Order 5 (1988), 17-20. 17
© 1988 by Kluwer Academic Publishers

Dimension Versus Size
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Abstract. We investigate the behavior of f(d), the least size of a lattice of order dimension 4. In
particular we show that the lattice of a projective plane of order n has dimension at least n/In(n),
so that f(d)=0(d? log? d). We conjecture f(d)=0(d*), and prove something close to this for
height-3 lattices, but in general we do not even know whether f(d)/d — oo.
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1. Introduction and Results

We will be concerned in this paper with how small a lattice can be relative to
its dimension. For our purposes a linear extension of a poset P is an order-
preserving bijection

g:P—{1,...,|Pl}.

The (order) dimension of P, denoted dim P, is the least s for which there exist
linear extensions oy, ..., g, of P such that for all p, g e P with p £ g there exists
ie{l,...,s} with 6,(p)> 0:(g). For more information on dimension see [4] or
(51.

A venerable theorem of Hiraguchi [3] states that if dim P > 3, the size of P is
a least twice its dimension (this bound being attained for dim P=d by the
poset of 1- and (d — 1)-element subsets of a d-element set, ordered by con-
tainment).
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For lattices the situation is completely different, and far more complicated;
the problem of finding lattice analogues of Hiraguchi’s theorem was recently
raised by B. Sands (see [2]). Let us denote by f(d) the least size of a d-dimen-
sional lattice. Sands asked whether f(d)>2¢, i.e., whether the Boolean algebra
of order d is the smallest d-dimensional lattice. This was answered in the
negative by Ganter et al. [2]. Let 7, denote the lattice of partitions of an n-set
and L,(q) the lattice of subspaces of an n-dimensional vector space over GF(g).
It is shown in [2] that

3(n . n

§(§)Sdlmnns(§), (L.1)
2 _@"_1)<dimL,2)<2" 1. (12)
n+1

Either of these shows that f(d) grows much more slowly than 2%, and in par-
ticular (1.2) gives

f(d)< clo8*4,
Ganter et al. in turn asked for better bounds on f(d), and specifically whether
f(d) is bounded by a polynomial in d. Here we answer this in the affirmative:
THEOREM 1.3. If &, is the lattice of a projective plane of order n, then
dim 2, > n/2 In(n).
COROLLARY 1.4. f(d)=0 (d* log? d).
An upper bound of 27 + 2 on dim &, was shown to us by K. Reuter and appears

to us to be closer to the truth. Of course this would give f(d) = O(d?) and we
(somewhat recklessly) propose.

CONJECTURE 1.5. f(d)=6(d?).

In fact we cannot even show f(d)/d — «, though this seems certain to be the
case. We mention one small step in the direction of the conjecture (recalling
that the height of a poset is one less than the size of a largest chain).

PROPOSITION 1.6. If % is a lattice of height 3 then dim.#=0(.%|"?
log| ).

2. Proofs

Let us denote by P and L the point and line sets of the projective plane as-
sociated with #,. For the lower bound in Theorem 1.3, note that as there are
(n* + n + 1) n? nonincident pairs (p, I) € P x L, it suffices to prove

LEMMA 2.1. For any linear extension ¢ of & there are at most n’ In(n® +
n+ 1) pairs (p, ) e P x L for which o(l) < a(p).
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Proof. We need the following useful result of Corradi (see [6, prob. 13.13]).

(2.2) If & is a family of subsets of a set X, with F, Ge ¥ = |F|> k, |[FAG|<2,
then

K| 7|

> .
X1 k+(71-Da
This implies (taking & = Ly, X = P\ P,).

(2.3) If Pyc P and Ly L satisfy pg IV pe Py, 1€ Ly, then (| Pyl + n) (| Lol + n) <
n(n+1)>%
Now number the lines of L so that
ol <--<ollp, )

If o(p) > o(l;) then p g Uj_; [;, so by (2.3)
2
Hp:a(p)> a(l)}I< [M] —n.
i+n
The Lemma and Theorem follow after a little calculation for n > 5. For n< 4,
[n/In(n)] = 2 and trivially dim &, > 2. O

REMARK. As far as we know the correct upper bound in Lemma 2.1 could
be O(n?), which would give dim 4, = 8(n), in agreement with Conjecture 1.5.

Proof of Proposition 1.6. We denote by 0 and 1 the minimum and maximum
elements of ., and by Lg(L,) the set of elements covering 0 (covered by 1).
Obviously we may assume Ly L; =0.

As in [1], to show dim .#<s we need only find permutations ay, ..., g; of
L, satisfying

(2.4) for all pe Ly, 1€ Ly, with p ¢ [ there exists i {1, ..., s} such that o,(p)>

oi(q) forall g < 1.
Let n=max{|Lyl, |L,|}. If we choose oy,...,0,, r=4n"?In(n), at
random, then with positive probability (2.4) holds for (p, /) whenever
{geLo:q<}<2Vn 2.5
(see e.g. [1]). But this excludes only a small subset of L, :
[{le L, :1violates 2.5)}| < 2Vn. 2.6)

(To see this, note that L, may be regarded as a collection of subsets of
Ly, no two having more than one element in common, and apply (2.2).)
We may thus choose a;,...,ag, so that (2.4) holds whenever (2.5) is true,
and add to these for each / violating (2.5) a permutation g, satisfying
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a(g)<a(p) Va<lpgl
to obtain the desired set of O(|.#|'? log | #|) permutations.
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