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Abstract. We investigate the behavior of f(d), the least size of a lattice of order dimension d. In 
particular we show that the lattice of a projective plane of order n has dimension at least nlln(n), 
so that f(d) = O(dZ lo? d). We conjecture f(d) = O(d2), and prove something close to this for 
height-3 lattices, but in general we do not even know whether J(d)ld + m . 
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1. Introduction and Results 

We will be concerned in this paper with how small a lattice can be relative to 
its dimension. For our purposes a linear extension of a poset P is an order- 
preserving bijection 

0: P+ (1, . . ..IPI). 

The (order) dimension of P, denoted dim P, is the least s for which there exist 
linear extensions o1 , . . . , a, of P such that for all p, q E P with p $ q there exists 
iE (1, . ..) s} with oi(p) > Oi(q). For more information on dimension see [4] or 
PI. 

A venerable theorem of Hiraguchi [3] states that if dim P > 3, the size of P is 
a least twice its dimension (this bound being attained for dim P= d by the 
poset of I- and (d - l)-element subsets of a d-element set, ordered by con- 
tainment). 
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For lattices the situation is completely different, and far more complicated; 
the problem of finding lattice analogues of Hiraguchi’s theorem was recently 
raised by B. Sands (see [2]). Let us denote by f(d) the least size of a d-dimen- 
sional lattice. Sands asked whether f(d) 2 2d, i.e., whether the Boolean algebra 
of order d is the smallest d-dimensional lattice. This was answered in the 
negative by Ganter et al. [2]. Let K, denote the lattice of partitions of an n-set 
and L,(q) the lattice of subspaces of an n-dimensional vector space over GF(q). 
It is shown in [2] that 

<dimrr,< z 
0 2 ’ 

*(2”- l)<dimL,(2)<2”- 1. (l-2) 

Either of these shows that f(d) grows much more slowly than 2d, and in par- 
ticular (1.2) gives 

f(d) < c’Q2 d. 

Ganter et al. in turn asked for better bounds on f(d), and specifically whether 
f(d) is bounded b y a polynomial in d. Here we answer this in the affirmative: 

THEOREM 1.3. If Y,, is the lattice of a projective plane of order n, then 
dim 9,, > nA In(n). 

COROLLARY 1.4. f(d) = 0 (d2 log2 d). 

An upper bound of 2n + 2 on dim 9, was shown to us by K. Reuter and appears 
to us to be closer to the truth. Of course this would give f(d) = O(d2) and we 
(somewhat recklessly) propose. 

CONJECTURE 1 S. f(d) = 0(d2). 

In fact we cannot even show f(d)ld + OQ , though this seems certain to be the 
case. We mention one small step in the direction of the conjecture (recalling 
that the height of a poset is one less than the size of a largest chain). 

PROPOSITION 1.6. If .Y is a lattice of height 3 then dim5?= O(k I”* 
log 1-Y I ). 

2. Proofs 

Let us denote by P and L the point and line sets of the projective plane as- 
sociated with 9,,. For the lower bound in Theorem 1.3, note that as there are 
(n2 + n + 1) n2 nonincident pairs (p, 1) E P x L, it suffices to prove 

LEMMA 2.1. For any linear extension CT of 9 there are at most n3 ln(n2 + 
n + 1) pairs (p, 1) E P x L for which a(1) < a(p). 
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Proof We need the following useful result of Corradi (see [6, prob. 13.131). 

(2.2) ZfsisafamiiyofsubsetsofasetX, withE: G~~+lFlak, lFnGl<A, 
then 

IXb k* 191 
k+(b+ l)A’ 

This implies (taking 9 = Lo, X = P\ PO). 

(2.3) Zf PO c P and Lo cLsatisJLp~lVpp~P~,Z~Lo, then(l~ol+n)(lLoI+n)~ 
n(n + 1)2. 

Now number the lines of L so that 

a(i,)<...<a(fn2+,+,). 

If a(p) > Q(li) then p $lJj,i 4, SO by (2.3) 

The Lemma and Theorem follow after a little calculation for n 2 5. For n < 4, 
[n/m(n)] = 2 and trivially dim P,, > 2. cl 

REMARK. As far as we know the correct upper bound in Lemma 2.1 could 
be 0(n3), which would give dim g,, = e(n), in agreement with Conjecture 1.5. 

Proof of Proposition 1.6. We denote by 0 and I the minimum and maximum 
elements of 2, and by LO(L1) the set of elements covering 0 (covered by 1). 
Obviously we may assume Lo n L, = 0. 

As in [ 11, to show dim T< s we need only find permutations cri , . . . , a, of 
Lo satisfying 

(2.4) for all p E Lo, 1 E LI , with p g 1 there exists i E { 1, . . . , s} such that a,(p) > 
oi(q) for all q < 1. 

Let n=max{lLo], 1~~1). If we choose gi,...,~~, r=4n”*ln(n), at 
random, then with positive probability (2.4) holds for (p, 1) whenever 

l{qELo:q<IH<2fi (2.5) 

(see e.g. [l]). But this excludes only a small subset of L1 : 

I {IE L1 : 1 violates (2.5))] < 2fi. (2.6) 

(To see this, note that L1 may be regarded as a collection of subsets of 
LO, no two having more than one element in common, and apply (2.2)) 
We may thus choose ol, . . . . a, so that (2.4) holds whenever (2.5) is true, 
and add to these for each 1 violating (2.5) a permutation cq satisfying 
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el)<dP) Vcl<I,PXl 

to obtain the desired set of O( ITI 1’2 log ILZ’E”I) permutations. 
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