-&l<l, l<i<k. 
Define the family X as follows: consider all the even sets (i.e., subsets of [n] 
with cardinality an even number) which contain some Fi, 1~ i< k, and all 
the odd sets which do not contain any Fj. 

Claim 3.1. 1x1 = 2” ~ ’ f 1 according to whether n + k is odd or even. 

Claim 3.2. For the subgraphs induced by X and 2[“‘-X we have 
A<k. 

Remark. We can generalize the above construction in the following 
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way. Let F c 2[“’ be a collection of finite sets. (Later we will see that it is 
enough to consider Sperner families, with u F = [n].) Define 

X(F) = {SC [n]: ISI = even, and there exists FE F with F c S) 

u {Sc[n]:lSl=odd,F\S#@forallF~F). 

Let G(F) be the induced subgraph of Qn with vertex set X(F), and G’(F) 
the induced subgraph on 2r”’ - F. The rank of F is the largest size of its 
edges, i.e., r(F) = max{ IFI : FE F}. Denote by t(F) the maximum value of t 
such that one can find F,, F2, . . . . F, E F and xi E Fi, 1 d i < t, so that for i #j 
we have xi+ F,. In other words, t(F) is the largest size of the disjointly 
representable subsystems of F. 

PROPOSITION 3.3. d(G(F)) < max{r(F), r(F)}, and the same holds for 
d(G’W). 

Proof: If (S, S’) is an edge of Q’, S, S’ E X(F), and S is even then 
S’ $ S. Moreover if F c S, FEF, then (S\S’)E F, so we have 

deg(S)< 0 {F: FEF, FcSf <r(F) (3.1) 

On the other hand, if S is odd then S c S’ so there exists an FE F, Fc S’, 
FcL S. Hence if ScS’,,S; ,..., Sb then F,, . . . . FO (where F, c Si) are 
disjointly representable, so a < t(F). The statement d(G’(F)) < 
max{r(F), W)} can be proved in the same way. 1 

Now use the sieve method to determine the cardinality of X(F). Let 
Fc [n], and n = E (mod 2) (E = 0 or 1). Then 

2”pIFI-1 if IFI <n, 

the number of even sets containing F = if I FI = n, and n is odd, 

if 1 FI = n, and n is even. 

Similarly, 

[{S: FcSc [n], ISI odd}1 = f’-“-’ 
if (FI <n, 

if IFI =n. 

Let F = {F, , . . . . FN}. The cardinality of the first part of X(F) is 

1 (2”- 141-l)*- cc (,,-IF,uF,I-I)*+- . . . . 
ie [N] (L/I = CNI 

(3.2) 
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where (2A)* means 2A for A > 0 and 1 -E for A = - 1. The cardinality of 
the second part of X(F) is 

p-‘- c (2”- IFol-l)**+ cc (2”-IGJ+-l)**- + . ..) (3.3) 
iE[N] (i,i) c cw 

where (2A)** means 2A for A>0 and E for A= -1. We have 
(2A)*-(2A)**=0 or 1-2s according to whether A20 or A=-1. So 
summing up (3.2) and (3.3) we have 

jX(F)I=2”p’+(l-2~)[ 1 l- 11 l+ ~~~ &+...I. 
L F,tF F,.F,sF F,,F,.F/cF d 

IF,1 =a IF,uF,I=n IF,uF,uF,I=n 

(3.4) 

Denote byf(F) the bracketed expression on the right-hand side of (3.4). It 
is clear that if F is a k-partition of [n] (into nonempty parts) then 
f(F) = (- l)k+ ‘, which implies 

proving Claim 3.2. 
In general we are not able to calculatef(F) explicitly since it tends to get 

complicated. Some properties of fare: 

(i) If F,= [~]EF thenf(F)=f(F- {F,,}); 
(ii) If F,=@EF thenf(F)=O; 

(iii) If F = {F,, F,, . . . . F,}, 0 #F,, # [n] then 

f({&, . ..v F,v) I Cnl)=f({F1,...,FN)ICnl) 

-f({F,-I;,,..., Fn-Fo) I Cnl -Fo); 

(iv) If F, # @ and for some F, 1 F, then f (F) =f (F - {F,)). 

PROPOSITION 3.4. Suppose f (F) # 0. Then max{r(F), r(F)} 2 &. 

Proof. Suppose that IFI < & holds for all FE F. f(F) # 0 implies that 
IIJ FI = n. Let {F,, . . . . F,} be a minimal subfamily of F with lJ F = [n]. 
Then {F,, . . . . F,} is disjointly representable and s > A. 1 

However, it may be possible that using a more complicated F with large 
f(F) and deleting some members of X(F) (but fewer than f(F)) one can 
obtain a GE G”(2”-’ + 1) with d(G) $ &. 
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4. PROOF OF THE LOWER BOUND 

We begin with a lemma. 

LEMMA 4.1. Let G be a subgraph of the cube with average degree d. Then 
I V(G)1 2 2”. 

A similar lemma was used in [6], where 1 V(G)/ B 2m*ndeg(“’ was proved. 
We point out that a related result of Kleitman et al. [4] immediately 
implies Lemma 4.1 in the case that d is an integer. 

Proof We use induction on 1 V(G)l. Split Q” into two (n - l)-dimen- 
sional subcubes Q, and Q2 such that V, = Qi n V(G)#fa and 
V, = Q2 n V(G) # 0. Suppose that 1 V,l B 1 Vi/ and there are s edges 
between V, and V, in G (so that 1 V,I Z s). The restriction of G to Vi, 
i = 1, 2, is denoted by G,. The induction hypothesis gives 

I VA log I vjl 3 C deg,(v) = 1 deg,(v) - S, 
L’ E v, 

so that 

Iv,1 1% Iv,1 + Iv21 log Iv21 +2sb 1 deg,(v). (4.1) 
L-E V(G) 

However, 

~I~,I+I~*I~~~~~l~,I+I~,I~ 

2 IV,1 1% IV,1 + IV*1 1% IV,1 +2 IV,1 

if 1 V,I B 1 V,l. (Here we used the fact that the base of the logarithm 
is 2.) 1 

Of course, QR is decomposable into two (n - 1 )-dimensional subcubes 
Qi, , Qk, 1 < i 6 n, in natural ways according to the n directions. We prove 
slightly more than (1.1). 

LEMMA 4.2. Suppose GE Q”(2”-‘) and G contains edges from all the n 
directions. Then d(G) > u(n). 

This immediately implies (1.1). Indeed, let GE Q”(2”-’ + b) with 
d(G) < (n - 1)/2. Delete b vertices from G arbitrarily. In the resulting graph 
Go every direction must occur, since otherwise d(G) > (n - 1)/2 would be 
forced. 

Proof of Lemma 4.2. Let Xi= {x E I’(G): .x(‘) E V(G)}, i.e., the set of 
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endpoints of the edges of G in direction i. Define Yi = { y 4 V(G): 
y”‘$ V(G)}, Ai= V(Qn)-Xi- Y,. Then 

IXj( = 1 Yi( > 0. 

Let d = d(G) and consider a pair x, x(‘) E Xi. 

Claim 4.3. x has at most (24 - 2) neighbours in Ai. 

Proof Let us denote the neighbours of x in A, by x(jl), . . . . x(h). Then 
x(iO(i) , . . . . x(jr)(‘) are neighbours of x(‘) in Ai and either x(jU) or Ox belong 
to V(G). Thus, s < 2(4 - 1). 1 

Claim 4.3 implies that every x E Xi has at least (n - 24 + 1) neighbours in 
Y,. Hence 

JE(G(X;u Yi))/ 2 $ IX{/ + i ) Yi/ + (n-26 + 1) )Xi), 

implying 

6( G(X, u Y,)) 2 n - 24 + 2. 

Lemma 4.1 gives 

IX,1 3 2”-24+ l. (4.2) 

Counting the degrees in V(G) we have 

A.2”-‘> c deg,(u)= i /Xi1 >,2”-2d+1. 
u t Y(G) i= 1 

An easy calculation now gives A B a(n), as desired. 
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