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Lett>1,letP*,...,P,bepainvise disjoint nonvoid subsets of a finite set P, and let Y? be a 
collection of subsets of P called lines. We say that (PI,. . . , Pt; 9) is a colored incidence 
structure if (i) each line meets at least two blocks 6 and 3, (ii) for arbitrary distinct x E I$ and 
y E 4 the pair {x, y} is a subset of exactly one line if i +j and at most one line if r’ = j. 
Extending the work of de Bruijn and Erdiis and Meshulam we show that for a coloured 
incidence structure (PI, . . . , Pt; 3’) with lPIl s l l l S lPI\ in generai ISI c :ceeds 1 + lPrl+ l l l + 
IpI_& The exceptional cases are exactly: (i) ISI= lPtl + l l l + I&l iiT the structure is a 
truncated projective plane and (ii) I.%‘1 = 1 + [PII + l l . + I P,_l I holds in exactly six cases: a 
projective plane, the dual of an a&e plane, the dual of a modification of an afhne plane, a 
.nearpencil, a structure with 2 lines and a g-element structure with 7 lines. 

Extending a 1948 paper bJ 14-p de Bruijn and Erdiis [1] and a recent paper by 
Meshulam [S] we study colored incidence structures (P1) . . . z C; ii?) from the 
extremal set theory point of view. Assuming that j&j G - l e s iPIt we derive the 
bound jJ!?ja I&j + l . . + IPt_ll and completely determine the essentially uniclue 
extreme case I+%1 = j&j + l l l + l&l and the six cases of lJZ!= 1 + I&j +. l l + 

I&l proving much more than it is conjectured in [S]. The main part of the proof 
treats a slight extension of the dual of (PI2 . . . , 4; 9) which is a fa f sets 
partitioned into blocks @, . . . , 9 such that (Y n Y’( s 1 I 1 = 9 

respectively) whenever Y E @, Y’ E 9, Y # Y’(i #i, respectively). 
The paper was prepared during the first authtir’s visit to C. .A. in the 

spring of 1984. The financial support provided by NSERC grant A-5407 and 
IXAC Quebec grant E-539 is gratefully acknowledged. 

1.1. An incidence strw.tire (or finite geome 
points) and a collection 2 of non-empty subsets of P (lines’j s 
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distinct points is a subset of exactly one line. Consequently 2 is a O-1 intersecting 
family (i.e. (L n L’j s 1 for all L, L' E A? and L # L’). The incidence structure 
(P, ST) is nontrivial if lgl> 1. For P' c P the induce structure L 1 P’ := (P’; 3’) 
with 9’ := (L f3 P' : L E 91 is the restriction of (B, 3) to P’. Clearly (P’, 9’) is 
again an incidence structure. For a family F of sets the degree of an element x is 
&(x):=I{YEF:xE Y}l. 

1.2. Examples. Let k be a positive integer. 
(1) The (finite) projective plane of order k is an incidence structure (P, 9) with 

IPI = ISI= k* + k + 1 in which each point has degree k + 1 and every line consists 
of exactly k + 1 points. 

(2) Fix an arbitrary line Lo of the projective plane. The restriction of (P, 9) to 
P\L, is an u@ne plane of order k. It has k* points and k* + k lines. For each 
x E LO the k lines L\(x) with n E L; 3” L #LO form a parable! class of the a&e 
plane. 

(3) A near-Pencil of order r witi center c is the incidence structure (P# N) with 
r points and A:= {{c, x}: x E P\(c)} U (P\(c)). 

1.3. In a 19@ paper [I] N.G. de Bruijn and P. Erdiis proved: 
Let 1: = (P# 9) be a nontrivial incidence structure (i.e.. .for every line L E 9’ we 

hove 2 s IL1 c IPI). Let T be z set of non-collinear points of cardirudity t r 2 and 
L’ be the restriction of L to T. If L’ is neither a near-pencil nor a projective plane, 
then there are more than t lines L such that (L n T( > 1. 

In the two exceptional cases there are exactly t lhnes L with IL n al > A. 
Recently IL lMeshulam [S] extended this as follows. Given (P, 3) let PI , . . . , at: 

be painvise disjoint nonempty sets of points (i.e. PI , . . . ,& form a partial 
t-coloration of P). Denote by S(PI , . . . , It,) the family of lines meeting at least 
two colors: 

q4.9 l l l 9 ~):={LEsxn~f0+Ln~ for some l~icj~t). 

(i.e. A??(P, , . . . , Pt) is obtained from S!? by deleting all monochromatic and 
colorless lines). 

1.4. Exumple. Let (P, 3’) be a projective plane of order k and let 
L I, . . . , Lksl be the lines through a fixed point p. Put t = k + 1 and e := Li\ {p} 
(i = 1 , . . . , t). Clearly S(&;. . .) PI)=3?;{L1, . . * , L,} consists of k* lines. 
The restriction of (P, ZF(PI , . e . , pC)) to P\ (p) is called a truncated projective 
plane of order k. Setting m = k we have IZ!?(PI , . . . , pt)l = k* = m(t - 1) = IPIl + 
. l l + I&l. 

hc;riam IS]). Let (P, 9) be u nontrivia cidence structure, 
d&joint m-element subseti of P and the restriction of 
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L(p, 9 ’ ’ l 9 I-g to P,U*=* U Pt. If L’ is not a truncated projectitie pbze, then 
IS(& 9 l * l P IQ > m(t - 1). 

1.6. Our aim is to extend and complement this theorem. Obviously the points 
from P\(PI U l l l UP,) have no impact on 2?(Pl, . . . , pt) and so without loss of 
generality we may assume that PI , . . . , e forms a partition of P. The structure of 
S(PI t l l l P IQ leads to the following definition. Let t > 1, let PI, . . . , & be 
painvise disjoint nonvoid finite sets and let A? be a family of subsets of 
P:=P1U*- U Pt of cardinality at least 2= Then (PI , . . . , P,; 9) is a colored 
incidence structure if 

(i) each line meets at least two sets P and 
(ii) for arbitrary x E Z$ and y E Pj, x # y, the pair {x, y} is a subset of exactly 

one line if i #j ind at most one line if i = j. 
For simplicity v:ve assume that lPrl s. . . G 1 Ptl. We illustrate this concept in the 

following examples providing the exceptional (extreme) cases in our main 
theorem. 

1.7. &ample. Let P = (Pt .N) be a near-pencil with center c (cf. 1.2.3 above) 
and let PI , . l . , P, be a partition of P with IPII~-~Ipli and cEP,.Then 
N(PI # l ’ * 9 IQ sonsists of all lines {c, x} with x E PI U \ l - UP,_, and the line 
P\(c) andso 

IN(4 9 l l l 9 pt)l = 1+ IPlI + l l l + Ipr-ll 

1.8. Example. Let t = 2, PI . l = (z}, flZZgf$ and S:= {{t) UZ, (2) U(Pz\ 
2)). Then (PI, P2; 3) is a colored incidence structure with IZ!?I = 2 = 3i + IP I. 

1.9. Example. Let L = (P, 9) be a projective plane of order k, let t = k* + 

kt-1 and lPll=- =jptl=l. Thenk,=(P,,...,P,;S)and l.2, -.k*+k+l= 
1+ I&I + l l l + IPf-& 

1.10. Example. Let L1 , . . . , %k+t be the lines through a tied point P of a 
projective plane L= (P# Zf) 0f order k. Rx q EL,\(p) and put PI:= LI\{p, q}, 
and S:=Li\{p)(i=2,. . . , k + 1). Further let 3 be the restriction of 5!?\ 
V 19 . . . . Lk+l} to P\{p,q} and t:=k+l. Clearly (P ,,... Ipt;W) is a 
colored incidence structure and IBI= k* = 1 + k - I + k(!c - 1) = 1 + IPII + . l = + 

I&l (this is the dual of an affine plane of order k with one line deleted). . 

1.11. Example. Let t = (P, 9) be a projective plane of order k and 
L 190•*9 L&+1 the lines through a tied point p. Let s > 1, let PS , . . . , PS be a 
partition of Ll\(p} and P,+i := Li+,\{p}(l s i S k). Let 9 be the restriction of 
S\(L, 3 l l l 9 LM? 1 to Pi {p); It is easy to see &at (PI 9 . . . , e+k; 9) is a 
colored incidence structure with lY( = k’ + i = I i iPli f = $ t + IPS+k_il. 
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Fig. 1. 

1.12. Example. Let PI\{I, 2,3}, Pz\{4, 5,6}, PS\{7, 8,9} anlch 

JZ\ { {L 4,&g), (1, 5,6,7}, {2,3,4,7), (29% 8}, {2,6,9}, {3,5,9}, {3,6,8}). 

(Fig. la). A direct check shows that (PI, Pz, PS; 58’) is a coloured incidence 
structure (in fact, by adding the pairs (1,2}, {1,3}, {4,5}, {4,6}, {7,8}, {7,9} 
we obtain au incidence structure on (1 , . . . ,!I}). Clearly iS[ = 7 = I + 1 PII + 1 Pzl. 

Now we are ready to state our m;in resdt. 

. . . , &; 3) be a colored incidence structure with 

is a truncured prtijective plane (of 

(ii) 131 = 1 + IPII + . l l + I PIpI I if and only if ZE is one of the colored incidence 
structures from Examples 1.7-L 12. 

@) 18 a!! sthe? cases ISI :r 1 + lPrl + . l l + IPt_& 

e particular case I PI I = 0 l . = 181 = m we obtain the following sharpening of 
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Let I, = (P1 , . . . , Pr; 9) be Q colored incidence structure with 
t>land IPII=*=*=lI+m. Then 

(i) ISI= m(t - 1) if and only if m = t and L is a truncated projective plane of 
or&t m. 

(ii) ISI= 1 + m(t - 1) if and only if either 
(a) m = 1, and 9 is a projective plane of order k where t = k2 + k + 1, or 
(bj S=N(P1,... , PI) for a neat-pencil or 
0 c m = t = 3 and L is the structure porn Example 1.12. 

(iii) In all other cases ISI> 1 + m(t - 1). 

The following example shows that in 8 colored incidence struc- 
ture lPrl may largely exceed 1.91. Let n be a positive integer, let P1 : = ((0, l)}P2 : = 

((1, 0)) and Pa := ((i, j ): 1 s i, j s n}. Further let Lo : = ((0, 1), (1, 0)) and for 
i=l #...9 n It Li Z= ((0, 1)) U {(i, j): j= 1, . . . , n}; L,+i := ((1, 0)) U 
{(j, i): j = 1, . . . , n}. Put 9 : = {Lo , . . . , L&}. It is easy to see that 
(PI, P2, P3; 2) is a colored incidence structure with I PSI = n2 = i(lSl- l)2. 

2. O-1 Intersecting fdlies 

2.1. In Theorem 1.13 the sufficiency of both (i) and (ii) has been shown in 
Examples 1.4 and 1.7-1.12. To prove (iii) and the necessity of (i) and (ii) we 
irvestigate the dual of ZZ. As it is more convenient for us to work with the dual 
formulation, therefore we now propose to reinterpret everything in dual form. As 
usual; the dual of 9 is obtained by interchanging the roles of points and lines in 
the following sense. Let 9 : = ( L1 , . . . , L,} and Pet P : = {pl , . . . , pl}. Define a 
zero-one n X I matrix M = (xii) be setting xii = 1 if Pj E Li and Xij = 0 otherwise. 
Interpreting the jth column of M as the set Y$ := {i :+ F li( z -= 1 e . . . , I) we 
obtain a system F = { Y1 , . . . , &} of subsets of { 1, . . . , ~1) (the &zts q need not 
be distinct). Now F is naturally partitioned into blocks 9@ := {q :Pj E I$}(i L= 
1 f . . . , t). Sin,, w there is at most one line through each pair {pa, pb)(i s a c b s 
l); the system F is O-l intersecting. Next, two points from different color blocks 
are joined by a unique L E 2 and therefore 

(D.1) IYnY’I=lforallY&@, Y’E@~ isi<jdt. 

Finally each line me& at least two blocks P and 4 and so: 

(D.2) The singletons Y n Y’ with YE @, Y’ E g9 

lSi<jStcover (1,. . . ,n}. 

2.2. Consider the duals of the c&led incidence structures 
and 1.7-1.12. The dual of a truncated projective 
piane of order k. The dual of a projective plane o 
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plane of order k. The dual of (P1 , . . . , &; N) from Example 1.7 is a near-pencil 
whose center c’ corresponds to the line P\ {c} augmented by the singleton (c ‘} 
taken t - 1 times. The dual of Example 1.8 has gG1 = {{1,2}} whik p = 

W 9***9 (11, (2) 9 l l l 9 (2)) with (1) appearing 121 times. The dual of 
Example 1.11 is obtained as follows. In an afGne plane E of order A fix a parallel 
class Bl , . . . , Bk and choose a new point 6. Let pl,. . . , P be a partition of 
(&U(b),..., &U(b)} and let p+l,..., p+k be the remaining parallel 
classes of E. Finally the dual of Example 1.12 is on Fig. lb. 

2.3. As mentioned above and seen in 2.2, a set Y may appea in F several 
times. If this happens then clearly Y is a singleton, Y = {y}. Suppose Y = 
(y} E 9. Then Y is the intersection of all sets from F\# and consequently the 
line L corresponding to y contains P\&. Now pi $ L because otherwise L = P, 
9 = {L} in contradiction to 1st > 1. Fix x E q\ L. Clearly for each y E P\& there 
is a hne containing {x, y} and no other point in P\& and therefore I := 191 
SatiSfkS 

(2 1) . 

since IpIl a lZ$l for all j it follows that ZB 1 + IPlI + l . . + I&l. Suppose 
Z=l+~P,(+-•• + jP,_& Then by (2.1) we have I&I = lPtI and so without loss of 
~~~er~~ we may assume that i =t. Moreover, each line distinct from L is 

determined by a pair {x, y} withy E P\P,. If P,\L = {x} then .9? = Jr(Pl , . . . , pt) 

is a near-pencil (P, IV) with center x: (Example 1.7) and we are done. Thus 
assume that IP,\LJ> 1. ForyE P,\(L U(x)) andze P\P,thelinethroughx and 
t must coincide with the line though y and z. As there is at most one line through 
x and y, we can con&de that P\P, = (t}. Thus t = 2, PI = {z} and I = 1 + IPlI = 
2. put Z:= P2 n L. Then L1 = {z} U 2 and & = {z} U (P2\Z) obtaining thus the 
structure from Example 1.8. 

2.4. From now on we assume that F is a set containing no singletons. In the 
context of O-1 intersecting families the assumptions (D.2) seems to be somewhat 
arbitrary and restrictive. If we drop it, we need the following additional case. 

&ample. Let d. = (P, 3) be an affine plane of order k with parallel classes 
9’ ,...,~+‘where~+‘={~,...,Yk}.FixOdj~kandX:=PU{~)where 
x$P and put @=p (i=l,..., k) and 9@*‘:={{x)U~:i=l,..., j}U 
{x:i=j+l , . . . , k}. It is easy to see that @, . . . , Sk+’ form a O-1 intersect- 
ing family satisfying (D.l) but not (D.2). Moreover, 

ow we are ready to formulate the fdlowir~g 
may 

result for O-l intersecting families 
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2.5. Theorem. Let P be a O-l intersecting family of subsets of an n-set X a& let 
k:=min{(Y(:YEF}>l. Let F be partitioned itsto blocks @, . . . , 9 of sizes 

fls s=a<ftso thatt>l and 

(ID.19 lYflY’l=lforali YE*; Y’E~; lai<jst. Then 

(i) n =fi + .**+f,_,ifandonlyift=k+landFisanaffineplaneoforderk 
with parallel blocks S@ , . . . , 9. 

(ii) n =1+f,+ - - - i-J_, if and only if one of the following holds 
(a) t=k’+k+l, F is a projective plane of order k and ISli=*..= 

IWI = 1, 
(b) t = k + 1 and there is an a@ne phme L = (P; 9) of order k such that 8’ is 

a parallel class of L minus one line while @ , . . . , Sk+l are the other parallel 
Classes, 

(c) F is the dual of Exam@ l.li or 1.12 and 
(d) F is isomorphic to Example 2.4. 

(iii) In all other cases n 3 2 -I- fi + - - - +&-I. 

2.6. The following is the key to our proof. Our argument may be seen as a 
modified version of the method of B. Seymour [6]. Let F and 9’) . . . , F be as 
in Theorem 2.5 and let j := 191 (i = 1, . . . , t); however we do not assume 
fi” l l - ~fi. Lei k denote the mimimum cardmahty of a member of F. Further let 
G denote the family of the k-sets from F. FiK GE G where GE 9 and put 
W:=F\p, h:=IHI, W’:=HnG, h’:= /WI, AY’*:=H\G. Further for x rz X let 
d(x), d”(x) and d”(x) denote the degree of x in H, H’ and H” (see 1.1). Let 
n E G. The sets of H containing x meet at most in {z} and thus are disjoint on 
X\G. It follows that 

n -k = IX\Gi 2 x (IHI - 1:x E H E H} 3 (k - l)d’(x) + k&‘(x) (2.2) 

Sum up the inequalities (2.2) over all x E G: 

k(n - k) 3 (k - 1) STG 0x9 + k ,& d”(x) (2.39 

If we partition H’ by putting Y and _ Y’ in the same block whenever Y fl G = Y’ n 
G and observe that the bbck with Y fl G = (x) has exactly d’(x) sets we obtain 
that 

h’ = x=o d’(x). 

Similarly +e second sum in (2.3) equals 1 I = h - h’ and therefore 

k@ -k)z=(k- f)h'+k(h-h')=kh-h', 

i.e. 
nah+(k’-h’)/k. (2.4) 
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Suppose k2 - k > h’. Then from (2.4) we get r’2 > h + 1 i.e. 12 3 h + 2 and in view 
of h = (W( = (F\ $1 we have (iii). Thus from now on we assume that 

k2-k<h’ (2 5) . 

whenever G E G n 9 and h := IG Cl (F\&)l. Put K:= {G} UW’. Here K s G is 
a family of k-sets and Ip;rl = 1 + h ’ 3 k2 - k + 1. Clearly K is O-l intersecting. We 
have two cases: 

(a) there are no disjoint sets in K and 
(b) K contains a pair of disjoint sets. The case (a) is studied in Section 3 and 

the case (b) in Section 4. 

3. FuIly intersecting K 

3.1. We assume that there is a set G EC n 9 such that K:= {G} U (G n 
(F\ p)) has at least k2 -k+l elements and (YnY’(=l for alI Y, Y’EK, 
Y # Y’. Zrom i2] it follows that K is either a projective plane of order k - 1 or a 
star (i.e. n K = {c} where c is called the kernel of K). 

(cu) Let K be a projective plane of order k - 1. We need the folIowing easy 
fact: 

Fact. Let L be a line of a projective plane of order q > 1. If a set T meets every 
line distinctfiom L in a singleton, then T = L. 

We distinguish two cases k >2 and k = 2. 

3.2. Suppose k > 2. Apply the fact to the line G of K and T E 91 Then T = G 
(since otherwise IGj = (T n G( 6 I) i.e. p = (6;). It foIlows that the set G of 
k-sets from F has cardinal@ g := k” - k + 1. Now G E G was chosen arbitrarily in 
Gandsotherearelsil<a*= <i,atsuchthat96=(Gi)(j=l,...,g)where 
G= {G l,. . . , Gg). Applying once more the above fact we obtain easily that 
t=g and ii=j for all j=l,..., t, thus F = G is a projective plane of order 
k-122andwearedone. 

3.3. Let k = 2. Then K is the projective plane of order 1 and so we may assume 
that G = {1,2} E @ and H’ = {{1,3], {2,3}}. Now either {1,3} and (2,3} 
belong to different blocks (case I) or to the same block (case II). 

(I) Let { 1,3} E 9 and {2,3} E 9’. ‘I’hep t = 3 because there is no set meeting 
eachof {1,2}, {1,3} and{2,3}inasingIeton. IfF=Z:={{l,2}, {1,3}, {2,3}} 
we have the degenerated projective plane (of order 1) and we are done. Thus let 

and let s := mm{ IYI : y 5 p\,I) W’tk~sn* 32. ---- *C vT karvur l~tiD- UI generality we may assume 
there is 2 E @ of cardinality s. It is easy to see that 3 E 2 while 1,2 $26. 
out loss of generality we may assume that & := I @I satisfy h aft. Let 

s2:= {{1,3}, &, 0. -, ‘kj$ Suppose that Y;: n {1,2) = (1) for some i. Then 
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Y;- n { 1,3} = { 1) and {2,3} is disjoint from J$. This contradiction shows 2 E x for 
i=2 ,...&. Thus YnY;;={2} for ali 2si<j~f,. Everv I$ has at least s 
elements and thus at least s - 2 elements outside 2’ : = { 1,2)-U 2. It follows that 
(y2U”’ U Y,)\Z’ has at least 6% - l)(s - 2) elements and consequently 

n:=jXjadfi-1)(~2)+s+2=&-2)+4. (3 1) . 

On the other hand 2 +f2 +f3 s 2cf2 + 1). If s 3 4, then we have the required 
inequality 2+fi+&~n. If s=3, then fi~s=3 and by the inequality (3.1) 
nB&+4Bl+fi+& If na2+f2+f3 we are done. Let n=l+fi+-f3. Then 
f2 = 3, n = 7 and fi = 3. The only possibility for F is given by Fig. l(b). 

It remains to consider the case s = 2, E.g. { 1, 2}9 {3,4} E $@. Then for each 
YES-{1,3}wehave{2,4}cY, hencefl,sf2s2. Henceinthecasena6we 
are re*fy. The case n G5 is covered by the duals of Exampies 1.4-1.11. 

(II) Let {1,3}, {2,3} E 9. Put G:= {1,3}. Then F\P contains at least 
2*- 2 pairs which are ail in 9’. Thus there is {a, b} E @, {a, b) + {1,2}. 
Suppose {a, b} n {1,2} Z0, say a = I and b $ {1,2}. Then b # 3 and { 1, 6) does 
not meet {2,3 j . This contradiction shows that a, 6 $ (1,2}. Thus 3 E {cz, b}, say 
a = 3 and b = 4. Now each YE F \S’ intersects both {1,2} and {3,4} in a 
singleton. Suppose there is 2 E F\(# U Z#@j. Then 2 meets both { 1,3} and 
{2,3} in a singleton. It is easy ts see that this is impossible. Thus t = 2 and f2 G 4. 
If f,=2 then na4=2+f, and we are 
@\{{l, 2}, {3,4}}. For TE% we have 
T n T’ = (3) whenever T, 1”” E %, T # T’. 
follows that besides 1,2,3,4 there are 
therefore 

done. Thus let fi > 2. Put % := 
{1,2,3,4} n T = (3) and therefore 
Considering p- {{1,3}, {2,3}} it 
at least (fi - 2)(fi - 2) points and 

completing the proof of (IT) and thus fully settling the case whg;z K is a projective 
plane. 

3.4. We consider the case 
(/!I) K is a star with kernel c. 

We have two subcases. 
(i) Suppose there is a k-set Y E F not containing C. Then Y E $ and Y # G. 

For 2, Z’EH’, Z#Z’we have YnZ#YnZ’whence 

which yields 2a A, k = 2 and k’ = 2. For simplicity let G : = {3,$ j E iiF*, c : = 3 
{ {1,3}{2,3)}. Then Y = {1,2}. Now we are in the situation 

considered in Section 3.3 above a so we are done. 
(ii) We may assume that the set of the k-sets from forms a s’car with kernel 

c. For j=l 9 l l 9 9 t put %=Gn@, gi:=igj and let g:=gl+~~~+g~. 
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Choosing G E %?’ we obtain 

tf2+ .**+gr=h’ak2-ks=2 (3 2) . 

Put 

zP:={YE@\G:cEY), s[:=I9Qr=l,...,t) 

and S:=9”U l l 49. Clearly S’ := G US is a star (with kernel c). Let 
J:=(@U=** u V)\S’, j:= VI and a! := IuP\US’I. Finally let s :=sl + l l l + 

s,. At each YES has at least k + 1 elements and every 2 E G is a k-element set 
we have 

On the other hand 

2-G+ l **+f,=2~g,+**=+g,+s2+"'+sr 

+j=2+g-g,+s-sl+j 

and so it s&&es to show that 

jd(k-2)g+(k-l)s+gI+sl+Ly-I. (3.3) 

We have four cases. 

A. Letga4 and ka3. We prove; 

Claim 1. We can rearrange the 9’s so that 

& + l m-+gj>#(k*-k), gj+,+*m*+gra2 (34 

for some lsj<f. 

i. Suppose g1 3 . l . agP > 0 = gP+l = - 9 . = g,. By (3.2) (for p instead of 1) 
we have g, + l . . + gp_l a 2. If gp > 1 we choose j =p - 1. Thus assume gp = 1. 
Again by (3.2) we have p > 2. If p > 3 we choose j =p - 2. Thus let p = 3. If 
!&%&or& =g2 > i(k” - k), then we choose j = 1. Finally if g, =g2 = $(k2 - k) 
we have k2 - k + 1 = g > 3 and hence k > 2. Now we rearrange the sequence to . / . 
l(k2- k)j 1, i(kZ - k) and chocase j = 2. E 

2, &et C:=(y~,qt~oJ=*=U@:c$Y} and C’:={YE~@+‘W==U 
$5~ $ Y}. Then lC( s (k - ij2 and lC’( s k - 1. 

Put :=@u •~oU~ and G’:=g+lU 
l l l U % According to (3.4) 

there are two distinct G, G’ E ‘. To each Y E C assign v(Y) := (a, a’) where 
{Q) := Y n G’ and {a’} := Y n G’. The map ly from C into (G\(c)) x (G’\(c)) 
is injective proving the first claim. 

Suppose that ’ contains k sets C1 , . . . , Ck. Fix 2 E and for lsjdk put 
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?bz(i) :=ai where {ai) := GnZ. The map VZ:= (1, - - - , k}+Z\{c} is clearly 
non-injective and SO there are 1 s i < i’ G k such that vz(i) = qz(i’) = a. put 
@(i, i’) := 2. Since Ci n Cie = {a}, we have defined an injective map # from a 
subset E of R := {(i, i’): 1 s i C i’ s k} onto D. Clearly IDI = SE1 s R. IHowever R 
has &(k* - k) elements while by (3.4) D has more than i(k* - k) elements. This 
contradiction shows that lC’( s k - 1 completing the proof of the claim. 0 

We prove the inequality (3.3) for k 3 3. By Claim 2 we have j G ICI + IC’l G 
k* - k. It is easy to see that 

1 G (k - 3)(k* - k) + (k - l)gl, 

whence 

jsk*-ks(k-2)(gl+k2-k)+gl-1. 

By (3.2) we have g1 + k* - k s g and hence j does not exceed the right hand side 
of (3.3) and we are done. 

B. Let k=2andg, 32. Ifc=Oand{0,1},{0,2}&,thenl,2~Zforeach 
ZEJproving j Gl. Inviewof lagI- 1 we see that (3.3) holds. 

C. Let k=2 and gl=***=gP=l, gP+l=***=gt=O were p>3. Again 
:e1 TG )-IO AI 0 P + ~1 + a! > 0 clearly (3.3) holds. Thus assume that j = 1 and s = a! = 0. 
Then F is of the form ~=9?={{O,i}}(i=l,...,t-1) and either 9= 
((0, t}, (19 l l l P t}}orv={1,2,..., t - 1). In both cases F is a near-pencil. 

D. Finally let k=2 andglm**gP=l, gP+t=m*==gr=O whemps3. In view 

of (3.2) we havep-1=g2+==+gPa2, hencepa3, i.e.p=3. Supposec=O 
and 9P’ := { (0, !}}(I = 1,2,3). It is not difficult to check that j G 2. The inequaiity 
(3.3) reduces to j ss + s1 + LY. Without loss of generality we :ay assume that 
s1~s+s3. If Sl 31 then js2G&ss+sl+cuand we are don&. Thus assume 
Sl=S*=Sg = 0. The inequality (3.3) becomes j G s4 + . . l + st + cy. 

(a) If S4’ l l + s, % 2 -se are done. 
(b) Thus let sq+==+sI=l, say s4=1, s5=-•=st=O1 and let j==2. Then 

gz4_ Let yL#:= {Y), 9 = {{0,2}, U) and sG3 = {{0,3}, V). It is easy to 
see that 1, ~EU, UnY={4}, 1, REV and VnY={S}. If fi=l then 
2+h+htfi=6~n and we are done. Thus assume fi>l. Then 9’== 
{{O,l}, W} where 2, HEW and WnY={6}. Again we have 2+fi+f3+f4= 
7~n and we are done. 

(c) Finally let s1 = l l . = s, = 0. The inequality (3.3) reduces to j s a. If 
J n # = (Y}, then 1, 3 E Y and Y contains an additional element, say 5. If 
J n s3 = {Z}, then 1, 2 E 2 and 2 has another element which is distinct from 5. 

is a near-pencil on 4 elements or we have j G c and the proof of the 
case D is complete. 
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4. K Is not My intersecting 

4.1. Finally we consider the case of K with a pair of disjoint sets. Thu,!s we may 
assume that some block, say F1, contains two disjoint k-sets G and G’. Again we 
put H:=F\@, h:=(H(, W’=HnG and h’:=jH’j. To prove (iii) from 
Theorem 2.5 it sufkes to show that 1x1 = n 3 2 + h. Since each Y E W meets both 
G and G’ in a singleton we have k* = IGj IG’j ah, hence 

.J if n 3 2 + k* we are done. Thus we assume that k* + 1 a n. Let d(x) denote 
tne degree of x in H. Let x E X\G. To each Y E H containing x assign q(Y) := a 
where {a} = Y n G. The map ly is injective and so d(x) s ICI= k. A similar 
argument shows 

c d(x)=hah’ak*-k. 
XEG 

Fix y E G. The sets G, G’ and (Y\(G U G’):y E Y EH! are pairwise disjoint and 
IY\(G U G’)I = k - 2 whence 

n 3 2k + (k - 2)d(y). 2 (4 ) .J 

We have two cases. 
(1) Letd(x)ek-1 forallxEG. Then 

ti-kz= 2 d(x) 
XeG 

and from (4.2) we obtain 

2 d(x)=h=k*-k. 
XEG 

It follows that d(x) = k - 1 for all x E G. From (4.3) we get the desired inequality 

na2k+(k-l)(k-2)=2+k*-k=2+h. 

We have the case 
(2) d(x) = k for some x E G. For y = x the inequality (4.3) gives II 3 2k + 

k(k - 2) = k*. Since k* + 1~ n we have two possibilities: n = k* -I- 1 and n =L k*. 
Nm clearly E 3 2 + iz hold* -9 D Q.mcept in the two cases ((Y) n = k* and k” a h 3 kZ - 1 
and (B) n = k* + 1 and h = k*. Before we start to investigate (cu) and (8) we 
prove the following two claims. 

1. Leti>landiet$@n 
(i) For each YE 9 n ’ there are at least h + k - k* - 1 sets in 9 disjoint 

;N+k-k*. 
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Proof. Let YE H’ n @ and let a denote the number of sets from 
Y is a k-set and d(y) s k for all y E Y we have u” c kjk - 1). Clearly 

isjoint from Y belongs to 9 and so there are at least h - a - 13 
h + k - k” - 1 sets 2 E @ disjoint from Y. 0 

claim 2. If F does not satisfy (iii), then IF1 2 n + h + k - k2 - 1. 

Proof. Supposej+n+k-k2-2. Inviewofh’ak2-kk2somePmeets 
Applying the assumption and Claim 1 we get 

Thuswemayassumefi~n+k-k2-1and(Fl=f,+h~n+h+k-k2-l. 0 

4.4. We consider the case (cu) n = k2 and k2 3 h % k2 - 1. We need 

CIaim 3. P consists of k-sets (i.e. F = G). 

Roof. We prove the claim for h = k2 - 1. For h = k2 the proof is similar but 
simpler. Put R :=X\(G UG’). There is (u, ~)EG x G’ such that each pair 
(x, y) E G X G’, (x, y) #(a, b) determines a subset Z&, of R such that &,, U 
{x, y} E H. For a fixed x E G\ {a) the family {&,, :y E 6’) cor~ists of k pairwise 
disjoint subsets of R. Since I&,,1 2 k - 2 and IRI = k(k - 2) the set {&,, :y E G’} 
is a partition of R into k blocks of size k - 2 and all Y E H not containing a have 
size k. By symmetry the same holds for Y E H such that b Q H. Since h = k2 - 1, 
this shows that H = H’. 

Now let YE!P’. If YcR then lYl=k because lYnR,,I=l for a fixcdx#a 
and all )iEG’. Suppose Y n G = {x} where x #a. Then Y is disjoint from all 
Rxy)s leading to the contradiction Y \ {x} G G. Thus by symmetry we may assume 
that YnG=(ar}, YnG’ = {B]. l?Iow Y\ jio, b) z R\U~PGtitbI L ‘.;, mi therefore 
IYIsk. U 

By Claims 2 and 3 the family F is a family of k-sets on a k2-set with 
[pI 2 k2 + k - 2. First we exclude the case IFI = k” + k - 2. In this case h = k2 - 1 
by Claim 2 andf2=k-1. By Claim l(ii) we havefiak-1 for all 2eist. 
Hence t-l<h/(k-l)=k+l. If t<k+l then there exists an Ja[(k2- 
l)/(t-1)1 =kwhence2+fI+~~~+~_1+~+ti-~=~+f,=2+h-fi+fi~k2=n. 

Suppose t = k + 2. Then fi =f2 = l l l =fk+2 = k - 1 and by Claim l(i) each @ 
consists of disjoint sets. Now. eyery degree in =P2U l l l U Sk-’ is at most k by 
(2.2). Hence we have for arbitrary F E 9’ 

I= x d&) s k2. 
NSF 

This implies that exactly one element of t;‘ has degree k - 1 (in 
have degree k. Since SF’ consists of disjoint sets, exactly one 
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degree k in F and the others have degree k + 1. The same holds for every 
I si < k + 2 and E E 3% Denote by V the set of elements with degree k. Then 

Hence jV( = 2k. But each F E F intersects V in one element, whence 2k l k = 

I,,& = IFI = k2 + k - 2, a contradiction. 
From now on we can suppose that F is a family of k-sets on k2 elements with 

]FJ 3 k2 + k - 1. The following lemma shows that these numerical parameters 
alone determine F. The statement is a consequence of results by Stinson [7] and 
Dow [3]. Very similar results are in [4]. 

Lemma 4.4. Let 1X1= k2 and let F be a O-1 intersecting family of k-subsets of X. 
If IFI a k2 + k - 1, then either F is an afine plane of order k or F ti obtained porn 
such a plane by removing one line. 

. 

With tie iemma we have r”nnished the case (cu) and ss can turn to the case (/3). 

4.5. Let n = k2 + 1 and h = k2. By Claim 2 we may assume IFI 3 k2 + k. We 
start with: 

4. There are at most k sets Y E W with IYI = k + 1 and all the others are 
k-sets. The k-sets in 9’ are pairwise disjoint. 

Proof. As in the proof of Claim 3 we can show that there are subsets R, of 
X\(GUG’) of cardinality k-2~lRxyj~k-1 such that (A) H={{x,y}U 
R,:x f G, y E G’) and (B) for each x E G the sets R,(y E G’) acre pairwise 
disjoint and lRwl = k - 1 for at most one y E G’. Let YE 9’ with G # Y # G’. 
Suppose YnG={a} andletxEG\{a}. Then Ymeetseach {x,y}UR~~Hin 
singleton distinct from {a} and so IYj > k. By symmetry for a k-set Y we obtain 
Y n G = Y n G’ = 0. Since G and G’ can be arbitrary disjoint k-sets in 9’ this 
proves the second statement. Cl 

5. I@nGjakforsome Mist. 

f. Put vl:=j@nGj tiind suppose I/Q>O for I=l,...,s and vl=O for 
l=s+l ,..., t. Assume that vlek-l for I=1 ,... ,s. By Claim I we have 
fi*kforl=2,...,s, hence 

and therefore k + 1 as. On the other hand 

(s--l)(k-l)b~2+~~~+qS-_hf~k2-k (4 5) . 
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proves s - 12 k and so s = k + 1. Now (4.5) combined with ql G k - 1 gives 

w2 
=..m= W&+1 = k - 1. Similarly (4.4) together with fi > k yields fi = = . . = 

f k+l = k. We show that the sets in 9’ (4 = 2 z . . c , k + 1) are pairwise disjoint. 
Indeed suppose there are two sets Y, Y’ E 9’ with (Y R Y’s = 1. -We may assume 
that Y is a k-set. Then there are at most k - 2 sets in !F’ disjoint from Y in 
contradiction to Claiml(i). Thus the sets in 9’ are pairwise disjoint. There are 
k - 1 sets and one set of cardinality >k. Since 1x1 = k2 + 1 it follows that the sets 
in 9 partition X. Now k + 13 3. Pick a set Y E s3. It intersects the members of 
9 in exactly one point, hence 1 YI = k. This contradicts f3 = k > k - 1 = q3. 

Now we can complete the proof of Theorem 2.5. By Claims 4 and 5 we may 
assume that some block, say g1 contains .rC pairwise disjoint k-sets Y1 , . . . , Yk. 
Set Y:=YIU l UY,. Then jYj=k2 and so X\Y=O, Each Z&J@ satisfies 
jZnYJ=k(i=2,..., t). Let F’ denote the restriction of F to Y. Clearly ’ is a 
family of at least k2+ k subsets (of cardinality k) of the k2-set Y. Applying 
Lemma 4.4 we obtain that F’ is an afRne plane of order k. Let .5??, . . . , gk+’ be 

the parallel blocks of F’. It is easy to see that for all 2 E F containing x the sets 
2 n Y belong to the same parallel block, say Sk+? Since F’ is an afIine plane, we 
have @=5?? for i=l , . . . , k. Now it is easy to see that F is either the family 
from Example 2.4 or the dual of Example 1.12. Cl 
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