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Lett>1, iet B, ..., F, be pairwise disjoint nonvoid subsets of a finite set P, and let £ be a
coliection of subsets of P called lines. We say that (P, ..., P; %) is a colored incidence
structure if (i) each line meets at least two blocks P, and P (u) for arbltrary distinct x z P, and
y € F; the pair {x, y} is a subset of exactiy one iine if i=i=i and at most one fine i i=j.
Extending the work of de Bruiin and Erdés and Meshulam we show that for a coloured
incidence structure (P, . . ., P;; £) with || <- - - <|P] in generai |£] ¢ .ceeds 1 + |Py| +-- - +
jP,—1i. The excepiionai cases are exaciiy: (i) |£j=|Fj+ -+ |P_,j iif the structure is a
truncated projective plane and (ii) |£I=1+ 1P| +---+|P._,| holds in exactly six cases: a
projective plane, the dual of an affine plane, the dual of a modification of an affine plane, a
.near-pencii, a siruciure wiih Z iines and a 9-element structure with 7 iines.
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Extendmg a 1948 paper by de Bruijn and Erdos [1] and a recent paper by

O\ £ ____

Meshuiam [3] weE Slllﬂy conoreu incidence structures ll’a. ceey TZ; <L} 1IIrom the
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extreme case !ﬁl IPJ+ ces+|P_4l and the six cases of |Ll=1+|P)+---

|P.;| proving much more than it is conjectured in [S]. The main part of the proof
treats a slight extension of the dual of (P,, . . ., P,; &) which is a family F of sets
partitioned into blocks Fii, ..., F such that |[YNnY'|<1(lYNnY'|=1,
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respectively) whenever Ye &F, Y/ e F, Y#Y'(i # ], respectively).
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1.1. An incidence structure (or finite geometry) L = (P ) is
PR R NPy paapy . » 3 § / B

poinis) and a collection £ of non-empty subsets of P {lines) such
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distinct points is a subset of exactly one line. Consequently £ is a 0-1 intersecting
family (i.e. ILNL'|<1for all L, L' e £ and L#L'). The incidence structure
(P, &) is nontrivial if |£| > 1. For P’ c P the induce structure L | P’ :=(P'; £')
with &' := {LN P': L e %} is the restriction of (P, £) to P’. Cleaily (P', £') is
again an incidence structure. For a family F of sets the degree of an element x is
de(x):=|{YeF:xeY}|

1.2. Examples. Let k be a positive integer.

(1) The (finite) projective plane of order k is an incidence structure (P, £) with
|P} =% =k?+ k + 1 in which each point has degree k + 1 and every line consists
of exactly k + 1 points.

(2) Fix an arbitrary line L, of the projective plane. The restriction of (P, £) to
P\L, is an affine plane of order k. It has k> points and k*+ k lines. For each
x € Ly the & lines L\{x} with x € L'e &, L+ L, form a paralle! class of the affine
plane.

(3) A near-pencil of order r with center c is the incidence structure (P, /") with

r points and &' := {{c, x}: x € P\{c}} U(P\{c}).

1.3. In a 1948 paper [1] N.G. de Bruijn and P. Erd6s proved:

Let L=(P, %) be a nontrivial incidence structure (i.c. for every line Le £ we
have 2<|L|<|P}). Let T be z set of non-collinear poinis of cardinality t >2 and
L’ be the restriction of L to T. If L' is neither a near-pencil nor a projective plane,
then there are more than t lines L such that |LNT|> 1.

In the two exceptional cases there are exactly ¢ lines L with |[LNT|> 1.
Recently R. Meshulam [5] extended this as follows. Given (P, &) let P, ,..., ¥,
be pairwise disjoint nonempty sets of points (i.e. P,,..., F, form a partial
t-coloration of P). Denote by £(P,, ..., P) the family of lines meeting at least
two colors:

L(P,...,P):={LeZ:LNP#P+LNP forsomel<i<j<t}.

(i.e. Z(P,,...,P) is obtained from £ by deleting all monochromatic and
colorless lines).

1.4. Example. Let (P, ¥) be a projective plane of order k¥ and let
Ly, ..., Li+1 be the lines through a fixed point p. Put ¢ =k + 1 and P, := L,\{p}
@i=1,...,0. Clarly (P,,...,RP)=%\{L,,...,L,} consists of k* lines.
The restriction of (P, £(P,, ..., P)) to P\{p} is called a truncated projective
plane of order k. Setting m = k we have |4(P,,..., P)|=k*=m(t-1)=|P|+
coe | P_ll_

1.S. Theoreis (Meshulam {3]). Let (P, &) be a nontrivial incidence structure,
Py, ..., P, pairwise disjoint m-element subsets of P and L' the restriction of
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LP,,...,B) to LU---UP. If L' is not a truncated projective plane, then
|Z(P,, ..., R)|>m(t-1).

1.6. Our aim is to extend and complement this theorem. Obviously the points
from P\(P,VU- - - U P,) have no impact on (P, , ..., P,) and so without loss of
generality we may assume that P, , . . . , F, forms a partition of P. The structure of
Z(P,,...,P) leads to the following definition. Let t>1, let P,,..., P, be
pairwise disjoint nonvoid finite sets and let & be a family ot subsets of
P:=PU---UP, of cardinality at least 2. Then (P,,...,P,; %) is a colored
incidence structure if

(i) each line meets at least two sets P, and

(ii) for arbitrary x € F, and y € F;, x #y, the pair {x, y} is a subset of exactly
one line if i #j ..nd at most one jine if i =}.

For simplicity ve assume that |Pj| <- - - <|F,|. We illustrate this concept in the
following examples providing the exceptional (extreme) cases in our main
theorem.

1.7. Example. Let P= (P, N) be a near-pencil with center ¢ (cf. 1.2.3 above)
and let P,,..., F, be a partition of P with |P|<---<|P| and ce P. Then
N(P,,...,P) consists of all lines {c,x} with xe AU :--UP,_; and the line
P\{c} and so

N(Py,...,P)I=1+|P|+---+|P_

1.8. Example. Let t=2, P;:={z}, 9#+Z <P, and L:={{z}UZ, {z} U(R\
Z)}. Then (P, P»; £) is a colored incidence structure with |£|=2=1+|P)|.

1.9. Example. Let L= (P, £) be a projective plane of order %, let t=k*+
k+1and |P|=:--=|P|=1. Then L=(P,,...,P; %) and |¥; "X +k+1=
1+|P|+---+ Pl

1.10. Example. Let L,,..., L;+; be the lines through a fixed peint p of a
projective plane L = (P, &) of order k. Fix g € L,\{p} and put P;:= L,\{p, q},
and P.:=L\{pj(i=2,...,k+1). Further let & be the restriction of £\
{Ly,...,Lisy} to P\{p,q} and t:=k+1. Cleatly (P,,...,P;R) is a
colored incidence structure and |R|=k*>=1+k-1+k(X-1)=1+|P|+-- -+
|P._,] (this is the dual of an affine plane of order k with one line deleted).

1.11. Example. Let L=(P,¥) be a projective plane of order k and
L,,..., L. the lines through a fixed point p. Let s>1, let P,,..., P, be a
partition of L,\{p} and P,,;:= L, ,\{p}(1 <i<k). Let & be the restriction of
S\{L,,...,Lgs1} to P\{p). It is easy to sec that (P,..., P ¥) is a
colored incidence structure with |#| =&2+i=1+|P}+ - - +|Pi-il-
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1 2 3 4 5 6 7 8 9

L, | X X X X
L, | x X x| x
L, x x|x X
L, X X X
LS X X X
Le X X X
L, X X X
(@
1 2 3 4 5 6 7
X X
F! x| x x
X X X
X X
3 X X x
X X X
X X
F* | x x x
X X X
(b)
Fig. 1.

1.12. Example. Let P\{1, 2,3}, P\ {4, 5, 6}, P;\{7, 8, 9} and
g\{{ly 4) 8: 9}: {1, 5’ 6’ 7}) {2) 3, 4: 7}: {2: 5, 8}7 {2’ 6, 9}; {3: 5) 9}’ {3) 6’ 8}}-

(Fig. 1a). A direct check shows that (P, P, P;; £) is a coloured incidence

structure (in fact, by adding the pairs {1,2}, {1, 3}, {4,5}, {4,6}, {7, 8}, {7,9}

we obtain an incidence structure on {1,...,9}). Clearly |£|=7=1+|P| + |P).
Now we are ready to state cur mzin resalt.

1.13. Theorem. Let L=(P,,..., P,;; £) be a colored incidence structure with
t>1and |P)|<---<|P,|. Then

@) | L' =iPl+---+|P,| if and oniy if L is a truncused projective plane (of
order t — 1; see Example 1.4),

{ii) |ZI=1+|P|+::-+|P_,| if and only if &L is one of the colored incidence
structures from Examples 1.7-1.12.

(iii) In al! other cases | L|>1+|P|+---+|P_,.

In the particular case |P)| = - - - = | P,| = m we obtain the following sharpening of
Theorem 1.5.
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1.14. Corcllary. Let L=(P,,..., P; %) be a colored incidence structure with
t>1and |P|=:--=|P|=m. Then
() |Ll=m(t—1) if and only if m =t and L is a truncated projective plane of
order m.
(i) |<| =1+ m(t —1) if and only if either
(@) m=1, and £ is a projective plane of order k where t =k*+k + 1, or
(b) L=N(P,, ..., P) for a near-pencil or
(c) m=t=3 and L is the structure from Example 1.12.
(iii) In all other cases || >1+m(t—1).

1.15. Remark. The following example shows that in # colored incidence struc-
ture |P,| may largely exceed | £|. Let n be a positive integer, let P, := {(0, 1)}, :=
{(1,0)} and P:={(i, j}:1<i, j=<n}. Further let Ly:={(0, 1), (1, 0)} and for
i=1,...,n let L;:={0,1)}V{Gj):ji=1,...,n}, L,:={Q1,0}U
{(G,i):j=1,...,n}. Put &L:={Ly,...,Ly,}. It is easy to see thai
(P., P, P;; %) is a colored incidence structure with |Py| = n? = (|%] - 1)

2. 0-1 Intersecting families

2.1. In Theorem 1.13 the sufficiency of both (i) and (ii) has been shown in
Examples 1.4 and 1.7-1.12. To prove (iii) and the necessity of (i) and (ji) we
irvestigate the dual of Z. As it is more convenient for us to work with the dual
formulation, therefore we now propose to reinterpret everything in dual form. As
usual, the dual of £ is obtained by interchanging the roles of points and lines in
the following sense. Let £:={L,,...,L,} and let P:={p,, ..., p;}. Define a
zero-one n X | matrix M = (x;) be setting x; =1 if p; € L; and x; =0 otherwise.
Interpreting the jth column of M as the set Yj:={i:x;=1}("=1,...,1) we
obtain a system F ={Y,,..., Y} of subsets of {1,...,n} (the »2ts Y; need not
be distinct). Now F is naturally partitioned inio blocks ¥ :={Y;:p; € P}(i =
1,...,¢). Since there is at most one line through each pair {p,, pp}(1<a<b =
D); the system F is 0-1 intersecting. Next, two points from different color blocks
are joined by a unique L € £ and therefore

(D.1) |YnY|=1forallYeF, Y'eF, isi<jst
Finally each line meets at least two blocks F; and P, and so:
(D.2) The singletons YNY' with Ye &, Y' e &,
1<i<jstcover {1,...,n}.
2.2. Consider the duals of the celmed incidence structures from Examples 1.4

and 1.7-1.12. The dual of a truncated projective plane of order k is an affine
plane of order k. The dual of a projective plane of order k is again a projective
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plane of order k. The dual of (P,, ..., P; #) from Example 1.7 is a near-pencil
whose center ¢’ corresponds to the line P\{c} augmented by tke singleton {c'}
taken t—1 times. The dual of Fxample 1.8 has %'={{(1,2}} whie F#=
{{1},.... {1}, {2},...,{2})} with {1} appearing |Z| times. The dual of
Example 1.11 is obtained as follows. In an affine plane L of order X fix a parallel
class B, , ..., B, and choose a new point b. Let ¥, ..., % be a partition of
{B,U{b},..., B U{b}} and let F*!,. .., F** be the remaining parallel
classes of L. Finally the dual of Example 1.12 is on Fig. 1b.

2.3. As mentioned above and seen in 2.2, a set Y may appeai in F several
times. If this happens then clearly Y is a singleton, Y ={y}. Suppose Y =
{y} € . Then Y is the intersection of all sets from F\ & and consequently the
line L corresponding to y contains P\P.. Now P, ¢ L because otherwise L =P,
& = {L} in contradiction to |£] > 1. Fix x € P,\ L. Clearly for each y € P\P, there
is a line containing {x,y} and no other point in P\P,; and therefore /:=|Z|
satisfies

I=14|P—P=1+|Pl+-+ (Pl + Pl + - - + IR, @1)

Since |F|=|F)| for all j it follows that /=1+|P]|+---+|F_,|. Suppose
l=1+|P|+---+|P_;l Then by (2.1) we have |P| =|P] and so without loss of
generality we may assume that i =¢. Moreover, each line distinct from L is
determined by a pair {x, y} withy € P\P,.. If FE\L = {x} then £=N(P,,..., P)
is a near-pencil (P, N) with center x (Example 1.7) and we are done. Thus
assume that |P,\L| > 1. For y € P,\(L U {x}) and z € P\P, the line through x and
z must coincide with the line though y and z. As there is at most one line through
x and y, we can conclude that P\P,={z}. Thust=2, P,={z} and =1+ |P)|=
2. Put Z:=P,NL. Then L,={z} UZ and L, = {z} U (P,\Z) obtaining thus the
structure from Example 1.8.

2.4. From now on we assume that F is a set containing no singletons. In the
context of 01 intersecting families the assumptions (D.2) seems to be somewhat
arbitrary and restrictive. If we drop it, we need the following additional case.

Example. Let L= (P, £) be an affine plane of order k with parallel classes
L, ..., P where £*'={Y,,..., Yi}. FixO<j<kand X:= PU {x} where
x¢P and put F =% (i=1,...,k) and F*':= {{x}UT;:i=1,...,j}U
{Yi:ii=j+1,..., k). It is easy to see that #', ..., F**! form a 0-1 intersect-
ing family satisfying (D.1) but not (D.2). Moreover,

XI=K2+1=1+|F 4+ + | P,

Now we are ready to formulate the following result for 0-1 intersecting families
which may be of independent interest. '
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2.5. Theorem. Let F be a 0-1 intersecting family of subsets of an n-set X ard let
k:=min{|Y|:Y e F}>1. Let F be partitioned irio blocks ¥, ..., F of sizes
fis---<fisothatt>1 and

(D.1) |YNY'\=1foralYeF, Y eF, 1<i<jst Then

(@) n=fi+---+fi—,ifand only if t=k + 1 and F is an affine plane of order k
with parallel blocks ¥, . . . , .
(i) n=1+fi+---+fi_ if and only if one of the following holds
(@) t=k*+k+1, F is a projective plane of order k and |F'|=-:-=
iFi=1,
(b) t =k + 1 and there is an affine plane L = (P; £) of order k such that ' is
a parallel class of L minus one line while ¥, ..., F*' are the other parallel
classes,
{c) F is the dual of Examplz 1.11 or 1.12 and
(d) F is isomorphic to Example 2.4.
(iii) In all other cases n=2+fi+---+f_;.

2.6. The following is the key to our proof. Our argument may be seen as a
modified version of the method of P. Seymour [6]. Let Fand ', ..., ¥ be as
in Theorem 2.5 and let f:=|F|(i=1,...,t); however we do not assume
fi<---<f. Lei k denote the mimimum cardinality of a membe- of F. Further let
G denote the family of the k-sets from F. Fix Ge G where Ge & and put
H:=F\%,h:=|H|, H :=HNG, h':=|H'|, H':= H\G. Further for x € X let
d(x), d'(x) and d"(x) denote the degree of x in H, H' and H" (see 1.1). Let
x € G. The sets of H containing x meet at most in {x} and thus are disjoint on
X\G. It follows that

n—k=|X\G|=> {{H|-1:xeHeH}=(k—1)d'(x) + kd"(x) (2.2)

Sum up the inequalities (2.2) over all x € G:
k(n—k)=(k~1) > d'(x)+k 2, d"(x) (2.3)
xeG x=2&

If we partition H' by putting ¥ and Y’ in the same block whenever Y N G=Y'N
G and observe that ihe block with Y N G = {x} has exactly d'(x) sets we obtain
that

h'= d'(x).

xeG
Similarly the second sum in (2.3) equals |[H"| = h — h’ and therefore
k(n-k)=(k-1)r'+k(h—h')=kh—h’,
i.e.
n=h+(k*~h')ik. (2.4)
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Sunnose k2—k>h'. Then from (2.4) we get 2 >h +1i.e. n=h + 2 and in view

2 RAI22 \F-

of h = |H| = |F\ | we have (iii). Thus from now on we assume that

Here Kc G is
Lemne o D <Xr
LCIdT

whenever GEGNF and h:=|G N

= %i

)l. Put K:= {G}

(F\9 H'.
. 22 . 4 R, T s
K —K T 1. LICdIl

a family of k-sets and [Ki=1+A'

mern dewrom mncane

1AVE tWU LAadLd.
{a) there aze no disioint sets in K and

\$*) saaveS Qi 228 SSagyRlass @

(b) K contains a pair of disjoi t— sets. The case (a) is studied in Section 3 and
the case (b) in Section 4.

= 1i cting. We

3. Fully intersecting K

1.1, We assume that there is a set GG N Q" such that K =1 .1lllf'ﬁ

Jede VWU GIOUILIIV IGE iIVE uch that A .= \T ) >\ T+

(F\ %) has at least k>—k+1 elements and |[YNY'|=1 for all Y, Y'eK,
Y#-' Y'. From 2] it follows that K is either a projective plane of order k —1 or a
star (i.e. (K= {c} where c is called the kernel of K).

(@) Let K be a projective plane of order kK —1. We need the following easy
fact:

Faci. Lei L be a line of a projeciive plane of order q > 1. If a set T meeis every

IRaen Aiatinent £ ¥ ~ cimnlotnm thow T =T
HITE GiSHNCe J!l.llll s ui W OIEICEUISy nén 1 = L.

We distinguish two cases kK >2 and k =2.

3.2. Suppose k >2. Apply the fact to the line Gof Kand Te #. Then T=G
(since otherwise |G| =|T NG|<1) ie. #={(G). It follows that the set G of

k-sets from F has car amanty 8 =K 2. k + 1. Now G € G was chosen art ouraruy in
£ nnd an thoaen aea 1 el ~# ... o3 =4 cnnnh that G5 — f£3 3 -1 \ wrhaeas
W AUl DU UIVIV dlV 11 N ° "\‘g\‘l SULil Lliat J’—I\I’I \I"‘.I., « e ,s} W1V
=G, .. (). Aonlvine once more the ahove fact we aobtain pae:lv that
eV <=y Mgy Shppegesp VAT ZNUET S QTS 8

d i;j=j for all j=1,...,t, thus F=@G is a projective plane of order
k 1 =2 and we are done.

3.3. Let k =2. Then K is the projective plane of order 1 and so we may assume
that G={1,2} e %' and H'-{{l, 3}, {2,3}}. Now either {1,3} and {2,3}

(TR PP TY " S I PR IO SN ' UL RIS 1 PR T SUNSIIE 1\

UCIVLIE W Qiuerent viocKs LAdC 1) UL 02 LIC dame Uvluc Casc 11).
TN Tot [1 Ned2and [ N e %3 Than f = 2 haranes: thars ic nn cat maatinag
\.l’ At & t&, d’ - W SSALNE [a, J - v o ARAwi: 5 7 UVwwiluv llwiWvw IJ 1IV JOwe ulvv‘mé
each of {1,2}, {1,3} and {2, 3} 1a singleton. If F =1:={{1, 2}, {1, 3}, {2, 3}}

F oI and let s = mm{lYl Y—e.“\.’} Without fvas-of generality we may assume
that there is Z € ' of cardinality s. It is easy to see that 3e Z while 1,2¢Z.
Without loss of generality we may assume that f:=|%| satisfy H=f;. Let

ar2.__ fr1 A

F:={{1,3}, Y2,..., ¥;}. Suppose that ¥;N{1i,2}={i} for some i. Then
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Y;N {1, 3} = {1} and {2, 3} is disjoint from ¥;. This contradiction shows 2 € Y for
i=2,...,5. Thus ;NY;={2} for all 2<i<j<f,. Every Y; has at least s
elements and thus at least s — 2 elements outside Z':= {1, 2} U Z. It follows that
(,U---UYL)\Z' has at least (f; — 1)(s — 2) elements and consequently

n:=X|Z2{l-1)(-2)+s+2=f(s—-2)+4. (3.1)

On the other hand 2+4+f£;<2(/,+1). If s=4, then we have the required
inequality 2+f,+fy<n. If s=3, then f,<s=3 and by the inequality (3.1)
n=f+4=1+H+f;. K n=2+f,+f;, we are done. Let n=1+f,+f. Then
£2=3, n=17 and f; =3. The only possibility for F is given by Fig. 1(b).

It remains to consider the case s =2, E.g. {1,2}, {3,4} € . Then for each
Y e ¥ - {1, 3} we have {2,4} c Y, hence f; <f, <2. Hence in the case n =6 we
are ready. The case n <3 is covered by the duals of Exampies 1.4-1.11.

(1) Let {1,3}, {2,3}€ %~ Put G:={1,3}. Then F\%? contains at least
2?2 pairs which are all in #'. Thus there is {4, b} e &, {a, b}#{1,2}.
Suppose {a, b} N {1,2} #0, saya=1and b ¢ {1, 2}. Then b #3 and {1, b} does
not meet {2, 3}. This contradiction shows that a, b ¢ {1, 2}. Thus 3 € {a, b}, say
a=3 and b=4. Now each Y e F\#" intersects both {1,2} and {3,4) in a
singleton. Suppose there is Z e F\(#'U %%). Then Z meets both {1,3} and
{2, 3} in a singleton. It is easy tc see that this is impossible. Thus ¢ =2 and f, <4.
If i=2 then n=4=2+f; and we are done. Thus let j;>2. Put U:=
F\{{1,2}, {3,4}}). For Te¥ we have {1,2,3,4}NT={3} and therefore
TNT'={3} whenever T, T' e U, T+ T'. Considering ¥*— {{1, 3}, {2,3}} it
follows that besides 1,2,3,4 there are at least (f;—2)(f,—2) points and
therefore

n=4+(fi-2)(h-2)=4+H-2=2+5

completing the proof of (IT) and thus fully settling the case whe ¥ is a projective
plane.

3.4. We consider the case

(8) K is a star with kernel c.
We have two subcases.

(i) Suppose there is a k-set Y € F not containing c. Then Y € & and Y #G.
ForZ,Z'eH', Z+Z' we have YNZ#Y NZ' whence

=|Y|=h'=k*-k

which yields 2=%, k=2 and k' =2. For simplicity let G:={3,4} e %, c:=3
and let H':={{1,3}{2,3}}. Then Y={1,2}. Now we are in the situation
considered in Section 3.3 above and so we are done.

(i) We may assume that the set G of the k-sets from F forms a siar with kernel
c. For j=1,...,t put 9:=GNF, g:=|¥9| and let g:=g+---+g.
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Choosing G € 9" we obtain

gt g ==k —k=2 6.2)
Put

F:={YeF\G:ceY}, s;:=|F|(=1,...,1)
and §:=%'U---UF. Clearly §':=GUS is a star (with kemel c). Let
J:=(FPU- - UFNS', ji=lJ] and a:=[JF\US'|. Finally let s :=s, +- - - +

s.. At each Y € § has at least k + 1 elements and every Z € G is a k-element set

On the other hand
24+ +fi=2+g+---+g+s2+ -+,
+j=2+g—g1+s—51+]

and so ii suffices to show that

tfle _MNoa fl __Noe Lo Lo Loa__1 i 2\
!\‘ﬂ n-)s‘l'\u .I.’D T51 To]pT @ Le ‘JOJ’
We have fo
A Tat a=mAand L2 Wa sarnruya
£i. ls?wauu nN=dJ 'VUPUVD,

we have g; +---+g,_;=2. If g,° ose J Thus .
Again by (3 2) we have p>2. If p>3 we choose =p- 2 Thus let =3. If
g:>2; or g, =g,>3(k?— k), then we choose j=1. Finally if g,=g,= 2(k2 -k)
we have k2— k +1=g >3 and hence ¥ >2. Now we rearrange the sequence to

1(k®*—k), 1, 3(k*—k) and chorse j=2. [

Y ol Y.
© .=

-
C
C

c ¥l o c
W:rgYE_ Then ICIi<(k -1V and IC'I<L
I .t i [ B VLB Ll Al

Proof. Put D:=9'U---U¥ and G':=9*'U---U¥. According to (3.4)
there are two distinct G, G' € G'. To each Y € C assign y(Y):=(a, a’') where
{a}:=YNG' and {a'}:=YNG’'. The map y from C into (G\{c}) X (G'\{c})
is injective proving the first claimi.

o oo e o PPy - ~

o2 o ™., Z _ M __ 1 £ __ 1
ouppuw l.lld.l. L conains IC SEis Lv] yeoeeyLp. IO L €y anG 10or 1

i
A

J <k put
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¥z(i) :=a; where {a;}:=C;NZ. The map ¥:={1,...,k}—Z\{c} is clearl
non-injective and so there are 1<i<i'<k such that ¥,(i) = y,(i') =a. Put
(@i, i'):=Z. Since C;NC;={a}, we have defined 2n injective map ¢ from a
subset E of R:= {(i, i'): 1<i <i’' <k} onto D. Clearly |D| = |E| <R. However R
has 3(k®— k) elements while by (3.4) D has more than 4(k* — k) elemenis. This
contradiction shows that {C’| <k — 1 completing the proof of the claim. O

We nrove the ineanalitv (3.3) for k=32, Rv Claim 2 we have i<I|Cl L 1€ <
r b | J  \ 7 J clamm 2 v v aaGvw g 77w | =
k*— k. It is easy to see that
1l L2 _ L\ (L _ 1\o
l\\'\r J’\'\v '\’T\ﬂ l.’ 1»
whence

B. Let k=2 and g,=2. If c=0 and {0, 1}, {0,2} € ¢, then 1,2 € Z for each
Z eJ proving j <1. In view of 1<g; — 1 we see that (3.3) holds.

C.Let k=2 and g1=---=g,=1, g1=---=g=0 wzeie p>3. Again
=1 T ato L ash olanely (2 2) halde Thie acennma that 1 =1 and 6 = a =0
I SN ide 110 T O] T B -V Vivall \J J’ 1IVIUD. 11IUD aodoulily Lilat j 4 Qiivs v w Ve
Then F is of the form ¢ ={{0,i }(i=1 ..... ,t—1) a_d ll_l r 9"=

D. Finally let k=2 and g;-- -g, =1, gp+1—----—g,—0wherep<3 In view
of (3.2) we have p—1= g2+---+gp>2 hence p=3, ie.p= Supposec =0

and ¢ := {{0, 1}}(I =1, 2, 3). It is not difficult to check that j <2. The inequality
£2 2\ wndecann ¢ s o Lo L oA Withnnt lace Af canaralitryy wae  ~ou aconme f“ni«
(D) ICUULLY WU J =0 T o1 7T Ge WILIVUL 1UDD Ul guiiviaiily we Ay «ooUllv iase
$;=5;=5;. If 5,21 then j<2<2s;<s5s+s5; + o« and we are donz. Thus assume
5;=85,=5,=0. The mequahtv (3.3) becomes j<s,+---+s, +a.

() If s4 - - +5,=2 e are done.
(b) Thus let s,+---+s,=1, say s54=1, ss=---=5,=0, and let j=2. Then
t=4. Let ¥*= g;4 {Y} F:={{0, 2}, U} and %= {{0, 3}, V} It is easy to

see that 1, 3eU, UNnY={4}, 1, 2€eV and VI‘IY-{ 5}. If fi=1 then
A L s L L Lo nemd wwrn nma Aacea MThera oaooreven ~ 1 Than @1 -
LTJpTJ3Tjg—VU=n auu ¢ ai uvn LIIUd  addulie I 1~ 1. 1uvii o

{10 1Y WY whare 2 3eW and WNY={6). Anmn we have 2+ Ff. + £+ F.=
WAV 25y V7 § WiiVAL &y ST vr Qize V = ) J1i JI i

7<n and we are done.

(c) Finally let s,=---=s5,=0. The inequality (3.3) reduces to j<a. If
JN%*={Y}, then 1, 3€Y and Y contains an additional element, say 5. If
JN%F*={Z}, then 1, 2€ Z and Z has another element which is distinct from 5.

Thus either F is a near-pencil on 4 elements or we have j < ¢ and the proof of the
case D is compiete.
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4 K gnllv intersectine

" AR AD Ilvl BEEPWA S wweatigy

4.1. Finally we consider the case of K with a pair of disjoint sets. Thus we may
assume that some block, say ', contains two disjoint k-sets G and G'. Again we

put H:=F\%, h:=|H|, H=HNG and h':=|H'|. To prove (iii) from
Theorem 2.5 it sumces to show tnat iXj=n =2+ h. Since each Y € H meeis boih
G and G’ in a singleton we have k*= |G| |G'| =k, hence

kK*=h=h'=k*>-k (4.1)

1if n=2+k* we are done. Thus we assume that k2+ 1=n. Let d(x) denote

we degree of x in H. Let x € X\G. To each Y € H containing x assign y:(Y) =aq
where {a} =Y NG. The map ¥ is injective and so d(x)=<|G|=k. A similar
argument shows

S dix)=h=h'=k>—k. (4.2)
ad \\ti 4 \ 7
xeG

Fizy e G. The sets G, G’ and {Y\(GUG"):y € Y e H are pairwise disjoint and
IY\(GU G')| =k — 2 whence

n =2k + (k — 2)d(y). (4.3)
We have two cases.
1\ T ae Jln\(_lp='l frr all v = £ Than
\L’ ‘“\J’\ﬂr 4 VL A T U PRiiviiy
kK-k= ), dix)
xeG
and from (4.2) we obtain

2 dx)=h=Kk*-k
xeG

It follows that d(x) = k — 1 for all x € G. From (4.3) we get the desired inequality

> Ll 1ML _N=91 L -2 L
R T\K— IR —L)=LoTK —K=4LTh.

We have the case

(2) d(x)=k ior some x € G. For y=x the inequality {4.3) gives n=2k +
k(k —2)=k> Since k*>+ 1=n we have two possnbmtles =k?+1 and n = &>
Alrwr slaneler 2o = : L Lo —h S Al A o 12 __ 112 2 - 22 4
NOWCICANy i =42+ 1 nolds CICEpL In the two cases \a') n= naK =n=K —1
and (B n= 24— 1and h bz Before we siart to investicate (&) and (2) we

\FFJ °* A SszAws l AL VW 11 VWOLIEGLW \“’ aiiu \V’ W

prove the followmz two claims.

Claim 1. Let i>1 and let F N H' #9. Then
(i) For each Y e # NH' there are at least h + k —k*>—1 sets in ¥ disjoint
from Y.
£33\ £~ L + L2
(il j;=i TK—K".
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Proof. Let Y e H' N % and let 2 denote the number of sets

Let and let @ denote the number of sets from H\{Y} incident
with Y. Since Y is a k-set and d(y) <k for all y € Y we have z <i{k —1). CL_r!y
each Z e H disjoint from Y belongs to % and so there are at least h —a — 1=
h+k—k*—1sets Ze F disjoint from Y. O
Ciaim Z. If F does not satisfy (iii), then |[Fi=n+h +k - k*—1.

Proof. Sunnose f,<n+k—k*>—2 Inviewof h' > L2 — k=2 some F meets 2
i o o Ji AW vy e "™ o OVILIIVY IV EE .

Applying the assumption and Claim 1 we get

L _ " L a £ £ -
ThET4sTHRTH i
a

Fl=fi+h=n+h+k—-k*-1. O

+tht o Hfiatfiat-
Thus we may assume f,=n + k — k*—1 and

4.4. We consider the case (@) n=k*a

Claim 3. F consists of k-sets (i.e. F =G).

Dunnf Wa neava tha alaies e L — 22 19 Do l. — L2 4 el 2o ofcmalla L.
ERUUEe YVV PIUYL UiV Lidllll UL =K —1. rot n =K lll= plUUl. Dn 1lildl Uut
simpler. Put R:=X\(GUG"). There is (g, b} e G X G’ such that each pair

(x,y)e G xG’', (x,y)#(a, b) determines a subset R,, of R such that R, U

{x,y}eH. For a fixed x € G\{a} the family {R,,:y € G'} corsists of k pairwise
disjoint subsets of R. Since |R,,| =k —2 and |R| = k(k —2) the set {R,,:yeG'}
is a partition of R into k blocks of size k —2 and all Y € H not containing a have
size k. By symmetry the same hoids for Y € H such that b ¢ H. Since h =k*—1,

than ahhncrn thae IF . N/
LI DIIUWD Uial &% — IX .

than
SARWAR

Y| =k hecauce

] Yl =k because
and all ye G'. Suppose YNG = {x} wi x#a. Then Y is disjoint from all
R,,’s leading to the contradiction Y\{x} c G Thus by symmetry we may assume
that YNG = {a}, YN G' = {b}. Now Y\{a, b} c R\, cg\(v) - ' . and therefore
iYI<k. O

‘no

Ciaims 2
B2 k9 Eirst v
-0 | 9

0N

y Claim 2 and £=k -

Hence t—1<h/(k-1)= k + ft<k+ !he here exnsts an f = [(k* -

1)/(¢—1)] =k whence 2 +f;, + +f_,+f+1+- ce+f=2+h—-f+fisk’=n.
Suppose ¢t =k +2. Thenfl—fz— cor=fro=k—1 and by Claim 1(i) each &

consists of disjoint sets. Now svery degree in H=%*U---U%*2is at most k by

(2.2). Hence we have for arbitrary F € #*

K —1=H|= 3 du(x) <k

xeF

744
[Ty

This implies that exactly one element of F has degree k—1 (in H), the others

rmmaiots AL AL toa el PUNPPIVL Y. Fey af L haoo

have uegree k. Since 3’ consisis of UIb}Ulnl SCU, chuly one p‘unut O1L r nas
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degree k in F and the others have degree k + 1. The same holds for every
1<j<k+2and E € . Denote by V the set of elements with degree k. Then

Vik+ (- V)& =2 dels)= 2 IEj=IFI k.

Hence |V|=2k. But each F € F intersects V in one element, whence 2k - k =
Yrevdr(x) =|F| =k*+ k — 2, a contradiction.

From new on we can suppose that F is a family of k-sets on k? elements with
|F|=k*+ k ~1. The following lemma shows that these numerical parameters
alone determine F. The statement is a consequence of results by Stinson [7] and
Dow [3]. Very similar results are in [4].

Lemma 4.4. Let |X| = k? and let F be a 0-1 intersecting family of k-subsets of X.
If |[F|=k*+ k — 1, then either F is an affine plane of order k or F is obtained from
such a plane by removing one line.

With the ienuna we have finished the case («) and s< can turn to the case (B).

4.5. Let n=k*>+1 and h=k% By Claim 2 we may assume |F|=k*+k. We
start with:

Claim 4. There are at most k sets Y € H with |Y| =k + i and all the others are
k-sets. The k-sets in &' are pairwise disjoint.

Proof. As in the proof of Claim 3 we can show that there are subsets R,, of
X\(GUG") of cardinality k—2<|R,,|<k—~1 such that (A) H={{x,y}U
R,,:x€G,yeG'} and (B) for each x ¢ G the sets R,,(y € G') are pairwise
disjoint and |R,,| =k — 1 for at most one y € G'. Let Y e #' with G£Y #G".
Suppose Y NG = {a} and let x € G\{a}. Then Y meets each {x, y} UR,, e H in
singleton distinct from {a} and so |Y]|> k. By symmetry for a k-set Y we obtain
YNG=YNG'=4. Since G and G’ can be arbitrary disjoint k-sets in F' this
proves the second statement. [1

Claim 5. |# N G|=k for some 1<i=<t¢.

Proof. Put y,:=|% NG| und suppose y,>0 for I=1,...,s and ,=0 for
l=s+1,...,t Assume that y,<k—1forl=1,...,s By Claim 1 we have
fizkforl=2,...,s, hence

=h=f+ - +f=(s— 1)k (4.4)
and therefore k + 1=s. On the other hand

-1)k-D=y,+---+y,=h'=k*-k 4.5)
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proves s—1=k and so s=k+1. Now (4.5) combined with y,<k—1 gives
Y==Y. =k—1. Similarly (4.4) together with fi=k yields p=---=
fesr=k. We show that the sets in ' (I=2,...,k+1) are pairwise disjoint.
Indeed suppose there are two sets Y, Y’ € # with |Y N Y’| =1. We may assume
that Y is a k-set. Then there are at most k —2 sets in &' disjoint from Y in
contradiction to Claim1(i). Thus the sets in &' are pairwise disjoint. There are
k — 1 sets and one set of cardinality >k. Since |X| = k% + 1 it follows that the sets
in & partition X. Now k + 1=3. Pick a set Y € &°. It intersects the members of
%2 in exactly one point, hence |Y| = k. This contradicts =k >k — 1= y,.

Now we can complete the proof of Theorem 2.5. By Claims 4 and 5 we may
assume that some block, say &' contains & pairwise disjoint k-sets Y3, ..., ¥;.
Set Y:=Y,U---UY,. Then |Y|=4? and so X\Y = {x}. Each Z e & satisfies
IZNY|=k(@=2,...,t). Let F' denote the restriction of Fto Y. Clearly F'is a
family of at least k*+k subsets (of cardinality k) of the k*set Y. Applying
Lemma 4.4 we obtain that F' is an affine plane of order k. Let &£, ..., £**' be
the parallel blocks of F'. It is easy to see that for all Z e F containing x the sets
Z NY belong to the same parallel block, say £**1. Since F' is an affine plane, we
have F =% fori=1,...,k. Now it is easy to see that F is either the family
from Example 2.4 or the dual of Example 1.12. 0O

References

[1] N.G. de Bruijn and P. Erdés, On a combinatorial problem, Proc. Akad. Wet. Amsterdam 51
(1948) 1277-1279.

[2] M. Deza, Solution d’un probléme de Erdés-Lovész, J. Combinat. Theory (B) 16 (1974) 166-167.

[3] S. Dow, An improved upper bound for extending partial projective planes, Discrete Math. 45
(1983) 199-207.

[4] P. Erdos, R.C. Mullin, V.T. S6s and D.R. Stinson, Finite linear spaces an- projective planes,
Discrete Math. 47 (1983) 49-62.

[5] R. Meshulam, On multicolored lines in a linear space, J. Combinatoriai Theor? Ser. A 40 (1985)
150-155.

[6] P. Seymour, Packing nearly disjoint sets, Combinatorica 2 (1982) 91-97.

[7] D.R. Stinson, Pair-packings and projective planes, J. Austral Meth. Soc. (Ser A) 37 (1984) 27-38.



